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Abstract.—We have investigated the effects of different among-site rate variation models on the esti-
mation of substitution model parameters, branch lengths, topology, and bootstrap proportions under
minimum evolution (ME) and maximum likelihood (ML). Speci�cally, we examined equal rates, in-
variable sites, gamma-distributed rates, and site-speci�c rates (SSR)models, using mitochondrial DNA
sequence data from three protein-coding genes and one tRNA gene from species of the New Zealand
cicada genus Maoricicada. Estimates of topology were relatively insensitive to the substitution model
used; however, estimates of bootstrap support, branch lengths, and R-matrices (underlying relative
substitution rate matrix) were strongly in�uenced by the assumptions of the substitution model. We
identi�ed one situation where ME and ML tree building became inaccurate when implemented with
an inappropriate among-site rate variation model. Despite the fact the SSR models often have a bet-
ter �t to the data than do invariable sites and gamma rates models, SSR models have some serious
weaknesses. First, SSR rate parameters are not comparable across data sets, unlike the proportion of
invariable sites or the alpha shape parameter of the gamma distribution. Second, the extreme among-
site rate variation within codon positions is problematic for SSR models, which explicitly assume rate
homogeneity within each rate class. Third, the SSR models appear to give severe underestimates of
R-matrices and branch lengths relative to invariable sites and gamma rates models in this example.
We recommend performing phylogenetic analyses under a range of substitution models to test the
effects of model assumptions not only on estimates of topology but also on estimates of branch length
and nodal support. [Among-site rate variation; bootstrapping; insect mitochondrial DNA; likelihood
ratio test; Maoricicada; maximum likelihood; nucleotide substitution models.]

The increasing use of maximum likeli-
hood (ML) methods in phylogenetic and
molecular evolutionary studies is largely a
result of its desirable and well-understood
statistical properties (Wald, 1949; Edwards,
1992; Gaut and Lewis, 1995; Rogers, 1997),
the ease with which competing hypotheses
can be evaluated (Kishino and Hasegawa,
1989; Huelsenbeck and Rannala, 1997), and
the development of explicit and biologically
realistic models of nucleotide substitution
(e.g., Yang, 1993, 1994a; Galtier and Gouy,
1998). In addition, the implementation of ML
methods in user-friendly software packages
(e.g., PHYLIP, Felsenstein, 1993; PUZZLE,
Strimmer and Von Haesseler, 1996; and
PAUP¤4.0, Swofford, 1998) have made ML
methods accessible to the wider systemat-
ics community. Continuing advances in com-
puter processing speed and algorithm im-
plementation (e.g., Lewis, 1998; Swofford,
1998) have to an extent alleviated some prob-
lems associated with the intensive compu-
tational burden of likelihood calculations.

Several simulation studies have shown that
the ML optimality criterion tends to be
an accurate estimator of phylogeny over a
wider area of tree space—that is, over dif-
ferent combinations of branch lengths—than
many other methods (e.g., Hillis et al., 1994;
Huelsenbeck, 1995a, 1995b; Yang, 1996a). The
accuracy of ML depends largely on a lack of
systematic error, that is, a good �t between
the assumptions of the substitution model
and the true underlying evolutionary pro-
cess (Swofford et al., 1996; Rogers, 1997). ML
may become inconsistent if an overly sim-
plistic substitution model is used to select
an optimal tree (Nei, 1991; Swofford et al.,
1996), potentially leading to strong statistical
support for incorrect phylogenetic hypothe-
ses (e.g., Lockhart et al., 1996; Sullivan and
Swofford, 1997). This observation has stimu-
lated much interest in the assumptions made
by the various substitution models required
for likelihood analyses (e.g., Yang et al., 1994,
1995). Those models do attempt to account
for the major features of nucleotide sequence
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evolution such as unequal base composi-
tion among sites (Felsenstein, 1981), transi-
tion bias (Kimura, 1980), and among-site rate
variation (e.g., Yang, 1993).

Among-site rate variation is one ubiqui-
tous property of sequence evolution that,
where ignored, can drastically affect the
estimation of topology (Sullivan et al.,
1995; Lockhart et al., 1996), branch lengths
(Waddell and Steel, 1997), substitutionmodel
parameters (Wakeley, 1994, 1996), and boot-
strap proportions (Frati et al., 1997; Sullivan
et al., 1997) under all optimality criteria
(Kuhner and Felsenstein, 1994). Ignoring
among-site rate variation also can seriously
affect the power of likelihood ratio tests
(LRTs; Huelsenbeck et al., 1997; Zhang, 1999)
and the estimation of P-values in the Kishino
and Hasegawa (1989) test (Waddell et al.,
1999; Buckley et al., unpubl. mss.) and
multiple comparison tests (Shimodaira and
Hasegawa, 1999; Buckley et al., unpubl.).
The detrimental effect of ignoring among-
site rate variation on the estimation of topol-
ogy has been demonstrated in both empirical
studies (Sullivan et al., 1995; Lockhart et al.,
1996; Takezaki and Gojobori, 1999) and simu-
lations (Kuhner and Felsenstein, 1994; Tateno
et al., 1994; Yang, 1996a). Genes that exhibit
extreme among-site rate variation have less
phylogenetic information than a gene of the
same length with moderate or no among-
site rate variation. This is because fewer sites
are free to vary and those that do vary may
be evolving at a high rate; thus many simi-
larities among the tips of a tree will be due to
homoplasy and not homology(Sullivan et al.,
1995). The problem of among-site rate varia-
tion becomes particularly acute when rates of
change vary among lineages (Cunningham
et al., 1998). In this situation, accurate op-
timization of branch lengths is more criti-
cal if phylogenetic analysis is to be accu-
rate. Waddell and Steel (1997) and Waddell
et al. (1997) noted that different among-site
rate variation models will often converge
on similar topologies despite their variations
in estimates of branch lengths and transi-
tion/transversion ratios (TS:TV). Because of
the nonlinear effect of among-site rate vari-
ation on inferred branch lengths, differences
between estimates determined with different
models tend to be most pronounced for long
branches in the tree (Waddell et al., 1997).
Thus, to obtain accurate branch length es-
timates, especially for deeper divergences,

biologically realistic models should be used.
Reliable branch length estimates are espe-
cially important for dating internal nodes
with a molecular clock (Yang, 1996b; Waddell
and Steel, 1997; Rambaut and Bromham,
1998).

We have used mitochondrial DNA se-
quences from the cytochrome oxidase sub-
unit I (COI), ATPase subunits 6 (A6) and
8 (A8), and the transfer RNA aspartic acid
(tRNAAsp) gene to reconstruct phylogenetic
relationships among species of the genus
Maoricicada (Dugdale, 1972), a group of pre-
dominantly montane New Zealand cicadas
(Fleming, 1971; Dugdale and Fleming, 1978).
The biological motivation for selection of
this taxonomic group was to study the ori-
gin and diversi�cation of the New Zealand
alpine biota by using Maoricicada as a model
taxon. The evolutionary and biogeographic
implications of the phylogenetic results pre-
sented here arediscussedelsewhere (Buckley
et al., 2001). The mitochondrial genes ana-
lyzed here are evolving under a range of con-
straints and represent typical markers used
in many molecular systematic studies.

We contrasted several methods for mod-
eling among-site rate variation and exam-
ined their effects on estimates of topology,
branch lengths, bootstrap values, and sub-
stitution model parameters under the mini-
mum evolution (ME) and ML optimality cri-
teria. We demonstrate that the manner in
which among-site rate variation is accounted
for has marked effects on several aspects
of phylogenetic analysis. In particular, esti-
mates of nodal bootstrap support are highly
dependent on the among-site rate variation
model used. We also identify a possible ex-
ample where ML and ME are behaving in
an inaccurate manner because of the pres-
ence of long adjacent branches and the use of
a biologically unrealistic and thus inappro-
priate among-site rate variation model (see
Waddell et al., 1999). We discuss and evalu-
ate the underlying biological assumptions of
a range of among-site rate variation models
and their appropriateness for analyzing the
data presented here.

METHODS

Species Sampling and Laboratory Protocols

We sampled all described species and sub-
species of Maoricicada except M. otagoensis
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maceweni; locality information will be pre-
sented elsewhere (Buckley et al., 2001). At
least two individuals were sequenced for
each species or subspecies, on different days,
to guard against possible contamination or
specimen mix-up and to search for possible
cryptic species. Whole genomic DNA was
extracted by using the salting-out protocol
described by Sunnucks and Hales (1996). We
ampli�ed two mitochondrial DNA targets.
The �rst, 819 bp from the COI gene, was am-
pli�ed by using the primers C1-J-2195 and
TL2-N-3014 (Simon et al., 1994). The second,
a 771-bp region from the tRNAAsp, tRNALeu,
A8, and A6 genes, was ampli�ed by using the
primer pair TK-J-3799 (GGCTGAAAGTAA
GTAATGGTCTCT) and A6-N-4570 (AAG
ACTGAATTATACAAACGGCTA). All spec-
imens were collected from the �eld except
for two M. iolanthe sequences, which were
obtained from museum specimens collected
in 1971. For both M. iolanthe individuals,
target mtDNA gene regions were ampli�ed
in a series of overlapping fragments; primer
sequences will be given elsewhere (Buckley
et al., 2001). Polymerase chain reaction
(PCR) products were gel-puri�ed and cycle-
sequenced with the Perkin-Elmer Big DyeTM

Terminator Cycle Sequencing Ready Reac-
tion Kit, according to the manufacturer’s
instructions. Cycle-sequencing products
were puri�ed by ethanol precipitation and
analyzed by electrophoresis on an ABI
PrismTM 377 DNA Sequencer. Sequences
were manually aligned by using ESEE3.2
(Cabot and Beckenbach, 1989), facilitated by
the conserved amino acid sequence and lack
of indels.

Patterns of Variation and Substitution
Model Selection

We calculated the number of varied
sites (sites observed to vary), parsimony-
informative sites, and the base frequencies
for each gene and codon position. Shifts in
base composition among taxa were exam-
ined by using Â 2 heterogeneity tests as im-
plemented in PAUP¤4.0b2a (Swofford, 1998).
Deviations from base composition station-
arity were tested on all sites and on par-
simony sites only, to assess the potentially
confounding effect of unvaried sites (sites ob-
served to be constant), which by de�nition
have stationary base frequencies (Waddell

et al., 1999). We also tested the stationarity
assumption on each of the four gene coding
regions and each of the three codon positions.
Using MEGA (Kumar et al., 1993), we calcu-
lated the number of twofold and fourfold de-
generate sites in the �rst and third positions
of each protein-coding gene.

Phylogenetic analyses were conducted un-
der the ML (Felsenstein, 1981), ME (Kidd and
Sgaramella-Zonta, 1971; Rzhetsky and Nei,
1992), and maximum parsimony (MP; Fitch,
1971) optimality criteria as implemented
in PAUP¤. Initially, a heuristic MP tree
search was performed with tree-bisection-
reconnection (TBR) branch swapping under
equal weights. This search converged on
�ve equally parsimonious trees. The likeli-
hood of one of the �ve MP trees was then
calculated using several substitution mod-
els, according to the methods of Frati et al.
(1997) and Sullivan et al. (1997). Results from
the other four most-parsimonious trees were
essentially identical, as might be expected
from results of other studies (see Sullivan
et al., 1996, 1997). The substitution mod-
els tested are those of Jukes and Cantor
(1969; JC69), Kimura (1980; K80), Hasegawa
et al. (1985; HKY85), and the general-time re-
versible model (GTR; e.g., Yang, 1994a). We
also accommodated among-site rate varia-
tion by using six categories of rate hetero-
geneity models. The �rst category assumed
that a proportion of sites are invariable (e.g.,
I; Hasegawa et al., 1985); the second cate-
gory assumed that all sites are free to vary,
with rates among sites following a discrete
approximation to the gamma distribution
(0 Yang, 1994b); and the third category as-
sumed that a proportion of sites is invariable
and the remainder are free to vary following
a gamma distribution (I C 0; Gu et al., 1995).
For the gamma distribution we used eight
rate categories to avoid underestimating the
® shape parameter, as recommended by Yang
(1994b) for cases where among-site rate vari-
ation is extreme.

For the fourth category, we partitioned
the characters into �rst, second, and third
codon positions and all tRNAAsp sites and
then estimated the gamma parameter sepa-
rately for each of these four partitions after
Yang (1996c), using PAML2.0 (Yang, 1997).
We refer to this model as the 04 model. Base
frequencies and underlying relative substitu-
tion rate matrices (R-matrices) were assumed
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to be constant across the four character par-
titions. Although optimizing base frequency
and substitution type parameters separately
for each of the four partitions ismore realistic,
we have kept these parameters homoge-
neous because we wanted to examine the ef-
fects of the assumption that the distribution
of among-site rate variation differs among
the partitions in isolation from other factors.

The �fth and sixth models are site-speci�c
rate (SSR) models, in which we identi�ed
rate classes a priori according to the func-
tional properties of a site (e.g., Swofford et al.,
1996). We identi�ed 10 potential rate classes
(referred to as the SSR10 model): the three
codon positions for each of the three protein-
coding genes, and the set of all sites in the
tRNAAsp gene. We also pooled each of the
codon positions across genes, which yielded
four rate classes: each codon position plus
the tRNAAsp sites (referred to as the SSR4
model). Rate classes were speci�ed by using
the site rates/rate sets option in PAUP¤. For
all SSR models, the relative rate for each site
was assumed to be equal within a class and
these rates were optimized by using ML. The
GTR C SSR10 model is the mostgeneral of the
site-speci�c rate models.

The likelihoods of the MP topology,
calculated under the above range of sub-
stitution models, were evaluated by using
LRTs (Goldman, 1993; Frati et al., 1997;
Huelsenbeck and Crandall, 1997). The
LRT statistic (±) is de�ned as: ± D ¡2
(ln L1¡ ln L0), where ln L0 is the natural loga-
rithm of the likelihood under the constrained
model, and ln L1 is the natural logarithm of
the likelihood under the more complex, un-
restricted model. The distribution of ± was
assumed to approximate a Â 2 distribution
with n degrees of freedom, where n is the
difference in the number of free parameters
between the two nested models. The model
containing the fewest parameters that did
not differ signi�cantly from the most general
model was assumed to be the most appropri-
ate description of the base-substitution pro-
cess among the models examined. Each re-
stricted model was tested against the most
general model possible. The relationships
among the six variants of the GTR model are
shown in Figure 1.

Two points must be made regarding the
use of the Â 2 distribution in comparing
nested among-site rate variation models.
First, it is not possible to test the signi�-
cance of ± between nonnested models by

FIGURE 1. Hierarchical relationships among the six
different among-site rate variation models used in this
study. Models within the lower row are nested within
those in the higher rows to which they are connected by
lines. See text for descriptions of the assumptions made
by the different models.

using a Â 2 distribution (e.g., GTR C SSR10
versus GTR C I C 0). Second, as Whelan and
Goldman (1999) have shown, the Â2 distri-
bution may not be appropriate when test-
ing the addition of among-site rate varia-
tion parameters. An alternative to both of
these problems would be to use the para-
metric bootstrap to generate the null dis-
tribution of ± (Goldman, 1993). However,
many of the models we examined are not in-
cluded in available simulation software, and
so we are unable to implement this approach
here.

To investigate the effects of the high substi-
tution rate at third positions on the relative
�t of the various among-site rate variation
models, we excluded the third positions and
calculated the likelihood of the MP tree by us-
ing the three remaining character partitions.
The four models evaluated were GTR, GTR
C I, GTR C 0, GTR C I C 0, and an SSR model
with three rate categories: one for the �rst po-
sitions, one for all second positions, and one
for the tRNAAsp positions (referred to as the
GTR C SSR3 model).

Using MP, we calculated the percentage of
varied sites within each of the codon posi-
tions and the tRNAAsp gene that had expe-
rienced more than one inferred substitution
on the ML GTR C I C 0 tree. Second, by ex-
cluding the constant sites from the data, we
estimated SSRs on varied sites only for each
of the above four character partitions (i.e., a
modi�cationof the SSR4 model) to control for
the different proportions of unvaried sites.
We used the �rst approach as an estimate of
the comparative distribution of rates among
sites at those sites, which were observed to
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vary among character partitions. The sec-
ond approach was used as an estimate of
the relative substitution rate at varied sites
among character partitions.

Selection of an Optimal Tree Topology
and Estimating Nodal Support

Substitution model parameters were �xed
in further ML tree searches. In all ML tree
searches, a full heuristic search was under-
taken with a starting tree obtained by step-
wise addition (addition sequence simple),
followed by TBR branch swapping. Starting
branch lengths obtained by using the method
of Rogers and Swofford (1998) were opti-
mized ML under speci�c models of evolu-
tion. Trees were rejected if the approximate
likelihood exceeded by >5% the best likeli-
hood score encountered in the search. We did
not search for the most likely tree under the
GTR C 04 model because PAML (Yang, 1997)
does not implement the sophisticated tree-
searching algorithms and is therefore pro-
hibitively slow for the number of taxa we
examined.

The ME trees were constructed under the
same fully speci�ed substitution models as
the ML searches (except for the GTR C 04
model). The distance estimators we used,
(Waddell and Steel, 1997: their Equation 4)
are referred to as ML distances by some
authors (e.g., Swofford et al., 1996). Here,
the R-matrix is optimized from all of the
data and �xed for each pairwise compari-
son, unlike other, more commonly used dis-
tance estimators, where R is implicitly es-
timated in the calculation of each pairwise
distance. Waddell and Steel (1997) found
through simulation studies that homogeniz-
ing R for all distance comparisons tends to
yield estimates with a lower variance. The
disadvantage of this approach is its potential
for bias if the true pattern of nucleotide sub-
stitution varies across the phylogeny. How-
ever, this assumption is also made by all com-
monly implemented ML methods (Felsen-
stein, 1981). These distance estimators are
implemented in PAUP¤4.0 by �rst de�ning
a fully speci�ed ML model and selecting
“maximum likelihood distances” in the dis-
tance menu.

Nodal support was estimated by the non-
parametric bootstrap method (Felsenstein,
1985) with 100 pseudoreplicates for the ML
analyses and 500 pseudoreplicates for the

ME analyses. The search strategy used was
the same as described above for estimat-
ing topology. We performed ML bootstrap-
ping under the GTR, GTR C I C 0, and
GTR C SSR10 models only because of the
computational burden of likelihood calcula-
tions. Bootstrapping was performed under
all among-site rate variation models for the
ME analyses except the GTR C 04 model (be-
cause thismodel is restricted to PAML, which
does not implement distance methods).

Because PAUP¤4.0 (Swofford, 1998) ig-
nores the codon position of a site during
the generation of pseudoreplicates, we used
the program CodonBootstrap1.1 (J. Bollback,
pers. comm.) to generate two data sets, one
of 500 replicates and the other of 100 repli-
cates, from the three protein-coding genes.
CodonBootstrap 1.1 resamples codons in-
stead of individual nucleotide sites, thus pre-
serving the coding structure of the sequence.
We pooled like codon positions from each
of the three protein-coding genes and ex-
cluded the tRNAAsp data because Codon-
Bootstrap1.1 supportsonly three site-speci�c
rate classes. Two bootstrapmajority-rule con-
sensus trees were then constructed from ME
analysis of the 500-replicate data set and
from ML analysis of the 100-replicate data
set. Substitution model parameters were es-
timated from a uniform weighted MP topol-
ogy and held constant in the analysis of each
psuedoreplicate.

RESULTS

Patterns of Nucleotide and Protein Evolution

The alignment of sequences produced
1,520 homologous sites from each of the
25 individuals included in the phyloge-
netic analyses (available from the System-
atic Biology website at: http://www.utexas.
edu/ftp/depts/systbiol/). This alignment
consisted of 753 bp from the 30 end of the COI
gene, the complete tRNAAsp (64 bp) and A8
(156 bp) genes, and 547 bp from the 50 end of
the A6 gene. For each species or subspecies,
the individuals sampled were identical or
nearly identical except for M. campbelli and
M. mangu, in which we discovered putative
cryptic species (“Otago” and “Awakino”)
(Buckley et al., 2001), and M. cassiope and M.
tenuis, which also display geographic varia-
tion. These sequences have been deposited in
GenBank under the following accession

http://www.utexas.edu/ftp/depts/systbiol/
http://www.utexas.edu/ftp/depts/systbiol/
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numbers: AF247609 to AF247633, AF248797
to AF248820, AF248843, and AF249888. The
A8 and A6 genes overlap by 7 bp, as they do
in other insect mitochondrial genomes (e.g.,
Flook et al., 1995). We included these over-
lapping sites in the A8 character partition;
however, all are unvaried in the sequences
presented here. The secondary structure of
the M. campbelli tRNAAsp gene is presented
in Figure 2 to show the distribution of varied
sites in the molecule.

We begin by presenting the inferred pat-
terns of sequence variation within this data
set, emphasizing the apparent complexity
of the base-substitution process and how
these processes appear to vary among char-
acter partitions. The sequence data pre-
sented here show patterns of variation typ-
ical of insect mtDNA (Simon et al., 1994),
namely, transition bias, unequal distribu-
tion of varied/parsimony-informative sites
among character partitions, and A C T rich-
ness (Table 1). Among the protein-coding

FIGURE 2. Predicted secondary structure of the
Maoricicada campbelli tRNAAsp gene based on the struc-
ture from Syzmura et al. (1996), with varied bases
circled.

gene regions, the A8 gene has the highest per-
centage of varied amino acid residues, fol-
lowed by the A6 gene and �nally the COI
gene (Table 1), consistent with �ndings for
other studies of insect mtDNA (Simon et al.,
1994). The most extreme A C T richness is
displayed by the A8 gene (87%), followed
by tRNAAsp (80%), A6 (78%), and COI (73%)
genes. However, when unvaried sites are
excluded, the order of A C T richness be-
comes tRNAAsp (90%), COI (85%), A6 (84%),
and A8 (82%). Thus, removing the confound-
ing effects of unvaried sites reveals that the
base composition at varied sites is homoge-
nous among the protein-coding genes sam-
pled here. Base composition varies greatly
among the three codon positions (Table 1).
Using the Â 2 tests, we are unable to reject
the hypothesis of base frequency stationar-
ity among taxa for all sites, MP sites, or at
any of the codon positions, or for any of
the gene coding regions (Table 2). This ob-
servation is important because if the evolu-
tionary process were nonstationary, then the
ML estimation of substitution model param-
eters would be biased. However, the Â2 test
for base composition stationarity is not very
powerful because it ignores the correlation
in base frequencies expected as a result of
the phylogenetic relationships among taxa,
and thus overestimates the number of de-
grees of freedom, increasing the chance of a
type II error (however, an ME analysis us-
ing the logDet correction for nonstationar-
ity produced an almost identical topology to
many of the other stationary models). The
base frequency parameters ¼A, ¼C, ¼G, and
¼T, obtained empirically, were 0.33, 0.12, 0.12,
and 0.43, respectively, for all sites combined.
These values were used in later likelihood
calculations involving all of the sites.

The estimated percentage of varied sites
that have experienced more than one substi-
tution was inferred by using MP for �rst, sec-
ond, and third positions for the three protein-
coding genes combined and for the tRNAAsp

gene. These values were used as crude mea-
sures of the overall substitution rate of each
of the above four character partitions (Fig. 3).
The varied third positions contain the great-
est number of inferred multiple substitutions
(57%), followed by the varied �rst positions
(48%), tRNAAsp (31%), and �nally the varied
second positions (27%).
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TABLE 2. Results from the Â 2 tests for homogene-
ity of base composition among sequences. The Â2 tests
are performed on all sites and on maximum parsimony-
informative sites (MP) only.

P-values from Â2 base
frequency test

All sites MP sites only

All partitions 1.000 0.628
1st positions 0.858 0.734
2nd positions 1.000 1.000
3rd positions 1.000 0.802
tRNAAsp 1.000 0.999
COI 1.000 0.499
A6 1.000 0.999
A8 1.000 0.999

Relative Fit of Substitution Models

We used LRTs to critically evaluate dif-
ferent substitution models for subsequent
phylogenetic reconstruction. Using this
approach, we were able to reject all variants
of the JC69, K80, and HKY85 models when
tested for goodness of �t to the data against
the variants of the GTR model. Of the GTR
variants, the rank of best-�tting model, in
order of decreasing negative log likelihood,
is GTR (7355.745), GTR C I (6726.613), GTR C
SSR4 (6717.869), GTR C 0 (6672.612), GTR C
I C0 (6664.366), GTR C SSR10 (6658.604),
and GTR C 04 (6535.657). The differences
between the GTR C SSR10 and GTR C
SSR4 models are signi�cant (Â2

[6] D 118:530,
P < 0:05), as are the differences between
the GTRC I C 0 model and the GTR C I
(Â2

[1] D 124:49, P < 0:05) and GTR C 0 (Â 2
[1] D

FIGURE 3. Inferred number of substitutions at each
site for the three codon positions and the tRNAAsp gene
estimated on the GTR C I C 0 ML tree (Fig. 6a). Per-
centages are calculated on varied sites only in order to
correct for different proportions of unvaried sites within
each of the four character partitions.

FIGURE 4. Relative �t of seven variants of the GTR
model (GTR [I.R.], GTR C I, GTR C 0, GTRC 04 , GTR C I
C 0, GTR C SSR4 , and GTR C SSR10) to the MP topology
(not shown).

16:49, P < 0:05) models. The invariable sites
model has the poorest �t to the data of all the
among-site rate variation models (Fig. 4).

The likelihood of the MP topology under
the GTR C 04 model was 6535.657, compared
with 6672.612 for the GTR C 0 model. Us-
ing the LRT and Â 2 tests, we can reject the
GTR C 0 model in favor of the GTR C 04
model at the 5% level of signi�cance (Â 2

[3] D
273:91, P < 0:05). Thus, we can reject the as-
sumption that the distribution of among-site
rate variation is homogeneous among the
different codon positions and the tRNAAsp

partition.
When third positions were excluded, the

relative �t of the various GTR models to
the data changed. The likelihood of the
MP topology under the GTR C I, GTR C 0,
GTR C I C 0, and GTR C SSR3 models with
third positions excluded were 2683.335,
2675.954, 2666.722, and 2793.615, respec-
tively. Thus, of the above four among-site
rate variation models, the SSR3 model has the
poorest �t to the data and the GTR C I C 0
has the best.

Substitution Model Parameter Estimates

The estimation of substitution model pa-
rameters is a critical stage in model-based
phylogenetic analysis. We have investigated
how these estimates vary among character
partitions and substitution model. The ML
estimates of ® shape parameters and TS:TV
ratios reveals that the base-substitution pro-
cess is heterogeneous among the various
character partitions (Table 1). The ® shape pa-
rameters estimated from the third positions
are either >1 (COI and A8), or 1 (A6),
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indicating little or no among-site rate vari-
ation at third positions. In contrast, among-
site rate variation at the �rst codon posi-
tion appears to be extreme, as indicated
by ® shape parameters that are all ·0:187
(Table 1). The ® values for the second codon
positions of the COI and A6 genes are
0.003 and 0.081, respectively, also indicat-
ing even more extreme among-site rate vari-
ation. The ® shape parameter for the A8
second positions is 0.398, the largest value
of all the �rst and second position esti-
mates. An ® shape parameter of 0.126 for
the tRNAAsp gene indicates considerable
among-site rate variation in this gene also.
The overall ® value used for all sites in
further likelihood tree searches under the
GTR C 0 model was 0.168 (Table 1). The
value of pinv estimated under the GTR C I
model was 0.683. The values of pinv and the
® value estimated under the GTR C I C 0
model were 0.555 and 0.711, respectively.

SSRs estimated under the GTR C SSR10
model are presented in Table 1 and show
that the average substitution rate is great-
est at the third position, intermediate at the
�rst position, and least at the second position
for each of the three protein-coding genes
(Table 1). When data for like sequence posi-
tions are pooled, the SSRs for the �rst, second,
and third positions and the tRNAAsp sites
are 0.416, 0.080, 2.588, and 0.377, respectively,
under the GTR C SSR4 model. The tRNAAsp

sites have an average substitution rate, sim-
ilar to that of the pooled �rst position sites.
When SSRs are estimated onvaried sitesonly,
the pattern is the same, except that the magni-
tude of the difference in relative substitution
rate (e.g.) between third and �rst positions,
is not as great (Table 1). This observation in-
dicates that unequal proportions of unvaried
sites may in�ate differences among the SSR
parameters.

TABLE 3. Relative rate parameters from the R-matrices estimated under variants of the GTR model on the MP
topology. The values given below were used in all further ML calculations under the respective substitution models.

Transitions Transversions

rCT rAG rAT rAC rCG rGT

GTR 30.550 35.559 3.924 2.845 0.965 1.0
GTR C I 38.121 43.105 2.590 3.233 1.691 1.0
GTR C 0 97.849 114.486 6.695 7.963 3.300 1.0
GTR C 04 98.611 107.181 6.245 7.567 3.477 1.0
GTR C I C 0 90.576 103.620 5.902 7.287 3.255 1.0
GTR C SSR4 34.734 31.550 2.328 2.727 1.844 1.0
GTR C SSR10 34.408 32.063 2.281 2.701 1.980 1.0

Under all the variants of the GTR model, a
relative rate parameter describes the rate of
each of the six possible nucleotide transfor-
mation types. The estimated values of these
six parameters, rCT, rAG, rAT, rAC, rCG, and
rGT are given in Table 3. In this example,
the rGT transversion is generally the rarest
change; we set its rate at 1.0 and scaled the
values of the other parameters relative to
it. These estimates are highly dependent on
the assumptions of the substitution model.
The GTR, GTR C I, GTR C 0, GTR C 04,
and GTR C I C 0 models all infer that G $ A
transitions (rAG) are the most frequent sub-
stitution type. On the other hand, the GTR
C SSR4 and GTR C SSR10 models both in-
fer an excess of C $ T (rCT) transitions over
G $ A transitions (rAG). These two SSR mod-
els give very similar estimates for the rela-
tive rate parameters, and interestingly, those
estimates are close to the values produced
from the GTR model, which assumes equal
rates among sites. The GTR C I model leads
to the inference of higher substitution rates
than does the GTR model for all substitu-
tion types except for T $ A transversions
(rAT). The GTR C 04 model gives the great-
est substitution rates, with the more common
transitions (rCT and rAG) estimated to occur
approximately three times more frequently
than in the GTR model. Both the GTR C 0
and GTR C 04 models give similar estimates
of the relative rate parameters.

Effect of Substitution Model Assumptions
on Estimates of Topology, Branch Lengths,

and Bootstrap Support Values

Finally, we examined the effects of sub-
stitution model assumptions on estimates
of bootstraps, topology, and branch lengths.
Figure 5 shows branch lengths, estimated us-
ing ML, under the seven variants of the GTR
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FIGURE 5. ML estimates of branch lengths under a range of variants of the GTR substitution model optimized
on the MP topology. Each branch is labeled from 1 to 12 and is indicated on the tree in Figure 6b. The diagonal line
connecting the GTR points on the x and y-axes illustrates the deviation of the among-site rate variation–corrected
branch lengths from the equal rates estimates.

model, optimized on the MP topology. At
low sequence divergence, each of the mod-
els gives very similar or identical branch
lengths. The effect of accounting for among-
site rate variation has a nonlinear effect on
branch length estimates, with the longer
branches increasing the most in inferred
length relative to estimates by the equal
rates model. For example, the longest branch
length estimated under the GTR model is
0.062 substitutionsper site,whereas the same
branch has a length of 0.174 as estimated
under the GTR C 04 model. For the longer
branches, the GTR model gives the lowest
estimates, as expected. The two SSR models
(GTR C SSR10 and GTR C SSR4) infer branch
lengths that are similar to each other and
closer to the GTR estimates than to those of
the GTR C I, GTR C 0, GTR C 04, and GTR C
I C 0 models. The GTR C 0, GTR C 04, and
GTR C I C 0 models give the highest esti-
mates for the long branches in this data set.

Despite the observation that branch
lengths varied drastically between the dif-
ferent substitution models, the results of the

phylogenetic analysis demonstrated a re-
markable homogeneity in estimates of topol-
ogy (Fig. 6). The ML trees varied in the place-
ment of the M. oromelaena C M. clamitans
clade and the placement of M. phaeoptera.
Shifts of these lineages involved collapsing
short internal branches and moving these
branches to a neighboring node. None of the
ML trees was identical to any of the ME
trees. The ME trees differed from one an-
other in their relative placement of M. iolan-
the, M. mangu, and the M. cassiope C M. tenuis
clade. As in the ML analyses, these topo-
logical changes involved only short inter-
nal branches and highly localized rearrange-
ments. One notable difference among the
substitution models was that the ML (Fig. 7)
and ME invariable sites (data not shown)
models placed the M. hamiltoni, M. lindsayi,
and M. myersi clade as sister group to M. cas-
siope (ME tree) or to M. cassiope and M. tenuis
(ML tree). This biologically unlikely place-
ment (Buckley et al., 2001) renders M. mangu
as paraphyletic and M. m. gourlayi as the basal
Maoricicada species.
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FIGURE 6. (a) Maximum likelihood and (b) minimum evolution trees estimated under the GTR C I C 0 model
with branch lengths drawn proportionately to the expected number of substitutions per site. Letters above branches
in (a) refer to the bootstrap proportions given in Tables 4 and 5. Numbers above branches in (b) refer to branches
with lengths optimized in Figure 5. Note that branch 10 connects to the base of the Maoricicada radiation in the MP
topology used to optimize branch lengths.
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FIGURE 7. Maximum likelihood tree estimated un-
der the GTR C I model, showing the placement of the
M. hamiltoni, M. lindsayi, and M. myersi clade (indicated
by thick branch lines) as sister group to M. cassiope
and M. tenuis: a possible example of inaccuracy asso-
ciated with an inappropriate model and adjacent long
branches. The ME tree estimated under the GTR C I
model gave a very similar topology, differing only in the
placement of the two M. tenuis sequences (not shown).
Branch lengths shown are proportional to the expected
number of substitutions per site.

TABLE 4. Minimum evolution (ME) and maximum likelihood (ML) bootstrap support values for various nodes
estimated under variants of the GTR model. For the ME analyses, bootstrap values were estimated under equal rates
(I.R.), a four rate-class site-speci�c rates model (SSR4), 10 rate-class site-speci�c rates model (SSR10), invariable sites
(I-sites), gamma rates (0-rates), and a mixed invariable sites and gamma rates model (I C 0). For the ML analyses,
bootstrap values were estimated under the I.R., SSR10 , and I C 0 models only. Nodes are labeled from A to S and
are as indicated on the tree in Figure 6a.

Minimum evolution Maximum likelihood

Node I.R. SSR4 SSR10 I-sites 0-rates I C 0 I.R. SSR10 I C 0

A 99 100 99 83 100 96 100 99 85
B 81 82 82 85 83 87 79 80 86
C 100 100 100 98 100 99 100 100 100
D 98 96 96 27 64 39 83 57 47
E 47 43 43 30 45 44 52 54 65
F 100 100 100 100 100 100 100 99 100
G 100 100 100 100 100 100 100 99 99
H 100 100 100 52 81 65 78 56 30
J 93 96 95 74 70 72 87 85 85
K 69 74 72 43 56 46 61 61 65
M 35 43 35 38 39 40 35 42 54
N 68 77 70 72 72 73 66 65 59
O 100 100 100 100 100 100 100 100 100
Q 99 99 100 98 98 97 97 98 99
R 86 86 86 89 91 91 82 92 91
S 100 100 100 100 99 100 100 100 100

In addition to selecting the optimal topol-
ogy, the estimation of bootstrap support is
of critical interest. We observed that boot-
strap support values for the entire data
set varied appreciably among optimality
criteria and substitution models for many
nodes (Table 4). Variation in bootstrap val-
ues was particularly evident for nodes unit-
ing long internal branches. For example, for
the branch that partitions M. hamiltoni, M.
myersi, and M. lindsayi and the two outgroup
species from the rest of the taxa included
in the tree (D in Fig. 6a), estimates of boot-
strap support ranged from 98% (equal rates)
to 27% (I-sites) for ME and from 83% (equal
rates) to 47% (I C 0) for ML (Table 4). Note
that this same node was not recovered in
the optimal ML (Fig. 7) or the ME GTR C
I (data not shown) trees. Another node that
received particularly variable bootstrap sup-
port was the one uniting the M. mangu sub-
species (except for the M. m. mangu sequence
from Awakino). Bootstrap support for this
node ranged from 100% (equal rates, SSR4
and SSR10) to 52% (I-sites) in the ME analy-
ses and from 78% (equal rates) to 30% (I C 0)
for ML (Table 4). Other nodes have more con-
sistent estimates of bootstrap support from
the various substitution models. For exam-
ple, the node uniting M. oromelaena and M.
clamitans was supported by bootstrap pro-
portions ranging from 100% (SSR10) to 97%
(I C 0) under ME and from 99% (I C 0)
to 97% (equal rates) under ML. Some nodes
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were supported by >95% from both ML
and ME under all substitution models (e.g.,
nodes C, F, G, O, Q, and S in Fig. 6a).
These nodes connectedpendant branches be-
tween closely related species (C and Q) or
among populations within a species (G, F, O,
and S).

The bootstrap replicates generated by us-
ing PAUP¤4.0 (Swofford, 1998) yielded the
same ME majority rule consensus topology
as the replicates generated by using Codon-
Bootstrap 1.1 (provided by J. Bollback). Esti-
mates of nodal bootstrap support were also
very similar between the two programs, with
a maximum difference of 8% for nodes E and
M (Table 5). Three nodes received greater
support from PAUP¤, four nodes received
greater support from CodonBootstrap 1.1
and nine nodes had equal estimates from
both programs. For the ML analyses the
biggest difference in nodal support was 25%
for node D (Table 5). This node also had
highly labile estimates of bootstrap support
for the full data set under a wide range of sub-
stitution models (Table 4). Seven nodes re-
ceived greater support in the PAUP¤ analysis,
six nodes received greater support in Codon-
Bootstrap1.1, and three nodes had equal sup-
port in both programs. Under both ML and
ME, neither program gave bootstrap sup-
port values that were consistently biased to-
wards or away from the equal rates bootstrap
estimates.

TABLE 5. Minimum evolution and maximum likelihood bootstrap support values for various nodes estimated
under variants of the site-speci�c and equal rates (I.R.) models. Bootstrap replicates were generated by using
PAUP*4.0 (Swofford, 1998) or CodonBootstrap 1.1 (J. Bollback, pers. comm.) and trees were estimated by using
PAUP*4.0. Nodes are labeled as in Figure 6a. Five hundred replicates were analyzed under minimum evolution
and 100 replicates under maximum likelihood.

Minimum evolution Maximum likelihood

Codon Codon
Node I.R. PAUP¤ bootstrap I.R. PAUP¤ bootstrap

A 100 100 100 100 100 97
B 77 86 82 63 63 71
C 100 100 100 100 100 100
D 96 98 98 86 86 61
E 49 55 47 70 70 58
F 100 100 100 100 100 100
G 100 100 100 100 100 96
H 100 100 100 80 80 69
J 97 97 98 86 86 89
K 76 66 74 46 46 66
M 39 44 43 38 38 35
N 66 61 64 40 40 44
O 100 100 100 100 100 99
Q 100 99 100 97 97 99
R 87 88 88 81 81 82
S 100 100 100 100 100 100

DISCUSSION

As is now well established, among-site
rate variation can have extremely detrimen-
tal effects on several aspects of phylogenetic
analysis (reviewed by Yang, 1996b). This
problem can be addressed by using an ap-
propriate substitution model during tree se-
lection. However, the molecular systematist
is faced with a wide variety of substitution
models from which to choose. We have com-
pared the performance of six different types
of substitutionmodels that explicitly account
for among-site rate variation (I-sites, 0-rates,
04, I C 0, SSR4, and SSR10 models) by us-
ing a typical molecular systematics data set
(i.e., 25 taxa, 1,520 sites, and 253 parsimony-
informative sites). Although each of these
six among-site rate variation models and the
equal rates model lead to selection of very
similar optimal topologies for our particular
data set, we observed large differences be-
tween the models in estimates of R-matrices,
branch lengths, and bootstrap proportions.

We observed that both SSR models, SSR10
and SSR4, gave lower estimates of the rate
of the more commonly occurring transi-
tion type substitutions relative to the I-sites,
0-rates, and I C 0 models (Table 3). The
values inferred from the SSR models were
almost as low as those from the equal rates
model, which is known to be a highly bi-
ased estimator of the pattern of nucleotide
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substitution (Wakeley, 1994, 1996). We also
observed that both of the SSR models yielded
branch length estimates that were less than
those from the I-sites, 0-rates, and I C 0 mod-
els and closer in magnitude to the equal rates
estimates. The relative underestimation of
R-matrices and branch lengths by the SSR
models relative to the I-sites, 0-rates, and
I C 0 models may result from the assump-
tion made by the SSR model that each site
within a given rate class is equally likely
to accept a substitution, an assumption that
may lead to underestimates of the number
of multiple substitutions within rate classes
where among-site rate variation is extreme
(e.g., at �rst and second positions; Table 1).
This hypothesis is supported by the observa-
tion that the likelihood scores of the I-sites,
0-rates, and I C 0 models were improved rel-
ative to the SSR3 model when third posi-
tions were removed from the analysis. Ap-
parently the superior likelihood score of the
SSR10 model can be attributed to the in�ated
substitution rate at third positions. Thus, a
gamma model or an invariable sites model
(or a combination) will probably always
be better for describing the distribution of
rates among sites for �rst and second codon
positions.

If the SSR models are inaccurate in cor-
recting for multiple hits, then we expect to
observe that the relative frequencies of tran-
sitions are underestimated in the R-matrices
and their corresponding branch lengths. We
believe that the invariable sites and gamma
rates models are giving more accurate es-
timates of branch lengths because the SSR
model estimates are very close to the equal
rates values, which previous authors have
shown to be highly biased (Yang, 1996b).
Waddell and Steel (1997) observed that for
a data set of hominoid mtDNA, the gamma
model inferred greater TS:TV ratios and dis-
tances than did the invariable sites model,
which is in agreement with our observations.
We suspect that the gamma model will in
general infer longer branch lengths than the
invariable sites model, except in extreme ex-
amples (see Waddell et al., 1997). Because
the invariable sites model assumes a constant
rate for all variable sites, no sites have an ex-
tremely high rate under this model. Similarly,
the SSR model will have a �xed upper substi-
tution rate, which will be determined by the
fastest rate category. Under a gamma model,
however, there is a much higher upper limit

for the rate at which a site can evolve; if we
were not using discrete gamma models, this
upper limit would be in�nity (P. Lewis, pers.
comm.).

The underestimation of the true number
of substitutions that have occurred along a
branch can manifest itself in “long branch
attraction” (Felsenstein, 1978; Hendy and
Penny, 1989) even when ML estimation is
used, if the model of evolution �ts the data
poorly (e.g., Sullivan and Swofford, 1997).
Although we noted some differences among
models in terms of selection of an optimal
topology, these differences all tended tobe re-
stricted to nodes that were poorly supported
in the bootstrap analyses. Well-supported
nodes tended to be recovered by all mod-
els and both optimality criteria. If the cor-
rect topology is to be obtained, the correct
optimization of branch lengths is more im-
portant in lineges with high rates of change
or extreme rate variation (Cunningham et al.,
1998). Because neither of these two phenom-
ena seems to characterize the data presented
here, we are not surprised that the process
of tree selection is relatively insensitive to
the substitution model in this example. Such
will not always be the case, for example, with
higher rates of change (deeper divergences)
or appreciable differences in rates of change
between lineages (e.g., Sullivan and Swof-
ford et al., 1997; Cunningham et al., 1998;
Takezaki and Gojobori, 1999).

In addition to incorrect branch length esti-
mation causing long branch attraction, over-
estimation of the number of multiple sub-
stitutions on trees where long branches are
correctly united may throw ML (when used
with an inappropriate model) into a region
of tree space where long branches will sep-
arate from each other (Waddell et al., 1999).
We have identi�ed a possible example of this
poorly understood phenomenon in the bio-
logically unlikely (Buckley et al., 2001) place-
ment of the M. hamiltoni, M. myersi, and M.
lindsayi clade, in both the ML (Fig. 7) and ME
trees estimated under the GTR C I model. In
this situation the invariable sites model may
have overadjusted for among-site rate vari-
ation, leading to misplacement of the long
branch forming the M. hamiltoni, M. myersi,
and M. lindsayi clade relative to the long out-
group branch. If so, then both likelihood and
distance-based methods (see also Bruno et
al., 2000) are apparently susceptible to this
form of systematic error.
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When sites are evolving under a distribu-
tion of rates, that is, where some sites are
invariable and the remainder fall under a
range of constraints (i.e., as approximated
by an I C 0 model), then pinv may be over-
estimated because the invariable sites model
assumes that what are actually slowly evolv-
ing sites are instead invariable. Because the
data presented here �t a model assuming a
range of substitution rates (i.e., the I C 0 as-
sumption) better than they �t an invariable
sites model, we believe that the above expla-
nation is the best. The invariable sites model
may be expected to perform better when the
distribution of rates among sites is closer to
a true bimodal form (Waddell et al., 1997).
We also observed that using a lower value
of pinv (i.e., pinv as estimated under the I C 0
model) led to selection of a topology (data
not shown)where the M. hamiltoni, M. myersi,
and M. lindsayi clade is basal to the remaining
Maoricicada species, which is in agreement
with the other substitution models (Fig. 6)
and exempli�es the importance of accurate
parameter optimization. This observation is
notunique to the invariable sites model. If we
construct ME and ML trees under a GTR C 0
model and using an ® value lower than that
estimated by ML, we get similar topologies
(data not shown) to that obtained under the
GTR C I model—again underscoring the im-
portanceof using an appropriate substitution
model and accurately estimating the param-
eters of this model.

Further studies are required to determine
whether the trends observed in estimates of
R-matrices, branch lengths, and topology are
general properties of the SSR model or are
restricted to the data presented here. Simula-
tion studies and tests on “known” phyloge-
nies will be particularly informative in this
respect. The most appropriate model for the
accurate reconstruction of topology is likely
to be data set–speci�c.

Despite the fact that most substitution
models led to the selection of similar topolo-
gies, bootstrap support varied drastically for
some nodes. This variation was particularly
evident at nodes connecting long internal
branches. As parameters are added to a sub-
stitutionmodel, bootstrap support for a node
may increase because of an increase in the ac-
curacy of tree selection. Conversely, param-
eter addition may also cause bootstrap sup-
port to drop, for two reasons. First, overly
simplistic substitution models may underes-

timate the true number of multiple substitu-
tions that have occurred on long branches;
thus giving in�ated bootstrap support for
such nodes (Sullivan et al., 1997). Second,
parameter-rich substitution models typically
have a higher variance than models with
fewer parameters (Kumar et al., 1993), which
is often re�ected in decreasing estimates of
nodal bootstrap support (Waddell and Steel,
1997). However, comparing the variances of
different estimators is not meaningful when
one of the estimators is biased or inconsis-
tent, which many simple substitutionmodels
are (Yang, 1994c).

In our analyses, we noted that bootstrap
values both increased and decreased when
we accounted for among-site rate variation,
as has been observed in other studies
(Sullivan et al., 1997). For example, in the
ME analyses, bootstrap support for �ve of
the labeled nodes in Figure 6a increased
under the GTR C I C 0 model relative to
the GTR model, whereas support for eight
nodes decreased and that for �ve other
nodes remained constant. Similarly, in the
ML analyses, bootstrap support increased
for six nodes, decreased for six other nodes,
and remained constant for four other nodes.
Reyes et al. (1998) argued that the use of a
parameter-rich model might cause statistical
�uctuations that will prevent any signi�cant
phylogeny being inferred from any given
set of sequences. However, we have shown
that the relationship between the number of
parameters in a substitution model and esti-
mates of bootstrapsupport is far from simple.
We subscribe to the position (e.g., Corneli
and Ward, 2000) that biological realism
should not be sacri�ced for the convenience
of performing phylogenetic analyses under
the assumptions of a simple substitution
model. In addition, if the model is overly
simplistic or biased, strong support for an
incorrect phylogenetic hypothesis can be
inferred (Lockhart et al., 1996; Sullivan and
Swofford, 1997). The use of a more complex
model, although perhaps incapable of giving
strong support for the “true” hypothesis,
may yet reveal that the difference among the
competing hypotheses is nonsigni�cant. We
believe that the latter situation is certainly
preferable to the former and thus advocate
the use of realistic substitution models in
phylogenetic analysis wherever possible.

Because the GTR C SSR10 model uses a
large number of parameters to describe the
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distribution of among-site rate variation, the
estimation of parameter values is potentially
more susceptible than a less complex model
to random error. This can be partially com-
pensated for by increasing the number of se-
quences in the analysis (e.g., Sullivan et al.
1999) but, of course, this is not always possi-
ble. However, as we noted in Table 4, for the
ML GTR C SSR10 and ML GTR C I C 0 anal-
yses, although estimates of bootstrap sup-
port differed for many nodes, neither method
gave consistently higher or lower values.
Thus, despite the fact that the GTR C SSR10
model has 17 free parameters compared with
10 for the GTR C I C 0 model, variance in
the estimation of model parameters does not
seem to be reducing the signal in the data
to nonsigni�cant values. The effects of in-
creasing the number of parameters in the
estimation of branch lengths, topology, and
bootstrap proportions have not previously
been well studied (but see Corneli and Ward,
2000). The increasing use of longer DNA se-
quences (>1 kb) renders this issue less im-
portant than that of obtaining an improved
�t between the model assumed and the true
underlying evolutionary process (Swofford
et al., 1996; Sullivan and Swofford, 1997). Of
equal interest is the relationship between the
complexity of the selected model and the as-
sociated computational burden of likelihood
calculations. However, the continued devel-
opment and re�nement of algorithms (e.g.,
Lewis, 1998) and the parallelization of phy-
logenetic analysis software offer hope that
parameter optimization and tree searches on
large data sets and using complex models
will become increasingly feasible.

We assessed the potential bias in estimat-
ing bootstrap support under an SSR model
when the codon structure of a protein-coding
gene is ignored during resampling. Our re-
sults indicate only slight differences between
PAUP¤ and CodonBootstrap 1.1 for the ME
analyses (Table 5). Correcting for among-site
rate variation under an SSR model had little
effect on estimates of bootstrap support for
nodes in trees produced from this data set
anyway, and thuswe are not surprisedby this
observation. Under ML, some nodes showed
large differences in estimates of bootstrap
support, although the small number of repli-
cates that we were able to perform, given
computational constraints, may have exag-
gerated these differences. Neither method of
generating bootstrap replicates seems to be

biased in any particular direction with re-
spect to the equal rates bootstrap estimates.

An alternative explanation for the varia-
tion in bootstrap support among different
models is that a bias may have been intro-
duced into the ML heuristic search strategy.
We used single round of TBR branch swap-
ping from a stepwise addition tree obtained
via a simple addition sequence. Depending
on the nature and complexity of tree space,
such a search may be prone to entrapment
in local optima. To examine this potential
bias we repeated the ML bootstrap analy-
sis under the GTR model. Each bootstrap
replicate involved a starting tree obtained by
using stepwise addition with random addi-
tionsequence and 10 replicates. Although we
would have preferred to use this search strat-
egy for all of our ML bootstrap analyses, the
large computational burden precluded this.
Fourteen of the 16 nodes marked on the phy-
logeny in Figure 6a differed by <5% between
the two search strategies. Only two nodes
(K and N) received appreciably different val-
ues, 49% and 59%, respectively. Thus, al-
though the search strategy appears to have
had some effect on the variation in boot-
strap support among models, we do not
believe it is responsible for the large dif-
ferences observed among models for some
nodes. The small number of replicates we
were able to analyze may have also exagger-
ated the differences among models, although
as the above analyses indicate, this effect is
not large either. For the ME bootstraps we
used 500 replicates, so the number of repli-
cates is not an issue for those analyses.

The SSR model requires that all sites be
partitioned into aprespeci�ed number of rate
classes. Within each rate class, all sites are as-
sumed to share an identical substitution rate
that is different from that of other such rate
classes. However, the process of identifying
and characterizing these rate classes can be
problematic. For protein-coding genes, the
division of sites according to codon posi-
tion may seem an obvious way to delineate
rate classes;however, the distributionof rates
among sites may show an extensive overlap
between codon positions, as we have shown
in Figure 3 (see also Olmstead et al., 1998).
Also among-site rate variation may be ex-
treme within codon positions, especially the
�rst and second positions (see Table 1; Yang,
1996c; Voelker and Edwards, 1998). Thus, al-
though the SSR model is more realistic than
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an equal rates model (e.g., the GTR model),
the assumption of the SSR model that all
sites within each rate class are evolving at the
same rate is clearly violated in the example
presented here—and probably always will be
found to be. When analyzing protein-coding
genes, substitution models based around the
codon (e.g., Goldman and Yang, 1994; Muse
and Gaut, 1994) may be preferable because
they take into account the degeneracy of
a site.

Although we have pooled all tRNA sites
into a single rate category, this may be an
inappropriate method of dealing with RNA
coding sequences, although in our study it
probably had little effect because the number
of base pairs involved is very small. Genes
coding for tRNA molecules are expected to
contain both variable and conserved (e.g.,
the anticodon) sites. Partitioning tRNA and
rRNA sites into rate categories according to
their inclusion in a helix or unpaired region
is likely to be inappropriate because con-
served and highly variable sites are known
to exist in both (e.g., Sullivan et al., 1995;
Hickson et al., 1996; Fig. 2; Buckley et al.,
2000). Additionally, noncoding regions such
as introns, the mitochondrial control region,
and nuclear internal-transcribed spacer se-
quences have poorly known functional con-
straints. With little knowledge regarding the
nature of these real or hypothesized con-
straints, it is dif�cult to identify rate classes
from observed patterns in the data, except
when very large numbers of sequences are
available (e.g., Van de Peer et al., 1993).

The gamma distribution is an attractive
model for describing among-site rate vari-
ation for two major reasons (reviewed by
Yang, 1996b). First, the distribution of rates
among sites is described by a single param-
eter, ®. The ® shape parameter is compara-
ble across data sets, provided the same num-
ber of rate categories are used (Yang, 1994b),
which allows generalizations to be made re-
garding the relative extent of among-site rate
variation among genes. The relative substi-
tution rates estimated under the SSR model,
although comparable among character parti-
tion within the same data set, are not compa-
rable across studies. Second, the gamma dis-
tribution is versatile in that it can accommo-
date a wide range of site-rate distributions,
ranging from a distribution that is nearly
homogeneous to one that is highly variable
(i.e., containing a large proportion of sites

evolving at a rate close to zero combined with
a proportion of hypervariable sites). As has
been shown in this and other studies (Gu
et al., 1995; Waddell et al., 1997), adding a
class of sites with a rate of zero (i.e., an I C 0
model) can further extend and improve the
gamma model.

Another approach to among-site rate vari-
ation is the Hidden Markov Model (HMM) of
Felsenstein and Churchill (1996). We have not
used this approach, because as it is currently
implemented, the HMM cannot be used in
conjunction with the GTR model; moreover,
it has been used in very few empirical studies
(Cook et al., 1999). However, this approach
has some attractive features. First, the HMM
is not restricted by the assumption that we
should know the relative rate at a particular
site. Second, the HMM is not restricted by
the assumption that the distribution of rates
among sites follows a gamma distribution,
and it can also include a class of invariable
sites. Third, the HMM can account for the
spatial correlation in substitution rate among
sites, with the addition of another parame-
ter, although Yang’s (1995) space–time pro-
cess model, also a hidden Markov model, al-
lows for the spatial correlation of rates. We
believe this model presents a powerful alter-
native to the approaches implemented here
and hope that the HMM will be more thor-
oughly explored in future empirical and the-
oretical studies.

A further potential problem to modeling
among-site rate variation by using the ap-
proaches discussed here is the possibility of a
change in the distribution of sites that are free
to vary among sequences. Such covariotide
shifts (Fitch and Markowitz, 1970; Waddell
et al., 1997; Lockhart et al., 1998) may con-
found any model of evolution that assumes
any given site has the same probability of
change over all sequences. Although shifts
in the distribution of among-site rate varia-
tion at the level of the codon (covarion shift)
and individual nucleotide site (covariotide
shift) have been shown to occur in deep-level
phylogenies (e.g., Miyamoto and Fitch, 1995;
Lockhart et al., 1998), the importance of such
shifts for recently diverged taxa, such as the
example presented here, is probably much
less but to date has been largely unexplored.
Shifts in base frequency parameters (Galtier
and Gouy, 1998) and TS:TV ratios (Yang and
Yodder, 1999) can now be accommodated in
ML; however, work on modeling covariotide
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processes is in its infancy (Tuf�ey and Steel,
1998).

We advocate testing phylogenetic hy-
potheses under a range of substitution mod-
els as a method of data exploration. No cur-
rent model accounts for all of the vagaries
of nucleotide substitution; all are biased to
some extent. By exploring the effects of these
assumptions on the analysis, the molecular
systematist can gain a greater understanding
of both the data they obtain and the models
used to analyze these data.
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