Syst. Biol. 52(3) 2003

Xia et al.
Abstract.—Previous phylogenetic analyses of tetrapod 18S ribosomal RNA (rRNA) sequences support the grouping of birds with mammals, whereas other molecular data, and morphological and paleontological data, favor the grouping of birds with crocodiles. The 18S rRNA gene has consequently been considered odd, serving as "definitive evidence of different genes providing significantly different estimates of phylogeny in higher organisms" (p. 156; Huelseubeck et al., 1996, Trends Ecol. Evol. 11:152-158). Our research indicates that the previous discrepancy of phylogenetic results between the 18S rRNA gene and other genes is caused mainly by (1) the misalignment of the sequences, (2) the inappropriate use of the frequency parameters, and (3) poor sequence quality. When the sequences are aligned with the aide of the secondary structure of the 18S rRNA molecule and when the frequency parameters are estimated either from all sites or from the variable domains where substitutions have occurred, the 18S rRNA sequences no longer support the grouping of the avian species with the mammalian species.

Murrell et al.
Abstract.—Idiosyncratic markers are features of genes and genomes that are so unusual that it is unlikely that they evolved more than once in a lineage of organisms. Here we explore further the potential of idiosyncratic markers and changes to typically conserved tRNA sequences for phylogenetic inference. Hard ticks were chosen as the model group because their phylogeny has been studied extensively. Fifty-eight candidate markers from hard ticks (family Ixodidae) and 22 markers from the subfamily Rhipicephalinae sensu lato were mapped onto phylogenies of these groups. Two of the most interesting markers, features of the secondary structure of two different tRNAs, gave strong support to the hypothesis that species of the Prostriata (Ixodes spp.) are monophyletic. Previous analyses of genes and morphology did not strongly support this relationship, instead suggesting that the Prostriata is paraphyletic with respect to the Metastriata (the rest of the hard ticks). Parallel or convergent evolution was not found in the arrangements of mitochondrial genes in ticks nor were there any reversals to the ancestral arthropod character state. Many of the markers identified were phylogenetically informative, whereas others should be informative with study of additional taxa. Idiosyncratic markers and changes to typically conserved nucleotides in tRNAs that are phylogenetically informative were common in this data set, and thus these types of markers might be found in other organisms.

Manuel et al.
Abstract.—Because calcareous sponges are triggering renewed interest with respect to basal metazoan evolution, a phylogenetic framework of their internal relationships is needed to clarify the evolutionary history of key morphological characters. Morphological variation was scored at the suprageneric level within Calcispongia, but little phylogenetic information could be retrieved from morphological characters. For the main subdivision of Calcispongia, the analysis of morphological data weakly supports a classification based upon cytological and embryological characters (Calcinea/Calcaronea) rather than the older classification scheme based upon the aquiferous system (Homocoela/Heterocoela). When 18S ribosomal RNA data were analyzed, both alone and in combination with morphological characters, the monophyly of Calcispongia was highly supported, but the position of this group with respect to other sponge lineages and to eumetazoan taxa was not resolved. The monophyly of both Calcinea and Calcaronea was retrieved, but the data strongly rejected the competing Homocoela/Heterocoela hypothesis. The phylogeny implies that characters of the skeleton architecture are highly homoplastic, as are characters of the aquiferous system. However, axial symmetry seems to be primitive for all Calcispongia, a conclusion that has potentially far-reaching implications for hypotheses of early body plan evolution in Metazoa.

Levin et al.
Abstract.—We examined relationships between fragrance and phylogeny using a number of approaches to coding fragrance data and comparing the hierarchical information in fragrance data with the phylogenetic signal in a DNA sequence data set. We first used distance analyses to determine which coding method(s) best distinguishes species while grouping conspecifics. Results suggest that interspecific differences in fragrance composition were maximized by coding as presence/absence of fragrance compounds and biosynthetic pathways rather than when quantitative information was also included. Useful systematic information also was gathered from compounds and pathways and from fragrance emitted by both floral and vegetative tissues. The coding methods that emerged from the distance analyses as best distinguishing species were then adapted for use in phylogenetic analysis. Although hierarchical signal among fragrance data sets was congruent, this signal was highly incongruent with the phylogenetic signal in the DNA sequence data. Notably, topologies inferred from fragrance data sets were congruent with the DNA topology only in the most distal portions (e.g., sister group pairs or closely related species that had similar fragrance profiles were often recovered by analyses of fragrance). Examination of consistency and retention indices for individual fragrance compounds and pathways as optimized onto one of the most-parsimonious trees inferred from DNA data revealed that although most compounds were homoplastic, some compounds were perfectly congruent with the DNA phylogeny. In particular, compounds and pathways found in a few taxa were less homoplastic than those found in many taxa. Pathways that synthesize few volatiles also seem to have lower homoplasy than those that produce many. Although fragrance data as a whole may not be useful in phylogeny reconstruction, these data can provide additional support for clades reconstructed with other types of characters. Factors other than phylogeny, including pollinator interactions, also likely influence fragrance composition.

De Queiroz and Poe
Abstract.—Kluge's (2001, Syst. Biol. 50:322-330) continued arguments that phylogenetic methods based on the statistical principle of likelihood are incompatible with the philosophy of science described by Karl Popper are based on false premises related to Kluge's misrepresentations of Popper's philosophy. Contrary to Kluge's conjectures, likelihood methods are not inherently verificationist; they do not treat every instance of a hypothesis as confirmation of that hypothesis. The historical nature of phylogeny does not preclude phylogenetic hypotheses from being evaluated using the probability of evidence. The low absolute probabilities of hypotheses are irrelevant to the correct interpretation of Popper's use of the phrase degree of corroboration, which is defined entirely in terms of relative probabilities. Popper did not advocate minimizing background knowledge; in any case, the background knowledge of both parsimony and likelihood methods consists of the general assumption of descent with modification and additional assumptions that are deterministic, concerning which tree is considered most highly corroborated. Although parsimony methods do not assume (in the sense of entailing) that homoplasy is rare, they do assume (in the sense of requiring a correct phylogenetic inference) certain things about patterns of homoplasy. Both parsimony and likelihood methods assume (in the sense of implication by the manner in which they operate) various things about evolutionary processes, although violation of those assumptions does not always cause the methods to yield incorrect phylogenetic inferences. Test severity is increased by sampling additional relevant characters rather than by character reanalysis, although either interpretation is compatible with the use of phylogenetic likelihood methods. Neither parsimony nor likelihood methods assess test severity (critical evidence) when used to identify a most highly corroborated tree(s) based on a single method or model and a single body of data; however, both classes of methods can be used to perform severe tests. The assumption of descent with modification is insufficient background knowledge to justify cladistic parsimony as a method for assessing degree of corroboration. Invoking equivalency between parsimony methods and likelihood models that assume no common mechanism emphasizes the necessity of additional assumptions, at least some of which are probabilistic in nature. Incongruent characters do not qualify as falsifiers of phylogenetic hypotheses except under extremely unrealistic evolutionary models; therefore, justifications of parsimony methods as falsificationist based on the idea that they minimize the ad hoc dismissal of falsifiers are questionable. Probabilistic concepts such as degree of corroboration and likelihood provide a more appropriate framework for understanding how phylogenetics conforms with Popper's philosophy of science. Likelihood ratio tests do not assume what is at issue but instead are methods for testing hypotheses according to an accepted standard of statistical significance and for incorporating considerations about test severity. These ratio tests are fundamentally similar to Popper's degree of corroboration in being based on the relationship between the probability of the evidence e in the presence versus absence of the hypothesis h, i.e., between p(e |hb) and p(e |b), where b is the background knowledge. Both parsimony and likelihood methods are inductive, in that their inferences (particular trees) contain more information than (and therefore do not follow necessarily from) the observations upon which they are based; however, both are deductive in that their conclusions (tree lengths and likelihoods) follow necessarily from their premises (particular trees, observed character state distributions, and evolutionary models). For these and other reasons, phylogenetic likelihood methods are highly compatible with Karl Popper's philosophy of science and offer several advantages over parsimony methods in this context.

Vos
Abstract.—The existence of multiple likelihood maxima necessitates algorithms that explore a large part of the tree space. However, because of computational constraints, stepwise addition-based tree-searching methods do not allow for this exploration in reasonable time. Here, I present an algorithm that increases the speed at which the likelihood landscape can be explored. The iterative algorithm combines the computational speed of distance-based tree construction methods to arrive at approximations of the global optimum with the accuracy of optimality criterion based branch-swapping methods to improve on the result of the starting tree. The algorithm moves between local optima by iteratively perturbing the tree landscape through a process of reweighting randomly drawn samples of the underlying sequence data set. Tests on simulated and real data sets demonstrated that the optimal solution obtained using stepwise addition-based heuristic searches was found faster using the algorithm presented here. Tests on a previously published data set that established the presence of tree islands under maximum likelihood demonstrated that the algorithm identifies the same tree islands in a shorter amount of time than that needed using stepwise addition. The algorithm can be readily applied using standard software for phylogenetic inference.

Smedmark et al.
Abstract.—A nuclear low-copy gene phylogeny provides strong evidence for the hybrid origin of seven polyploid species in Geinae (Rosaceae). In a gene tree, alleles at homologous loci in an allopolyploid species are expected to be sisters to orthologues in the ancestral taxa rather than to each other. Alleles at a duplicated locus in an autopolyploid, however, are expected to be more closely related to each other than they are to any orthologous copies in closely related species. We cloned and sequenced about 1.9 kilobases from the 5' end of the GBSSI-1 gene from two diploid, one tetraploid, and six hexaploid species. Each of the three loci in the hexaploid species forms a separate group, two of which are more closely related to copies in other species than they are to each other. This finding indicates that the hexaploid lineage evolved through two consecutive allopolyploidization events. Based on the GBSSI-1 gene tree, we hypothesized that there was an initial hybridization between a diploid species from the ancestral lineage of Coluria and Waldsteinia and an unknown diploid species to form the tetraploid Geum heterocarpum lineage. Backcrossing of G. heterocarpum with a representative of the unknown diploid lineage then resulted in a hexaploid lineage that has radiated considerably since its origin, comprising at least 40 extant species with various morphologies. A penalized likelihood analysis indicated that Geinae may be about 17 million years old, implying that the hypothesized allopolyploid speciation events are relatively ancient. Six of the 22 cloned Geinae GBSSI-1 copies in this study, which all are duplicate copies in polyploid taxa, may have become pseudogenes. We compared the GBSSI-1 phylogeny with one from chloroplast data and explored implications for the evolution of some fruit characters.

Harshman et al.
Abstract.—The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.

Gatesy et al.
Abstract.—Morphological and molecular data sets favor robustly supported, contradictory interpretations of crocodylian phylogeny. A longstanding perception in the field of systematics is that such significantly conflicting data sets should be analyzed separately. Here we utilize a combined approach, simultaneous analysis of all relevant character data, to summarize common support and to reconcile discrepancies among data sets. By conjoining rather than separating incongruent classes of data, secondary phylogenetic signals emerge from both molecular and morphological character sets and provide solid evidence for a unified hypothesis of crocodylian phylogeny. Simultaneous analysis of four gene sequences and paleontological data suggest that putative adaptive convergences in the jaws of gavialines (gavials) and tomistomines (false gavials) offer character support for a grouping of these taxa, making Gavialinae an atavistic taxon. Simple new methods for measuring the influence of extinct taxa on topological support indicate that in this vertebrate order fossils generally stabilize relationships and accentuate hidden phylogenetic signals. Remaining inconsistencies in our most well-supported tree, including concentrated hierarchical patterns of homoplasy and extensive gaps in the fossil record, indicate where future work in crocodylian systematics should be directed.