Syst. Biol. 51(4) 2002

Abstract.—Computer simulations were used to test the effect of increasing phylogenetic topological inaccuracy on the results obtained from correlation tests of independent contrasts. Predictably, increasing the number of disruptions in the tree increases the likelihood of significant error in the r values produced and in the statistical conclusions drawn from the analysis. However, the position of the disruption in the tree is important: Disruptions closer to the tips of the tree have a greater effect than do disruptions that are close to the root of the tree. Independent contrasts derived from inaccurate topologies are more likely to lead to erroneous conclusions when there is a true significant relationship between the variables being tested (i.e., they tend to be conservative). The results also suggest that random phylogenies perform no better than nonphylogenetic analyses and, under certain conditions, may perform even worse than analyses using raw species data. Therefore, the use of random phylogenies is not beneficial in the absence of knowledge of the true phylogeny.

Abstract.—The use of color (as distinct from color pattern) in comparative evolutionary studies is important, and objective, independent characters are needed. A new method was employed to investigate geographic color variation in the small arboreal lizard Anolis trinitatis on the island of St. Vincent. The simple delta analysis (based on the difference between eigenvector coefficients for adjacent regions of the spectrum) is aimed at increasing the objectivity with which a spectrum is cut into independent segments and does not predetermine segment width or number. There are distinct habitat types within this small island and distinct phylogenetic lineages (based on a kilobase of cytochrome b sequence) within this species. A series of matrix correspondence (Mantel) tests indicate that aspects of color are associated with habitat type (e.g., green dorsum in rain forest lizards), molecular phylogeny, or both. Hence, both adaptation by selection and historical processes are implicated as causes of geographic variation in color. The dewlap variation (e.g., strong ultraviolet reflectance in some Atlantic coastal sites) is very pronounced and, contrary to some expectations, may result in reproductive isolation even within small Lesser Antillean islands.

Martin and Burg
Abstract.—Conserved genes have found their way into the mainstream of molecular systematics. Many of these genes are members of multigene families. A difficulty with using single genes of multigene families for phylogenetic inference is that genes from one species may be paralogous to those from another taxon. We focus attention on this problem using heat shock 70 (HSP70) genes. Using polymerase chain reaction techniques with genomic DNA, we isolated and sequenced 123 distinct sequences from 12 species of sharks. Phylogenetic analysis indicated that the sequences cluster with constituitively expressed cytoplasmic heat shock-like genes. Three highly divergent gene clades were sampled. A number of similar sequences were sampled from each species within each distinct gene clade. Comparison of published species trees with an HSP70 genetree inferred using Bayesian phylogenetic analysis revealed several cases of gene duplication and differential sorting of gene lineages within this group of sharks. Gene tree parsimony based on the objective criteria of duplication and losses showed that previously published hypotheses of species relationships and two novel hypotheses based on Bayesian phylogenetics were concordant with the history of HSP70 gene duplication and loss. By contrast, two published hypotheses based on morphological data were not significantly different from the null hypothesis of a random association between species relatedness and the HSP70 gene tree. These results suggest that gene tree parsimony using data from multigene families can be used for inferring species relationships or testing published alternative hypotheses. More importantly, the results suggest that systematic studies relying on phylogenetic inferences from HSP70 genes may be plagued by unrecognized paralogy of sampled genes. Our results underscore the distinction between gene and species trees and highlight an underappreciated source of discordance between gene trees and organismal phylogeny, i.e., unrecognized paralogy of sampled genes.

Zwickl and Hillis
Abstract.—Several authors have argued recently that extensive taxon sampling has a positive and important effect on the accuracy of phylogenetic estimates. However, other authors have argued that there is little benefit of extensive taxon sampling, and so phylogenetic problems can or should be reduced to a few exemplar taxa as a means of reducing the computational complexity of the phylogenetic analysis. In this paper we examined five aspects of study design that may have led to these different perspectives. First, we considered the measurement of phylogenetic error across a wide range of taxon sample sizes, and conclude that the expected error based on randomly selecting trees (which varies by taxon sample size) must be considered in evaluating error in studies of the effects of taxon sampling. Second, we addressed the scope of the phylogenetic problems defined by different samples of taxa, and argue that phylogenetic scope needs to be considered in evaluating the importance of taxon-sampling strategies. Third, we examined the claim that fast and simple tree searches are as effective as more thorough searches at finding near-optimal trees that minimize error. We show that a more complete search of tree space reduces phylogenetic error, especially as the taxon sample size increases. Fourth, we examined the effects of simple versus complex simulation models on taxonomic sampling studies. Although benefits of taxon sampling are apparent for all models, data generated under more complex models of evolution produce higher overall levels of error and show greater positive effects of increased taxon sampling. Fifth, we asked if different phylogenetic optimality criteria show different effects of taxon sampling. Although we found strong differences in effectiveness of different optimality criteria as a function of taxon sample size, increased taxon sampling improved the results from all the common optimality criteria. Nonetheless, the method that showed the lowest overall performance (minimum evolution) also showed the least improvement from increased taxon sampling. Taking each of these results into account re-enforces the conclusion that increased sampling of taxa is one of the most important ways to increase overall phylogenetic accuracy.

Edwards et al.
Abstract.—The molecular systematics of vertebrates has been based entirely on alignments of primary structures of macromolecules; however, higher-order features of DNA sequences not used in traditional studies also contain valuable phylogenetic information. Recent molecular data sets conflict over the phylogenetic placement of flightless birds (ratites - paleognaths), but placement of this clade critically influences interpretation of character change in birds. To help resolve this issue, we applied a new bioinformatics approach to the largest molecular data set currently available. We distilled nearly one megabase (1 million base pairs) of heterogeneous avian genomic DNA from 20 birds and an alligator into genomic signatures, defined as the complete set of frequencies of short sequence motifs (strings), thereby providing a way to directly compare higher-order features of non-homologous DNA sequences. Phylogenetic and principal component analysis of the signatures strongly support the traditional hypothesis of basal ratites and monophyly of non-ratite birds (neognaths) and imply that ratite genomes are linguistically primitive within birds, despite their base compositional similarity to neognath genomes. Our analyses show further that the phylogenetic signal of genomic signatures are strongest among deep splits within vertebrates. Despite clear problems with phylogenetic analysis of genomic signatures, our study raises intriguing issues about the biological and genomic differences that fundamentally differentiate paleognaths and neognaths.