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a b s t r a c t

Gaussian random field and Gaussian Markov random field have
been widely used to accommodate spatial dependence under the
generalized linear mixed models framework. To model spatial
count and spatial binary data, we present a class of transformed
Gaussian Markov random fields, constructed by transforming the
margins of aGaussianMarkov random field to desiredmarginal dis-
tributions that accommodate asymmetry and heavy tail, as needed
in many empirical circumstances. The Gaussian copula that char-
acterizes the dependence structure facilitates inferences and ap-
plications in modeling spatial dependence. This construction leads
to new models such as gamma or beta Markov fields with Gaus-
sian copulas, that are used tomodel Poisson intensities or Bernoulli
rates in hierarchical spatial analyses. The method is naturally im-
plemented in a Bayesian framework. To illustrate our methodol-
ogy, abundances of variety of gastropod species were collected
as counts or presence versus absence from a network of spatial
locations in the Luquillo Mountains of Puerto Rico. Gastropods
are of considerable ecological importance in terrestrial ecosystems
because of their species richness, abundances, and critical roles
in ecosystem processes such as decomposition and nutrient cy-
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cling. The newmodels outperform the traditional models based on
Bayesian model comparison with conditional predictive ordinate.
The validity of Bayesian inferences and model selection were as-
sessed through simulation studies for both spatial Poisson regres-
sion and spatial Bernoulli regression.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spatial count or binary data are generally analyzedwith a generalized linearmixedmodel (GLMM),
where spatial dependence is captured by Gaussian random field (GRF) effects (e.g., Breslow and Clay-
ton, 1993). When data are point-referenced or geostatistical, and prediction at unobserved sites is of
main concern, Diggle et al. (1998) extended the kriging method to the spatial GLMM (SGLMM) with
GRF random effects to predict the surface of the spatial random effects. Under this scheme, Chris-
tensen and Waagepetersen (2002) developed predictions for the count of weeds at unobserved sites
over a region. For lattice or areal data, as is the case in our application, a Markov dependence with an
appropriate neighborhood structure is often imposed on the GRF random effects, which offers both
intuitive interpretation and computational advantages. A Gaussian Markov random field (GMRF) is
represented by an undirected graph, and is more naturally defined through its precision matrix. The
(i, j)th entry of the precision matrix is nonzero if and only if i and j are connected in the graph (Rue
and Held, 2005). GLMMs with random effects of GMRF have been used in many fields. Because of the
public concerns regarding global change and public health, recent applications have surged in envi-
ronmental sciences (e.g., Wikle et al., 1998; Rue et al., 2004) and epidemiology (e.g., Besag et al., 1991;
Schmid and Held, 2004).

We propose a hierarchical spatial generalized linear model (GLM) that is subtly different from
the GLMM with GRF random effects. At the first level, the observed data are independent Poisson
or Bernoulli variables given the Poisson intensities or Bernoulli rates. At the second level, the Poisson
intensities or Bernoulli rates are modeled by a transformed GRF (TGRF) such that the marginal distri-
butions are of any desired form. Similarly, a transformed GMRF (TGMRF) can be defined if the GRF is
a GMRF, and the Markov property is retained regardless of the transformations. With gamma or beta
margins, this leads to gamma fields or beta fields for modeling Poisson intensities or Bernoulli rates,
respectively. Our specification offers new avenues to construct hierarchical spatial GLMs and a fresh
look at common SGLMMswith GRF random effects. Clearly, the new frameworkwill facilitate the def-
inition of an adequate marginal distribution for the mean parameters that is not necessarily a simple
task in the conditional modeling framework. Moreover, the dependence structure is kept unchanged
in the TGMRF because of the use of the Gaussian copula and, therefore, the interpretation of the β pa-
rameters are kept unchanged. A limitation of the new methodology in comparison to the traditional
conditional approach is that, although it can be done, extension of the model to include more random
effects, e.g. temporal effects, is not as trivial as it is in additivemodels. Inferences are conducted in the
Bayesian framework with a general purpose, easy-to-implement Gibbs sampling algorithm.

The essence of TGRF or TGMRF is the Gaussian copula (Nelsen, 2006; Song, 2000; Masarotto and
Varin, 2012), which has been used under other terminologies in various contexts. For multivariate
data, it is equivalent to the Gaussian copula regression model (Pitt et al., 2006), where the response
vector may be a combination of discrete and continuous variables. Under a graphical model frame-
work it is similar to the copula Gaussian graphical model of Dobra and Lenkoski (2011), where the
dependence structure determined by the precision matrix is of specific interest. In some fields such
as hydrology, it is named as meta-Gaussian distribution (e.g., Guillot and Lebel, 1999; Schaake et al.,
2007). In geostatistics with point-referenced data, it is called the anamorphosis Gaussian field (Chilès
and Delfiner, 1999) or Gaussian copula model (Bárdossy, 2006; Kazianka and Pilz, 2010), where the
main interest of thesemodels has being interpolation and prediction at unmeasured locations. For this
setup, aMatlab toolbox implementation is available (Kazianka, 2013). Most geostatistical applications
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deal with continuous variables, but adaptation to discrete data is possible (Madsen, 2009). Berrocal
et al. (2008) used it with binary and gammamargins, respectively, to construct random fields for pre-
cipitation occurrence and precipitation amount. For lattice or areal data, which is the context of our
application, the TGRF or TGMRF is related to the general Gaussian graphical model of Dobra et al.
(2011), except that they make inferences about the graph structure. We apply the TGMRF to model
parameters that are continuous, to avoid the complexities associated with discrete data (Genest and
Neslehova, 2007); this is in contrast to the existing works where it is applied to the data directly.
Another important advantage of the new formulation is that the dependence parameters do not in-
terfere with themarginal models. This is in contrast to traditional SGLMMs, where the spatial random
effects are confounded with the fixed effects (Reich et al., 2006). Therefore, more reliable inferences
about the regression coefficients can be made, which is critical in identifying important explanatory
variables in the presence of spatial variation in our application.

To illustrate our methodology we present an ecological study. Understanding the causes of varia-
tion in species abundances is a central concern of ecology, conservation biology, and biodiversity sci-
ence. Moreover, distinguishing pure environmental effects from those with a strong spatial signature
has received increased interest from both theoretical and applied perspectives (e.g. Peres-Neto et al.,
2012). In this context, gastropods are of considerable ecological importance in terrestrial ecosystems
because of their species richness, abundance, and critical roles in ecosystem processes such as decom-
position andnutrient cycling (Mason, 1970). The forest ecosystemsof the LuquilloMountains of Puerto
Rico have a long history of environmental study (e.g., Brown et al., 1983; Reagan and Waide, 1996),
resulting in deep understanding of the spatial and temporal dynamics of populations, communities,
and biogeochemical processes, especially as they relate to natural and human disturbances (Brokaw
et al., 2012). In the Luquillo Mountains, abundance data of various gastropod species were collected
in wet seasons over a lattice of sites known as the Luquillo Forest Dynamics Plot (LFDP). Among the
gastropod taxa,Nenia tridens and Gaeotis nigrolineata are two common terrestrial species (Willig et al.,
1998; Bloch and Willig, 2006; Willig et al., 2011). N. tridens is one of the most abundant and widely
distributed species in tabonuco forest, with abundance data in count format. G. nigrolineata, however,
often occurs in low numbers that are more suitable for analysis as presence/absence data. The main
goal of this project was to find habitat characteristics that affect abundances of different gastropod
species in the presence of spatial dependence and variation.

The rest of this article is organized as follows. The sampling design and abundance data for two
gastropod species, N. tridens and G. nigrolineata, are introduced in Section 2. In Section 3, TGMRFs are
applied to the parameters ofmarginal distributions in a hierarchical spatial GLM framework to accom-
modate spatial dependence; the general framework is then applied to the specific context of Poisson
regression and Bernoulli regression. Computational issues of the Bayesian inference and model selec-
tion are summarized in Section 4. Simulation studies mimicking the empirical count data and binary
data are reported in Section 5. The abundance data are analyzed in Section 6. A discussion concludes
the paper in Section 7.

2. Gastropods abundance data

The LFDP (18°20
′

N, 65°49
′

W) is a 16-ha grid located in thenorthwest of the Luquillo Experimental
Forest (LEF) in the Luquillo Mountains of northeastern Puerto Rico (e.g., Willig et al., 1998). The LEF
includes tabonuco forest, a subtropicalwet forest type (Ewel andWhitmore, 1973) found below600m
of elevation. Precipitation is substantial throughout the year. Amodestly drier period typically extends
from January to April, but rainfall generally remains higher than 20 cm in all months (Brown et al.,
1983). Abundances of gastropod species were censused during the wet season of 1995 at each of 160
circular sites (3m radius) on a lattice. As shown in Fig. 1, there were 40major sites in dark, 60m apart,
and 120 supplementary sites in gray, 20 m apart, placed inside the squares formed by the 40 major
sites.

The abundance data are in count format for N. tridens, one of the most abundant and widely dis-
tributed species in tabonuco forest. Each count was theminimumnumber known alive from four noc-
turnal surveys based on well established protocols (e.g., Willig et al., 1998; Bloch and Willig, 2006).
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Fig. 1. (a) Lattice of sampling sites at the LFDP in 1995 and the neighbor structure for an internal major site and an internal
supplementary site, labeled by M and S, respectively. (b) Abundance of N. tridens. (c) Presence/absence of G. nigrolineata.

The observed counts over the lattice are displayed in Fig. 1(b). Covariates included topographic (i.e., el-
evation and slope) and habitat characteristics (i.e., quantity of litter, canopy openness, apparency of
sierra palm, and plant apparency). Quantity of litter was estimated as the mean number of leaves
on the forest floor at each of four locations that were sampled at each site along mid-points of the
radii from the center of a site, arranged along cardinal compass directions (cardinal points). Canopy
openness was the amount of light that penetrates to the understory (1.5 m above the forest floor)
based on the mean number of open cross-hairs on a gridded densiometer, quantified at the four car-
dinal points. Plant apparency measured the volume of space in the understory that was occupied by
vegetation using a device at each of the four cardinal points, that captured the number of foliar inter-
cepts along each of two perpendicular 1.0 m dowels placed at 0.5 m intervals from ground level to 3
m of height. Apparency of sierra palm specifically measured the apparency of Prestoea acuminata, a
preferred substrate and food of both N. tridens and G. nigrolineata.

G. nigrolineata often occurs in low numbers and its abundance is suitably analyzed as pres-
ence/absence data. Presence/absence data were obtained by dichotomizing the abundance of G. ni-
grolineata, which were determined in the same manner as described for N. tridens. The distribution
of incidences for G. nigrolineata is heterogeneous with spatial clustering across the lattice (Fig. 1(c)).
Because G. nigrolineata does not live or feed in the leaf litter, quantity of litter will not be included as
a covariate in analyses of its abundance but all other habitat characteristics were retained.

3. A new class of hierarchical spatial models

3.1. Transformed Gaussian Markov random fields

For ease of notation,wepresent the definition of TGRF andTGMRF in the context of finite dimension
n in the sequel. For random fields indexed by elements in some space, the definition applies to n-
dimensional marginal distributions for any n. Suppose that ε = (ε1, . . . , εn)

⊤ follows a standard
multivariate normal distribution with mean 0 and positive definite correlation matrix, Ψ , denoted as
Nn(0, Ψ). Define a random vector Z = (Z1, . . . , Zn)⊤ through Zi = F−1

i {Φ(εi)}, i = 1, . . . , n, where
Fi is the distribution function of an absolutely continuous variable and Φ is the distribution function
of N(0, 1). Then, each Zi has a marginal distribution Fi. We call Z a TGRF and denoted by TGRFn(F , Ψ),
where F = (F1, . . . , Fn). It is completely specified by its marginal distributions F and a Gaussian
copula with a dispersion matrix Ψ . Note that Ψ is not the correlation matrix of Z and that the TGRF is
not affected by the scales of the original GRF.
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A TGRFn(F , Ψ) is a TGMRF if the GRF before the transformations is a standard GMRF with cor-
relation matrix Ψ . As commonly used for GMRFs, it is more convenient to present a TGMRF using
the precision matrix Q = Ψ−1, since it leads to an intuitive interpretation of conditional distribu-
tional properties. Since the transformations are marginal-wise, the Markov property is inherited by
the TGMRF: for i ≠ j, Zi ⊥ Zj|Z(−ij) if and only if Qij = 0, where Z(−ij) is Z without the ith and jth
observations (Rue and Held, 2005). The sparseness of the precision matrix completely determines the
graph of the TGMRF and, hence, its conditional dependence structure. For convenience, we denote a
TGMRF with marginal distributions F and precision matrix Q in the original scale by TGMRFn(F ,Q ).
Matrix Q is, again, not to be interpreted as precision on the post-transformation scale; we simply call
it dependence matrix. As copulas are invariant with respect to scales, we constrain Q such that Q−1

is a correlation matrix for identifiability.

3.2. Hierarchical spatial model

Consider the traditional GLMMwith a GRF random effect. Suppose that we observe (Yi,Xi) at sites
i = 1, . . . , n, where Yi is the response variable and Xi a q × 1 covariate vector. Let Y = (Y1, . . . , Yn)
and X = (X1, . . . ,Xn)

⊤. Let e = (e1, . . . , en)⊤ be a vector of unobserved random effects with joint
distribution H , which introduces spatial dependence. A spatial GLMM assumes that, given (Xi, ei),
i = 1, . . . , n, the observations Yi’s are independent with a distribution from the exponential family
with mean µi = E(Yi|X, e). The conditional expectation µi is connected to the covariate Xi and
random effect ei through a fixed link function g , g(µi) = ηi + ei, where ηi = X⊤

i β is the fixed
effect, and β is a q × 1 vector of regression coefficients of covariates Xi. The dependence among
µ = (µ1, . . . , µn)

⊤ is determined by the link function g and the joint distribution H of e. With GRF
random effect, H is the multivariate normal distribution with mean zero and covariance matrix Σ.

We propose to specify a random field directly for µ:

µ ∼ TGRFn(F , Ψ), (1)

where F = (F1, . . . , Fn), Fi is the marginal distribution of µi, and Ψ is the dispersion matrix charac-
terizing the dependence structure of the underlying Gaussian copula. The marginal distribution Fi is
specified by linear predictor ηi and possibly some other parameter ν shared across i = 1, . . . , n. If Fi
is chosen to be the distribution function of µi = g−1(ηi + ei), i = 1, . . . , n, where e is multivariate
normal with mean zero and correlation matrix Ψ , then model (1) is the same as the GLMM of Diggle
et al. (1998) with link function g and H being the distribution function of Nn(0, σ 2Ψ) for some scale
parameter σ . The TGRF specification with desired marginal distributions provides random field mod-
els such as gamma field, beta field, and theirMarkov versions, which can be incorporated into a spatial
hierarchical GLM framework. For instances, one can use gamma margins for Poisson intensities and
beta margins for Bernoulli rates, that can in turn be used, respectively, to model spatial count data
or spatial binary data. The spatial dependence is completely characterized by the Gaussian copula,
parameterized by a dispersion matrix Ψ .

Assuming a Markov structure, we can replace the TGRF in model (1) with a TGMRF

µ ∼ TGMRFn(F ,Q ), (2)

where the spatial dependence is characterized by Q , the precision matrix of the Gaussian copula. For
identifiability, we want the dependence matrix Q to be scale-free in the sense that Q−1 is a valid
correlation matrix. We propose to parametrize Q with the ‘‘structure’’ of the precision matrix of a
conditional autoregressive (CAR) model (Besag, 1974). In a CAR specification with precision matrix
Ω/σ 2, the structure Ω is defined such that Ωij is nonzero if and only if site i and site j are neighbors of
each other. To assure symmetry and positive definiteness, Ω is defined as Ω = M−1(I −ρW ), where
M−1 is a diagonal matrix whose ith diagonal elements equal to ni, the number of neighbors of site
i, I is the identity matrix, ρ is a spatial dependence parameter, and W is a weight matrix providing
contrasts of all neighbors to each site. Weight matrix W is determined by the neighboring structure
such thatWij = 1/ni if site i and site j are neighbors, and zero otherwise.

Nevertheless, Ω−1 is not a correlation matrix; its diagonals are in general not one and unequal.
How do we use the ‘‘structure’’ of Ω to define Q ? Since copulas are scale invariant, we could always
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obtain Ω−1 first and then standardize it to make all the diagonals one. Specifically, let γ 2
i be the ith

diagonal element of Ω−1 and let V = diag (γ 2
1 , . . . , γ 2

n ). We could parametrize Q by

Q = V 1/2ΩV 1/2. (3)

This way, Q is a valid dependence matrix whose inverse, V−1/2Ω−1V−1/2, is a correlation matrix.
The only dependence parameter in this specification is ρ. In our implementation of a Gibbs sampling
algorithm with site-wise updating, the rescaling is not needed in the calculation.

In summary, a hierarchical model with a TGMRF component for the observed response Yi, i =

1, . . . , n, is of the form

Yi|µi ∼ π(y|µi), i = 1, . . . , n,
µ ∼ TGMRFn(Fβ,ν,X ,Qρ),

whereπ(y|µi) is the distribution of Yi givenµi, Fβ,ν,X is specified by ηi and possibly another parameter
vector ν, and Qρ is specified by a neighboring structure and a dependence parameter ρ. The model
parameters of interest are θ = (β, ν, ρ, µ).

3.3. Spatial poisson regression with gamma field

Consider count data observed at n sites in a spatial domain. Let Yi be the count at site i, and with
a covariate vector Xi, i = 1, . . . , n. Poisson models are widely used for count data and the Poisson
intensities are often modeled by gamma distributions. Few choices of gamma fields are available in
the literature. An exception is Wolpert and Ickstadt (1998), where a doubly stochastic process is used
to construct positively auto-correlated intensity measures for spatial Poisson point processes which
are then used to model spatial count data. The TGMRFmodel provides a gammaMarkov random field
that can be used as intensities of Poisson count in a hierarchical model.

A GLMM introduces spatial dependence through a spatial random effect. Conditioning on µ, the
observed spatial count data Yi’s are assumed to be independent, and each Yi is Poisson with mean µi,
i = 1, . . . , n. The most commonly used GLMM for spatial count data uses the canonical log link on
the Poisson intensities:

logµi = X⊤

i β + ei, (4)

where e follows a CAR model with precision matrix Ω/ν, ν > 0. Let the ith component of Fβ,ν,X,ρ be
the distribution function of

LN(X⊤

i β, νγ 2
i ), ν > 0, i = 1, . . . , n, (5)

where LN(a, b) denotes a log-normal distribution with mean a and variance b on the log scale. Then
model (4) could be equivalently specified by (2) with F = Fβ,ν,X,ρ and Q = Qρ given by (3). Note
that the distributional parameters of the spatial random effects ν and ρ both affect the marginal
distribution F .

The TGMRF framework provides a new way to construct models for µ that incorporate spatial de-
pendence and covariates. The Gaussian copula of TGMRFs captures the spatial dependence. Any posi-
tive continuous distribution can be used to specify themarginal distribution ofµ, and covariate effects
can be accommodated into its parameters. Changing F inmodel (2) from log-normal to other distribu-
tion functions with positive support leads to new models. Gamma distribution is a natural choice for
themargins. Covariates can be incorporated into either one of the twoparameters, resulting in twodif-
ferent gammamodels as long as there is at least one covariate. The gamma scale model, hereafter the
GSCmodel, incorporates covariates into the scale parameter anddefines themarginal distribution Fi as

Γ

1/ν, ν exp(X⊤

i β)

, ν > 0, i = 1, . . . , n. (6)

The gamma shape model, hereafter the GSHmodel, incorporates covariates into the shape parameter
and defines the marginal distribution Fi as

Γ

exp(X⊤

i β)/ν, ν

, ν > 0, i = 1, . . . , n. (7)
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Under both models, the expectation of µi is the same, exp(X⊤

i β), but the parameter ν has different
interpretations and should not be compared directly. TGMRFmodels with othermarginal distribution
for µis can be constructed similarly.

There is an additional subtle difference between the log-normalmodel (5), hereafter the LNmodel,
and the two gamma models (6) and (7). Unlike the gamma models, where the dependence structure
does not interfere with the marginal models, the dependence structure Ω enters the marginal
distributions of µis through γ 2

i in the LN model. This difference makes the new formulation more
attractive in the sense that the marginal parameters and the dependence parameters are easier to
identify, avoiding the confounding between spatial random effects and fixed effects in the traditional
model as pointed out in Reich et al. (2006). Consequently, more precise inference about the regression
coefficients is possible.

3.4. Spatial Bernoulli regression with beta field

Consider presence/absence data at n sites in a spatial domain. Let Yi be 1 if presence is observed and
0 otherwise at site i, with a covariate vector Xi, i = 1, . . . , n. Conditioning on µ the observed data Yi’s
are assumed to be independent, and each Yi is Bernoulli with mean µi, i = 1, . . . , n. The traditional
spatial GLMM for binary data is

logit(µi) = X⊤

i β + ei, (8)

where β is the regression coefficient vector, e follows a CAR model with mean zero and precision
matrix Ω/ν, ν > 0. Let the ith component of Fβ,ν,X,ρ be the distribution function of µi =

logit−1(X⊤

i β + ei), i = 1, . . . , n, which depends on both ν and ρ. Then, model (8) is equivalent to
model (2) with Fβ,ν,X,ρ and Q given in (3). Of course, this equivalence is just of mathematical interest;
specifying model (8) is much more intuitive.

Changing F in model (2) to any distribution function defined over the (0, 1) support leads to new
models. Covariate effects can be accommodated into the marginal parameters. Spatial dependence is
modeled through the Gaussian copula with dispersion matrix Q−1. The beta distribution is a natural
choice for the margins. Let Beta(νp, ν(1 − p)) represent a beta distribution with mean parameter
p and dispersion parameter ν. Covariates can be incorporated into the mean parameter p using any
transformation function from the real line to (0, 1) (e.g., Ferrari and Cribari-Neto, 2004). We propose
a beta-logit model that incorporates covariates into the mean parameter p using an inverse logit
transformation and defines marginal distribution Fi as

Beta

ν

exp(X⊤

i β)

exp(X⊤

i β) + 1
, ν


1 −

exp(X⊤

i β)

exp(X⊤

i β) + 1


, ν > 0, i = 1, . . . , n. (9)

Model (9) is, again, subtly different from the traditional spatial logit model (8) in that the parameters
in the dependence structure Ω do not enter the marginal distributions.

4. Bayesian inference with MCMC

The proposed models fit naturally into the Bayesian framework. With carefully chosen priors for
the parameters, Markov chain Monte Carlo (MCMC) algorithms can be developed to draw samples
from the posterior distribution of the parameters of interests (e.g., Gelman et al., 2003). The joint
density of TGMRFn(F ,Q ) is easily derived from the marginal distributions and the Gaussian copula,

h(µ|F ,Q ) = (2π)−
n
2 |Q |

1
2 exp


−

1
2
ε⊤Q ε

 n
i=1

fi(µi; β, ν)

φ(εi)
,

where fi is the density of Fi, φ is the density of N(0, 1), εi = Φ−1

Fi(µi)


, i = 1, . . . , n, and

ε = (ε1, . . . , εn)
⊤. Let π(βj), j = 1, . . . , q, be independent priors for β. Let π(ν) and π(ρ) be
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independent prior for ν and ρ, respectively, independent of the prior for β. The joint posterior density
of θ⊤

= (β⊤, ν, ρ) is

π(θ|Y ,X) ∝


n

i=1

π(yi|µi)


h(µ|Fβ,ν,X ,Qρ)


q

j=1

π(βj)


π(ν)π(ρ). (10)

A general Gibbs sampling algorithm with Metropolis–Hasting update can be devised to draw
from π(θ|Y ,X). As the full conditionals from (10) are not known distributions (see for details,
Appendix A), we use the adaptive rejectionMetropolis sampling (ARMS)method (Gilks et al., 1995) in
every update. ARMS is a general-purpose method for efficiently sampling from complicated, possibly
non-logconcave or multi-modal univariate densities, as what are typically encountered in Gibbs
sampling. It makes the implementation of MCMC straightforward for general application of TGMRF
in hierarchical models, including the Poisson and Bernoulli cases for the snail abundance modeling.
The computing burden is similar to that in a SGLMM. Both models can be viewed as hidden GMRF
models: a GMRF is hidden behind the link functions in a SGLMM, whereas it is hidden behind the
marginal quantile functions in a TGMRF. The quantile functions could be viewed as a class of new link
functions (Prates et al., 2013). Therefore, the computation burden and the convergence speed of the
twomodels are very similar, as long as the quantile functions are notmuchmore expensive to evaluate
than the link functions. If the quantile functions were available in BUGS, an implementation would be
very easy, similar to that of SGLMM inmodel description. Our implementation was in C (using Gilk’s C
function for ARMS) and interfaced to R. Similar to MCMC algorithms for CARmodels, auto-correlation
in theMCMC sample can be high and the sample has to be thinned. A blockMetropolis algorithmmay
be possible if we think of the model as a hidden GMRF model (Rue and Held, 2005, ch. 5), but a fuller
study and comparison are worth a separate project.

If prediction is of interest for non observed areas, Ynobs, an extra step can be added in the MCMC
scheme to sample the missing data from the likelihood given the parameters at iteration m of the
MCMC, generating Y (m)

nobs. This way, the posterior sample (Y (1)
nobs, . . . , Y

(M)
nobs) can be used to find point

and interval estimates of the predicted data.
In our study, the prior distributions of regression coefficients βi, i = 1, . . . , q, were set to be

independent N(0, 1/τ) with τ = 0.01. The additional parameter ν for the marginal distributions
turns out to be either scale or shape parameter in our applications. Its prior distribution was set
to be Γ (κ1, κ2), a gamma distribution with shape κ1 and scale κ2. The hyperparameters were set
to be κ1 = 0.01 and κ2 = 100. These priors were chosen to be proper but vague to allow the
posterior estimates to be mainly data driven. A uniform prior over (0, 1) was put on the dependence
parameter ρ to ensure positive spatial dependence as intuitively expected. Its support is well within
(1/λmin, 1/λmax), where λmin < 0 and λmax > 0 are the minimum and maximum eigenvalues of W ,
respectively, guaranteeing its propriety (Banerjee et al., 2004).

To compare different models for the same data, we propose to use the conditional predictive
ordinate (CPO) criterion (e.g., Gelfand et al., 1992; Dey et al., 1997). The summary statistic is the
logarithm of the pseudo-marginal likelihood (LPML), which is the summation of the log density of
leave-one-out marginal predictive posterior distribution. The performance of the CPO criterion in
selecting the right models for count data and binary data are studied through simulations. The LPML
is the same as the logarithmic score of Good (1952) except that a leaving-one-out cross-validation is
built in. Using it as a predictivemeasure inmodel selection dates back to Geisser and Eddy (1979). It is
a special case of the general scoring rule studied in a very general framework by Gneiting and Raftery
(2007), and specifically for count data by Czado et al. (2009). The performance of the CPO criterion in
selecting the right models will be studied through simulations. Notice that a higher value of the LPML
indicates a better fit of the model.

The deviance information criterion (DIC) is an alternative Bayesian model selection crite-
rion (Spiegelhalter et al., 2002). In our simulation studies, however, DIC had much higher variation
than LPML and was outperformed in selecting the correct models. This might be explained by the fact
that the DICmeasures are highly dependent on themarginalization of the random effects, and become
unstable when the distributions are nonnormal.
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The Integrate Nested Laplace Approximation (INLA) approach (Rue et al., 2009) initially seems as
an alternative to implement the TGMRF approach since it works for Latent Gaussian Models (LGM)
where the latent field is additive and normally distributed. However, our modeling framework can
be interpreted as a link function (Prates et al., 2013) with the dependence structure defined by the
Gaussian copula, in such way that a multivariate distribution is defined for µ. For this reason, this
modeling setup is not suitable for the LGM class since our representation does not have a latent field
with additive distribution. Moreover, the parameter θ belongs to the marginal distribution Fβ,ν,X,ρ ,
which can be viewed as a part of the link function. Therefore, from an INLA perspective all parameters
would be treated as hyperparameters and it is known that INLA works well for large latent fields but
a small number of hyperparameters.

5. Simulation study

5.1. Poisson regression

To assess the fitting capacity of the TGMRF models, the properties of the Bayesian inferences, and
the effectiveness of LPML as a model comparison criterion in this context, we conducted a simulation
study using the lattice and neighbor structure in Fig. 1(a). Each of the three models was used as data
generating models. In addition to the intercept, one covariate was generated from N(0, 1), and the
true covariate coefficient vector was β = (1.0, 0.7). The precision matrix of the TGMRF took the form
of (3) for the CARmodel, with ρ = 0.8. The parameter ν, which is related to the variance in all models,
was set at ν = 2, although it has completely different meanings. With ν = 2, the gamma scale model
and the gamma shapemodel appeared to bemore similar to each other than to the log-normal model.
To make a more interesting comparison, a second log-normal model was also used to generate data,
where ν = 6.5 was chosen because it provides good approximation to the gamma scale model with
ν = 2. In summary, we had a total of four data generating models: two LN models LN1 and LN2, one
GSC model, and one GSH model.

For each data generatingmodel, we generated 100 datasets, and fit each dataset with all three pro-
posed TGMRF models. In each fitting process, a vague prior, Γ (0.01, 100), was set for the dispersion
parameter ν, and an uninformative U(0, 1) prior was set for the spatial dependence parameter ρ. In-
dependent N(0, 100) priors were set on the regression coefficients βj, j = 0, 1. Table 1 summarizes
the mean and standard deviations of the Bayesian estimate of the parameters and LPML from the 100
replicates.

When the model was correctly specified, the true values of the regression coefficients were recov-
ered verywell. The estimates seem to be upward biased for the dispersion parameter ν but downward
biased for the dependence parameter ρ, suggesting that spatial dependence and spatial heterogene-
ity are hard to identify. When the model was misspecified, the regression coefficient estimates were
still recovered reasonably well, especially in the GSCmodel and the GSHmodel, probably because the
mean of µ was still correctly specified, regardless of the misspecified model. In all cases, the average
of the LPML statistic was higher for correctly specified models than for the misspecified models, with
similar variation under different models. For the true models the coverage rate was close to 95% as
expected, even the misspecified models in general had a high coverage rate for the regression coef-
ficients and the dependence parameters. The scale parameter has very different interpretation and
scales between themodels, so in the truemodel we can verify that the coverage rate was close to 95%,
for the misspecified models the coverage were omitted since they are not comparable.

To gain a clearer picture on model comparison using LPML, we summarize the frequencies of the
models selectedwith the highest LPML from all 100 replicates under each of the fourmodels (Table 2).
The criterion seems to be very effective when the true model was the GSH model, correctly selecting
the true model 89 times. When the true model was LN1 or GSC, the correct model was selected 59
times in either case with our sample size, while the alternative GSC model or LN model was selected
29 and 34 times, respectively; the GSH model was selected only 12 and 7 times, respectively. This
indicates that the LN model and the GSC model provide good approximation to each other, similar to
their well known similarity in univariate modeling without covariates and spatial concerns; a larger
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Table 1
Summaries of posterior means, standard deviations (SD), 95% HPD coverage rates (Cov) and LPML from 100 replicates in the
simulation of spatial Poisson regression.

True Param True Specified model
model value LN GSC GSH

Mean (SD) Cov Mean (SD) Cov Mean (SD) Cov

LN1 β0 1.00 0.99 (0.10) 97% 1.08 (0.09) 90% 1.11 (0.14) 90%
β1 0.70 0.70 (0.06) 95% 0.70 (0.05) 95% 0.67 (0.06) 92%
ρ 0.80 0.53 (0.26) 96% 0.55 (0.26) 98% 0.55 (0.26) 96%
ν 2.00 2.32 (0.73) 98% 6.35 (1.53) – 0.84 (0.46) –
LPML −331.90 (10.76) −332.55 (10.87) −335.57 (11.11)

LN2 β0 1.00 0.98 (0.16) 96% 1.33 (0.18) 60% 1.46 (0.23) 50%
β1 0.70 0.70 (0.08) 96% 0.70 (0.07) 92% 0.58 (0.08) 59%
ρ 0.80 0.60 (0.22) 94% 0.61 (0.21) 88% 0.64 (0.22) 93%
ν 6.50 6.97 (1.42) 95% 2.00 (0.41) – 3.50 (1.16) –
LPML −362.90 (15.06) −365.69 (14.78) −371.35 (15.77)

GSC β0 1.00 0.76 (0.18) 63% 0.99 (0.13) 94% 1.09 (0.19) 94%
β1 0.70 0.70 (0.08) 96% 0.70 (0.07) 96% 0.61 (0.07) 71%
ρ 0.80 0.59 (0.23) 95% 0.59 (0.23) 93% 0.60 (0.23) 94%
ν 2.00 6.34 (1.30) – 2.24 (0.53) 98% 2.18 (0.73) –
LPML −336.34 (14.96) −335.38 (14.47) −340.95 (15.12)

GSH β0 1.00 0.71 (0.20) 64% 1.00 (0.14) 90% 0.99 (0.18) 94%
β1 0.70 0.77 (0.08) 84% 0.71 (0.08) 94% 0.70 (0.07) 95%
ρ 0.80 0.64 (0.21) 95% 0.62 (0.21) 94% 0.63 (0.21) 96%
ν 2.00 7.09 (1.31) – 1.95 (0.48) – 2.17 (0.60) 99%
LPML −335.86 (17.27) −335.96 (16.60) −328.81(17.35)

Table 2
Frequencies of selectedmodel using the LPML
statistics for the 100 simulated datasets.

True model Frequency selected
LN GSC GSH

LN1 59 29 12
LN2 77 16 7
GSC 34 59 7
GSH 6 5 89

sample would be necessary to distinguish them effectively. With our sample size, when the true
model was LN2, the LPMLwas able to differentiate the LNmodel better from the GSCmodel, correctly
selecting the LN model 77 times. Therefore, the similarity between the GSC model and the LN model
appear to be different under different scenarios. The GSHmodel seems to have specific characteristics
that make it further from the LN model and the GSC model in the model space.

A closer look at the difference in LPML across models is through box plots. Fig. 2 presents the box
plots of the difference in LPML between the correct model and two misspecified models for each true
model. The magnitude of the differences provides guidance in practice on what models are similar to
each other and on how big a difference should be to be considered important. In the spatial setting
we considered, the LN model and the GSC model were very similar, as seen from the boxes centered
near zero. The majority of each box plot is well above −5, suggesting that if the LPML of one model is
observed to be higher than that of another model by 5, then it is very unlikely that the other model is
the true model.

5.2. Bernoulli regression

A simulation study was conducted for the spatial Bernoulli regressions. Both the logit model and
the beta-logit model with the CAR dependence structure were used to generate data. Except for the
response variable, the simulation setup was the same as that in Section 5.1 with model parameters
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a b

Fig. 2. LPML difference between the correct model and misspecified models. (a) Poisson simulation. (b) Bernoulli simulation.

Table 3
Summaries of posterior means, standard deviations (SD), 95% HPD coverage rates (Cov) and LPML from 100 replicates in the
simulation of spatial Bernoulli regression.

True Param True Specified model
model value logit beta-logit

Mean (SD) Cov Mean (SD) Cov

logit 1 β0 1.00 1.02 (0.22) 98% 0.95 (0.23) 98%
β1 0.70 0.72 (0.23) 95% 0.65 (0.20) 95%
ρ 0.80 0.50 (0.29) 100% 0.47 (0.27) 100%
ν 2.00 2.33 (6.03) 86% 4.24 (2.49) –
LPML −92.30 (5.59) −91.77 (5.77)

logit 2 β0 1.00 1.03 (0.22) 97% 0.97 (0.23) 98%
β1 0.70 0.73 (0.22) 96% 0.66 (0.20) 94%
ρ 0.80 0.50 (0.29) 100% 0.46 (0.27) 100%
ν 1.00 1.56 (3.57) 95% 3.79 (2.52) –
LPML −91.67 (5.53) −91.31 (5.58)

beta-logit β0 1.00 1.08 (0.22) 84% 1.01 (0.27) 92%
β1 0.70 0.78 (0.23) 93% 0.68 (0.20) 97%
ρ 0.80 0.52 (0.29) 100% 0.56 (0.27) 100%
ν 2.00 1.10 (1.09) – 3.99 (2.37) 100%
LPML −96.16 (6.27) −88.16 (8.21)

β = (1.0, 0.7), ρ = 0.8 and ν = 2. Again, since ν has different interpretation in the two models, a
second logit model with ν = 1 was also used to generate data in attempt to approximate the beta-
logit model with ν = 2. For each of three truemodels, we generated 100 datasets, and fit each dataset
with each of two TGMRF models. The priors were chosen in the same manner as Section 5.1. Table 3
summarizes the posterior mean and standard deviations estimates from 100 replicates.

Similar to the results from Section 5.1, when the model was specified correctly, the true values of
regression coefficients are recovered very well; the dispersion parameter estimate tended to be big-
ger than true value; and the dependence parameter estimate appeared to be downward biased. The
coverage rate also had similar behavior to the ones observed in Section 5.1. However, themodels tend
to provide higher coverage rate for the dispersion and dependence parameters, this is due to the fact
that the model has a large standard deviation in these parameters estimation. When the true model
was the beta-logitmodel, the average LPML value of the beta-logitmodel was 8 higher than that of the
logit model. When the true model was the logit 1 or logit 2, however, the average LPML value of the
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Table 4
Frequencies of model selection using the
LPML statistics for the 100 simulateddatasets.

True model Frequency selected
logit beta-logit

logit 1 46 54
logit 2 49 51
beta-logit 16 84

beta-logit model was very close to (actually slightly higher than) that of the logit model in both cases.
This implies that the beta-logit model is quite accommodating and can provide close approximation
to the logit model; with the sample size in our simulation, they are hard to distinguish.

Table 4 summarizes the frequencies of the models selected with the highest LPML from all 100
datasets generated under each scenario. When the true model was the beta-logit model, the LPML
criterion worked effectively, correctly selecting the true model 84 times. When the true model was
logit 1 or logit 2, however, the logit model and the beta-logit model were selected with almost equal
frequency, indicating that the beta-logit model provides very good approximation of the logit model
with our sample size.

Box plots of the difference in LPML between the correct model and the misspecified model are
shown in Fig. 2(b). The boxes are surprisingly tight around zerowhen the truemodel is the logitmodel,
indicating that the beta-logitmodel approximates the logitmodel very closely in terms of LPML.When
the truemodelwas the beta-logitmodel, however, the LPML value of the logitmodelwas very unlikely
to be higher than that of the correctly specified model. The majority of all box plots were well above
−5. A difference of 4.2 between the two models as observed in the analysis of presence/absence of G.
nigrolineata seems to be quite strong evidence in favor of the beta-logit model.

6. Analysis of experimental data

6.1. Abundance of Nenia tridens

We fitted hierarchical Poisson regressions to the count data of N. tridens with four models: the
random effect log linear model (4), the LNmodel, and two TGMRFmodels, GSC and GSH. An intercept
model with the available covariates were fit for each model where the precision matrix Q of the
Gaussian copula was specified with (3) from the CAR model. Any two sites within 60 m were
considered to be neighbors. This neighborhood structure results in different numbers of neighbors for
major sites and for supplementary sites. As shown in Fig. 1(a), an internalmajor site is connected to 20
neighbors and an internal supplementary site is connected to 16 neighbors. The priors were chosen
as presented in Section 4. For eachmodel, two chains with 60,000 iterations each were generated.We
discarded the first 30,000 iterations as burn-in and thinned the rest by 10, resulting in 6,000 posterior
samples. Convergence was verified using Geweke (1992) and Gelman and Rubin (1992) criteria.

The GSHmodel had the largest LPML (−482.12), followed by the GSCmodel (−483.90) and the LN
model (−491.15). These results suggest that the GSH model and the GSC model performed similarly,
with the former being slightly preferred. The GSHmodel provides considerably better fit than did the
traditional LN model with a 9.1 difference in LPML. This difference is quite strong evidence in favor
of the GSH model over the LN model (Kass and Raftery, 1995). As to be seen in our simulation study,
when the true model was the GSH model, 38 of 100 replicates had LPML differences of greater than
9.1; when the true model was either one of the two LN considered models, however, this rate became
0 out of 100.

The posterior point estimates and 95% highest posterior density (HPD) credible intervals of the
parameters from the GSH model and the traditional LN model are summarized in Table 5. The two
models lead qualitatively to the same conclusions. Neither elevation nor slope was found to have a
significant effect on the abundance of N. tridens. Of the habitat characteristics, only canopy openness
was significant and negatively so. More canopy openness implies fewer trees and dryer soil, which



394 M.O. Prates et al. / Spatial Statistics 14 (2015) 382–399

Table 5
Posterior point estimates and 95% HPD credible intervals of the parameters in the Poisson regression for the abundance of N.
tridens with the GSH model and the traditional LN model. The regression coefficients are in the order of intercept, elevation,
slope, quantity of litter, canopy openness, plant apparency, and apparency of sierra palm.

Parameters Specified model
GSH LN
Estimate 95% HPD Estimate 95% HPD

Regression coefficients
β0 1.889 (0.561, 2.656) 2.112 (1.520, 2.839)
β1 −0.056 (−0.322, 0.189) −0.028 (−0.301, 0.252)
β2 −0.051 (−0.184, 0.091) −0.044 (−0.156, 0.077)
β3 −0.108 (−0.250, 0.027) −0.101 (−0.213, 0.027)
β4 −0.149 (−0.304, −0.002) −0.127 (−0.249, −0.003)
β5 0.028 (−0.109, 0.170) 0.022 (−0.106, 0.145)
β6 0.035 (−0.094, 0.165) 0.023 (−0.104, 0.142)
Scale and spatial dependence parameters
ν 4.823 (2.857, 7.075) 5.001 (3.461, 6.773)
ρ 0.951 (0.840, 0.997) 0.954 (0.858, 0.999)

do not constitute the preferred habitat conditions of N. tridens. The marginal scale parameter ν is
estimated to be 4.823. The spatial dependence parameter ρ is estimated as 0.951, with a HPD interval
that does not include zero, indicating that higher spatial dependence is needed in the model.

To study the sensitivity of neighborhood choice, two other scenarios were fitted. First, where the
major sites have only supplementary sites as neighbors, such that two sites within 57mwere consid-
ered to be neighbors; and second where two major sites were considered neighbors, thus two sites
within 120 m were considered to be neighbors. The posterior estimates of the parameters were very
similar and thus are not shown. The estimate of the spatial dependence parameter decreases in the
scenario with neighborhood structure encompassing 120m as ecologically expected, since these gas-
tropods should not often move such great distances during over the period of days to weeks.

6.2. Presence of Gaeotis nigrolineata

We fitted Bernoulli regressions with an intercept for the presence/absence data of G. nigrolineata
with two models: the random effect logit model (8) and the TGMRF model (9), denoted by the logit
model and the beta-logit model, respectively. Prior distributions for model parameters were selected
in the same way as those described in Section 4. As in Section 6.1, two chains of size 60,000 were
generated, with the first 30,000 discarded and the rest thinned by 10. The convergence of the resulting
6,000 posterior samples was checked again with Geweke’s and Gelman and Rubin criteria.

The LPML values were −99.31 and −103.51 for the beta-logit model and the logit model,
respectively. Therefore, using a CAR dependence structure, the beta-logit model fits better than does
the traditional logit model. The difference of 4.2 is quite strong evidence that the beta-logit model is
superior to the logit model in this scenario. To be seen in our simulation study, when the true model
was beta-logit, 68 out of 100 replicates had LPML differences between the fitted beta-logit model and
the fitted logit model that were greater than 4.2, but the rate was only 1 or 0 out 100 when the true
model was a logit model.

The posterior point estimates and 95% HPD credible intervals for parameters in both models are
summarized in Table 6. The conclusions of the two models are virtually the same. As in the case for
N. tridens, neither elevation nor slope had a significant effect on the incidence of G. nigrolineata. Of
the habitat characteristics, only plant apparency had a significant negative effect on the incidence
of G. nigrolineata. That is, the greater the volume of vegetation in the understory of the forest, the
lower the abundance of G. nigrolineata. The apparency of sierra palm, which measures the preferred
substrate for the G. nigrolineata, was almost significant and positively so, with the 95% HPD credible
interval barely including zero. The negative effect of plant apparency was surprising but the paradox
may be resolved if high plant apparency in the understory indicates the presence of an opening in the
canopy, and attendant temperatures (high) with humidities (low) outside of the fundamental niche
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Table 6
Posterior point estimates and95%HPDcredible intervals of the parameters in the Bernoulli regressions for the presence/absence
of G. nigrolineatawith the beta-logit model and the traditional logit model using the CAR dependence structure. The regression
coefficients are in the order of intercept, elevation, slope, canopy openness, plant apparency, and apparency of sierra palm.

Parameters Specified model
beta-logit logit
Estimate 95% HPD Estimate 95% HPD

Regression coefficients
β0 0.269 (−0.312, 0.816) 0.295 (−0.896, 1.571)
β1 0.326 (−0.163, 0.792) 0.514 (−0.437, 1.467)
β2 0.067 (−0.268, 0.418) 0.096 (−0.462, 0.686)
β3 −0.031 (−0.364, 0.327) −0.051 (−0.600, 0.558)
β4 −0.513 (−0.936, −0.165) −0.775 (−1.538, −0.111)
β5 0.287 (−0.077, 0.649) 0.447 (−0.134, 1.220)
Scale and spatial dependence parameters
ν 1.035 (0.740, 1.378) 52.960 (0.001, 186.300)
ρ 0.666 (0.179, 0.988) 0.707 (0.135, 0.999)

of G. nigrolineata, precluding its presence even though its preferred substrate may be common. The
spatial dependence parameter ρ is estimated as 0.666 and 0.707 in the twomodels, respectively, with
95% HPD credible intervals excluding zero, indicating spatial dependence within neighborhood areas.

Although the beta-logit model agrees with the logit model in the directions of covariate effects,
it gives smaller widths in the HPD credible interval than does the logit model. This indicates better
precision in the estimation of coefficients. Nonetheless, the ν parameter does not have the same
interpretation in the twomodels, and, hence, they are not directly comparable. For the logitmodel, the
ν parameter controls the overall variation level of spatial random effects, whereas for the beta-logit
model, the ν parameter controls the dispersion of the marginal distribution.

7. Discussion

7.1. Statistical interpretations

Our hierarchical spatial model with TGMRF provides a new avenue for modeling lattice data, es-
pecially those that are discrete, under the generalized linear model setting. Unlike Gaussian-copula
spatial models where the Gaussian copula is applied to the data, our model applies the Gaussian cop-
ula to parameters of marginal distributions in the exponential family. This avoids the complexities
and identification issues in handling discrete data, as cautioned in Genest and Neslehova (2007). The
random field for the marginal parameters retains the robustness to misspecification of a general hi-
erarchical model. Our new formulation covers the traditional SGLMM with GRF random effects as a
special case, as we demonstrated in the context of the Poisson regression and Bernoulli regression.
An important advantage, however, is that in the new formulation, the dependence parameters do not
affect the marginal models. This is in contrast to the traditional SGLMM, where the spatial random ef-
fects are confounded with the fixed effects, making significant predictors less significant (Reich et al.,
2006). This has important practical implications inmaking inferences about the regression coefficients
in the marginal models through narrower credible intervals of the regression coefficients and, hence,
more powerful detection of covariate effects. The scope of themodeling framework could be extended
to multivariate spatial data, which may or may not have the same support at each site. It would be
equivalent to applying the general Gaussian graphical model of Dobra et al. (2011) to parameters in-
stead of data in a hierarchical model. Such a framework would then enable jointly modeling of the
count data and binary data in our snail abundance application.

There is a considerable ongoing discussion in the ecological literature about how to identify the
link between a trait of interest to environmental variables from the spatial variation of the trait it-
self (e.g., Peres-Neto et al., 2012). A simple GLM without spatial effects led to misleading results. The
slope, which is apparently a spatially dependent covariate, would have been found to have a signifi-
cant positive effect, but it effectively compensated for the spatial variation that ismissing in themodel.
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From a statistical perspective, we need valid inferences about the regression coefficients in the pres-
ence of spatial variation. Both the traditional SGLMMand our hierarchical TGMRFmodel are capable of
doing so, making inference onmarginal regression coefficients more reliable after accounting for spa-
tial variation. Application of bothmodels helps to understandwhat environmental variables influence
the variation in the gastropod abundances.Moreover, since ourmodel overcomes the confounding be-
tween the spatial random effects and the fixed effects in a traditional SGLMM (Reich et al., 2006), it
led to more reliable cherry picking the ‘‘pure’’ environmental variables that have an effect on the trait
of interest in the presence of spatial variation. In particular, in the analysis of the count data of N. tri-
dens, our GSHmodel was able to select canopy openness as a significant variable, while the traditional
Poisson regression with GMRF random effect was not. In the analysis of the presence/absence data of
G. nigrolineata, although the conclusions are the same as those from the traditional logit model with
GMRF random effect, our beta-logit model gave much tighter credible intervals. The R-C code for the
TGMRF regression is provided as supplementary material (see Appendix B).

7.2. Ecological interpretations

The empirical data on the spatial distribution of N. Tridens and G. nigrolineata was obtained for a
time period (1995) that was only six years after the impact of Hurricane Hugo (1989)—a category 4
storm with catastrophic wind speeds (>144 km/h) that caused considerable damage to the Luquillo
Mountains, including mortality or defoliation to 7% and 56% of trees, respectively, in tabonuco forest
near the LFDP (Scatena et al., 2012). Within six months of the hurricanes impact, the mean densi-
ties of both gastropods significantly declined to essentially zero (i.e., locally extinct) in some areas
of tabonuco forest (Willig and Camilo, 1991). By 1995, mean abundance of N. tridens had increased
appreciably while those of G. Nigrolineata initially increased but then decreased (Willig et al., 1998).
Moreover, spatial variation in abundance of each species was changing significantly over time in re-
sponse to the hurricane (Bloch and Willig, 2006). These temporal patterns suggest that the spatial
organization of gastropod abundance was dynamic in complex ways after the hurricane in response
to the interplay between the site-specific effects of canopy opening and debris deposition, immedi-
ate effects of hurricane disturbance that initiate a sequence of responses (secondary succession) by
the biota (Willig and McGinley, 1999; Willig et al., 2012). Thus, results from our modeling (i.e., few
environmental characteristics were significant) are consistent with the expectation that many envi-
ronmental characteristics of sites on the LFDP may not appreciably predict gastropod abundance or
presence while this ecological system is undergoing rapid reorganization and not likely in an
equilibrial state (i.e., habitat characteristics are dynamic over time, as are abundances of gastropods,
potentially reflecting a lag-time in response to changing conditions (Willig et al., 2011)). Similarly,
cross-scale interactions between environmental conditions at each site (fine scale) and the surround-
ing characteristics of the landscape (broad scale), may produce complex patterns in abundance or
incidence that are not strongly related to contemporary environmental conditions at a site (Willig
et al., 2007). The spatial relationship (negative) between canopy openness and abundance of N. tri-
dens does correspond to a priori ecological expectations that this snail would avoid sites with high
canopy openness because of the desiccation effects and the poor quality of forage in such environs.
Similarly, a priori expectations and statistical results of analyses correspond with regard to the pres-
ence of G. Nigrolineata, a gastropod with a vestigial and internal shell, that prefers areas in which its
primary substrate or food source are pervasive (i.e., those with high apparency of the palm). The asso-
ciation may be weak because the response variable is binary: presence does not distinguish between
situations in which a single individual or 100 individuals are present. The likelihood of absence being
associated with high plant apparency arises because appreciable vegetation in the understory sug-
gests that canopy closure is not yet complete, and abiotic characteristics (higher temperatures and
lower moisture) may create hostile environments for this species.
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Appendix A. Full conditionals

The full conditionals for the parameters for MCMC in the context of TGMRF regression are:

π(µi|rest) ∝ π(yi|µi) exp


−
1
2
ε⊤Qρε


fβ,ν,X (µi)

φ(εi)
, for i = 1, . . . , n,

where π(yi|µi) is the appropriate likelihood for the response, fβ,ν,X is the density corresponding

to Fβ,ν,X with parameters, φ is the density of N(0, 1) and ε =


Φ−1


Fβ,ν,X (µ1)


, . . . , Φ−1

Fβ,ν,X (µn)
⊤

.

π(βj|rest) ∝

n
i=1


π(yi|µi)

fβ,ν,X (µi)

φ(εi)


× exp


−

τ

2
β2
j −

1
2
ε⊤Qρε


, for j = 1, . . . , q,

π(ρ|rest) ∝

n
i=1

π(yi|µi) × |Qρ |
1
2 exp


−

1
2
ε⊤Qρε


I(a < ρ < b),

and π(ν|rest) ∝

n
i=1


π(yi|µi)

fβ,ν,X (µi)

φ(εi)


× exp


(1 − κ1) log(ν) − κ2ν −

1
2
ε⊤Qρε


I(ν > 0),

where τ , κ1 and κ2 are the hyperparameters of the Normal and Gamma prior for βj and ν respectively.
The prior for ρ is set as an uniform between (a, b).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
spasta.2015.07.004.
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