Learning and Task Interference by Cuckoo-removal Specialists in Honey Bee Colonies

STEPHEN T. TRUMBO & GUY E. ROBINSON

Abstract

Workers are considered to be among the most specialized of pre-foraging honey bees. (Apis mellifera L.) workers. In this study we examined a possible benefit and a cost of the cuckoo-removal speciality, the improvement in performance with experience, and interference by individuals attempting to perform the same task in the same location, respectively. Experienced bees removed nests significantly faster than inexperienced bees and also were less likely to drop corpses while carrying the tasks (13.5% vs. 14.7% of attempts). Supposed performance by experienced under coworkers might occur as a consequence of learning, or by greater ability from the same. Because those under coworkers (pre, 3 cuckoo-removals) did not improve with experience over their own careers, learning was not demonstrated. An incorrect specialist, Yellow 5A, removed a total of 24 corpses (6.5% of experimentally introduced dead bees) from the box over a 15-day period. This is the longest recorded amount of underutilizing in non-innovating bees. The experiment and demonstration how few individuals can dominate this task in a honey bee colony. Yellow 5A removal of corpses significantly faster than other active bees, but she demonstrated no obvious improvement in performance over her particular career. This suggests the possibility that active under coworkers were more proficient than less active under coworkers, irrespective of learning. When two under coworkers worked together to remove a corpse from the hive, they took longer to complete the task than did single individuals. When multiple under coworkers worked together from the hive, they were less likely to clear a nearby obstruction than single under coworkers and were more likely to drop the corpse within 1 m of the hive. Thus, mutual interference exerted a measurable cost as a result of the underutilization specialists’ while learning provided few benefits.

Corresponding author: Stephen T. TRUMBO, Department of Ecology and Evolutionary Biology, 22 Holland Ave., University of Connecticut, Waterbury, CT 06701-2208, USA. E-mail: steph@econ.uconn.edu

Introduction

The evolution of division of labour is regarded as one of the principal reasons for the ecological success of social insects (Wilson 1987). Division of labour is thought to promote ergonomic efficiency in a number of ways, including the partitioning of complex tasks (Anne 1986a), the employment of cooperative teams (Franke 1987), and learning by longer-term specialists (Oster & Wilson 1978; Suken 1985). Specialization might promote learning by providing workers with more opportunities to perform a given task. In addition, specialization on a given task reduces the performance of other tasks which might interfere with effective learning. Improved task performance by specialists

U.S. Copyright Clearance Center: Code Statement: 0179-1613/97/1031-01966/$14.00/0
could reduce the need for non-specialists to maintain tasks that they perform less effectively. While learning has been demonstrated for foragers (Beirich 1979; Monnot 1986; Dukas & Vischer 1994), it is also expected for in-breeder tasks (Dawson 1992; Faivre-Bagnes & Robinson 1996). Learning might be especially important for such hive activities as corpse removal and colony defence in which a small majority of workers participate. A convincing demonstration of learning would include both the superior performance of more experienced individuals and improvements by individuals as they become familiar with external stimuli associated with the task.

Costs of specialization have received less study than benefits. Possible costs include a failure to reallocate workers quickly to new tasks in response to changing demographic or environmental conditions (Wilson 1980; Gordon 1986b), the inefficient performance of specialists that are forced to perform duties outside their normal repertoire (Wilson 1984), the potential increase in inter-task novel time as specialists seek out a narrow range of stimuli to which they are exposed (Wilson 1976; Seeley 1982), and the waiting time imposed by tasks requiring social coordination (Jeanne 1986). An additional cost of specialization, which has received no anecdotal attention, might occur when an individual interacts with a nestmate as they both respond to the same task related stimulus.

Honey bees exhibit temporal polyethism in which adult workers pass through a number of developmental stages. Workers perform brood care in the nest interior when young, proceed to tasks associated with the nest periphery such as food storing, and end with foraging (review: Seeley 1985; Winston 1987; Robinson 1992). Individuals, however, do not participate equally in all tasks. Only a minority of workers ever engage in rare tasks such as undertaking and guarding (Saladaga 1953; Vischer 1983; Momba et al. 1997; Brued 1997a), at least in part because of genetic differences among workers (Robinson & Pallas 1998, 1999).

The acenstual seeing pattern is often thought to be the construction of a single exposed comb (Michener 1974). The use of internal cavities as protection for nests, which permitted geographic expansion into temperate regions, is thought to have necessitated the evolution of advanced house-cleaning behaviours such as removal of debris and corpses of nestmates (Vischer 1988). These behaviours prevent the nest cavity from filling with debris and remove a potential source of disease. The latter function is suggested because corpses are removed 70 times as quickly as common debris of a similar size and shape (Vischer 1985).

Most undertakers have a brief tenure of specialization, but a few individuals spend as much as a quarter of their lives performing this task (Saladaga 1953; Vischer 1988). Undertakers often grasp a dead bee in the mandibles, pulling the corpse towards the hive exit, and flying from the hive to drop the corpse (Vischer 1983). Early observations of mechanical behaviour described trimmings of petals and stamens attending undertakers, this 'assistance' sometimes includes multiple bees taking flight from the hive with the corpse (Hof 1780). Corpses normally are taken a minimum of 15m and as much as 200m from the hive before being dropped, provided the undertaker gains sufficient altitude upon exiting the hive (Vischer 1983, 1998). In this study, we examined a potential benefit (learning) of the metaplectic specialization in honey bees, Apis mellifera L., by introducing dead honeysuckle flowers and comparing the performance of undertakers with varying corpse-removal experience by tracking
the performance of individuals as they gain experience. A potential cost (task interference) was assessed by comparing the performance of single individuals vs. 'teams'. Corpus removal provides a good model for examining the efficiencies of a hive specialization because of the longer tenure of a small group of specialists and the ability to quantify task performance.

Methods

Experiment 1 – Learning

Honey bee colonies were maintained according to standard techniques at the University of Illinois Bee Research Facility, Urbana, Illinois. Bees were typical of North American populations of Apis mellifera of predominantly European subspecies (Philippi 1915; Philpi 1939). Three weeks before the initiation of experimental trials, colony 5 was established in an 8-frame observation hive by transferring a queen, brood frames, drone, and workers of mixed age from a field colony. To increase the likelihood of a small group of undertakers employed in that specialty for a number of days and to reduce the number of naturally occurring corpses, the size of the colony was kept relatively small (about 4000 as estimated by counting bees in a sample of quadrants). The experimental trials were conducted in the fall when the effects of colony age demographics are expected to slow rates of behavioral development (Wilkinson and Ruttner 1995, 1996). Workers that were not transferred to the observation hive were maintained with CO2 and immediately frozen for use as corpses. The observation hive was connected to the outside world by a ramp (80 × 32 cm) covered by removable Plexiglas sections. This permitted direct observation of undertakers pulling corpses toward the exit and provided access for experimental removal and reintroduction of bees.

To increase the likelihood of observing bees early in the corpses removal career, the following procedure was employed. During a two-day pre-experimental period, more than 100 dead bees were placed into the hive. Workers that carried a dead bee at least 20 cm toward the hive exit were caught, tagged on the thorax with a numbered disk, and then reintroduced into the hive. Of 28 bees tagged as undertakers during the pre-experimental period, only 3 continued their undertaking career during the experiment. Thus, it was possible to follow untagged bees (n=68) that were observed to begin and complete their corpse removal career during the experiment. Previous work demonstrated that, in the absence of inclement weather, undertakers are unlikely to stop and then resume corpse removal after a two-day hiatus (Thomson et al. 1997).

Experimental learning trials were conducted during two sessions per day from 30 Sep until 7 Oct., and again from 12 to 14 Oct. 1992 (undertakers were not active from 8 to 11 Oct. because of inclement weather). Each session consisted of the placement of 10 to 20 dead workers, one at a time, on the ramp at the point closest to the west body. The performance of undertakers was measured as the time from the movement of a dead bee at least 5 cm from its original point of placement until the dead bee was carried across the line 20 cm away toward the hive exit. The requirement that a dead bee had to be moved at least 5 cm before recording began eliminated the inclusion of instances of bees feeling, antennating, and briefly tugging on corpses (Winston 1987). Undertakers that moved a corpse 5 cm from its placement point but were not successful in carrying the corpse 20 cm were scored as dropping the corpse. When an untagged undertaker successfully moved the 20 cm line, its performance was first recorded and then it was caught, tagged, and reintroduced into the hive. Observation periods varied from 21 to 60 min depending on undertaking activity and the number of untagged undertakers that were handled. Because the hive was not monitored continually, these untagged bees may have acquired some corpse removal experience before or between trials. For statistical comparisons, undertakers that removed at least three corpses in their lifetime (n=17) were considered "active."

Experiment 2 – Interference: Single vs. Multiple Undertakers

Eleven colonies of honey bees were screened for undertaking activity during early May 1993 by placing 50-75 dead bees into the rear of the hive body. In 6 colonies, dead bees were removed within a few days. Two of these 6 colonies were selected randomly for the experiments. Colonies were then transferred to a 9-frame observation hive at the first indication of a high percentage of corpses. Dead bodies were estimated to be 6000-9000 bees. An interramp connected the hive body to an outside wall. An interramp (length 9.5 × 32 cm, width 5.7 × 32 cm) covered with Plexiglas forced bees to walk a short distance before being able to fly. Beginning on 24 May, dead
Results

Experiment 1 - Learning

The times required for undertakers to move dead bees 20 cm toward the hive exit varied widely (3.6-207.0 s) in colony 1 and were not distributed normally. Log-transformed data and non-parametric tests were employed to analyse the times for observed corpse-removal attempts 1, 2-3, 4-5, 6-8, 9-12, and 13-19. The association between removal time and number of removals was significant ($r_s = 2.81$, $p = 0.02$), as regression of log-transformed data (Fig. 1a). It is clear from the median scores in Fig. 1(a) that most of the apparent improvement was between the first and later removals. A comparison of first

![Graph showing median times to remove corpses vs. number of attempts observed for all undertakers (A) and for active undertakers (B) at least three corpses removed during observations. The range defines the middle 50% of corpse removal times. Sample sizes are shown adjacent to the median points. Median sample sizes do not decline uniformly along the abscissa in (A) because data from greater numbers of trials were combined for analysis)](image-url)
with all other removals was highly significant \((p < 0.001) \), Mann-Whitney U-test. The result is quite different, however, if data from only active under-takers (at least three corpse removals) are used in the analysis. In this case, no improvement with experience is indicated \((Z_{max} = 1.84, p > 0.10) \). Figure 1b). In addition, times for later corpse removals are not significantly faster than removal times for first corpses \((p > 0.20) \), Mann-Whitney U-test.

As an additional test of experience, pairwise comparisons were made during each session of the first less experienced (never observed to have removed a corpse) and experienced undertaker and the last less experienced and experienced undertaker \((n = 36 \) pairs, Wilcoxon's matched pairs signed ranks test). This analysis eliminated variation in performance that may be caused by daily changes in general activity levels (the interval between a pair of less experienced and experienced undertakers was never greater than 11 days). Experienced undertakers again were found to remove corpses significantly faster than first-observed undertakers \((p = 0.001) \; \text{Fig. 2} \).

Combining all trials, less experienced bees failed to complete a removal (movement of a corpse > 5 cm but < 20 cm) during 14.3% of attempts \((n = 63) \) while experienced bees failed during only 3.5% of attempts \((n = 128) \) \((p = 0.052, \text{Fisher's exact two-tailed test}) \).

During learning trials, there was a single highly active undertaker (Yellow 54) responsible for the removal of 114 corpses \((33.8\% \text{ of the total corpses introduced into the hive}) \). Yellow 54 was active for 8 consecutive days between 30 Sep. and 7 Oct. and again on 12 Oct. (a 13-day undertaker career). Yellow 54 was not observed to remove corpses during the 2-day pre-experimental tagging period. During her most active period \((1-7 \text{ Oct.}) \), Yellow 54 was responsible for nearly half of the corpse removals \((16 \text{ of } 235) \). Yellow 54 was significantly faster at removing corpses than other experienced bees \((median time of 12.2 s \text{ v. } 15.8 s, p < 0.01) \), Mann-Whitney U test, first removals excluded from analysis. Yellow 54, however, did not show obvious improvement throughout her own career \((Z_{max} = 0.65, p > 0.20) \; \text{Fig. 3} \).

In addition to Yellow 54, 12 other undertakers removed at least 8 corpses \((9 \text{ of these ...)}}
12 active undertakers were first observed to remove a corpse during the experimental trials, and none during the 2-day pre-experimental tagging period. To examine improvement in each of these individuals, the median score for the first half of all corpse removals was compared with the median score for the second half of corpse removals. Four workers performed better in the first half of removals, 7 were agnostic in the second half of removals, and there was a single tie (Wilcoxon matched pairs signed ranks test, \(p > 0.20 \)).

Performance of the three most active of these undertakers is shown in Fig. 4. It is possible that these analyses might obscure evidence of learning if learning occurs only in the first few corpse-removal attempts and if less experienced bees had undertaking experience prior to the experimental trials or in the intervals between trials. To minimize this bias, a separate analysis was conducted of all bees that were observed to remove more than one corpse, but which were not observed to remove corpses during the initial 2-day tagging period nor during the first 2 d of the experimental trials. Of 17 such identified bees, 6 removed corpses more quickly during removals 2-5 (determined as the median of these three cases) and 7 worked faster in the first attempts (Wilcoxon’s matched pairs signed ranks test, \(p > 0.20 \)).

It should be noted that with a small number of undertakers was highly active, nearly two-thirds of tagged undertakers were twice observed to remove a second dead bee (66%, \(n = 61 \)); this finding is in agreement with previous studies (SOEGI and AMI 1953; VISCHER 1985; TRUBIGO et al. 1997); the last of which followed age-marked bees during their pre-foraging career.

Experiment 2 – Interference: Single vs Multiple Undertakers

Twenty-one percent of bees in colony 2 (\(n = 51 \)) and 25% of dead bees in colony 3 (\(n = 50 \)) were carried out of the hive by more than one undertaker. Most cases of multiple undertaking involved two individuals (102 out of 111). The involvement of more than one undertaker was clearly inefficient as measured by two-performance criteria. Single undertakers traversed the cue in significantly faster tempo than multiple undertakers in both colonies 2 and 3 (colony 2, \(p = 0.007 \); colony 3, \(p = 0.006 \); Mann–Whitney U-tests; Fig. 5).
Fig 4: Median time of corpse removal observed for the 2nd, 3rd and 4th most active undertakers (*) Yellow 45 and Yellow 85 removed a total of 19 corpses

Fig 5: Median time required by single and multiple undertakers to remove the ramp for colonies 2 and 3. Range as in Fig. 1. Sample sizes are shown at the base of the bars
Although the times involved were quite brief, the mean time for multiple undertakers to traverse the ramp was more than 75% longer in colony 2 and more than 140% longer in colony 3. The number of undertakers handling the corpse also affected the probability that the corpse would be lifted over and beyond the fence surrounding the hive. Single undertakers were significantly more likely to clear the fence than multiple undertakers (colony 2: 37.8% vs. 0%, p = 0.006; colony 3: 62.2% vs. 21.4%, p = 0.013; Fisher's exact test). Combining the data from both colonies reveals that over half the corpses were dropped within 1 m of the hive when carried by multiple undertakers; this was a rare occurrence for single undertakers (59% vs. 9%, 2 x 2 contingency test, G = 28.73, p < 0.001).

Discussion

Although students of social insects agree that there are ergonomic advantages associated with having large numbers of workers and division of labour, there is some disagreement over whether individual specializations also make an important contribution to colony efficiency (BEILIN 1982, WILSON 1985, GORDON 1989c, VAN DER BLUM 1993). Task specialization might be expected to produce ergonomic benefits through learning, but clear demonstrations of such benefits for nest workers have been rare (but see DOWNING 1992). Because undertakers constitute a small subset of colony workers (1-2%) at any one time (VOSCHER 1983) and their tenure can be quite long (e.g. Yellow 54; also see SAKAGAMI 1958), they are a favourable group for which to measure learning. In this study, experienced undertakers worked faster and were less likely to drop dead bees compared with less experienced individuals. The clearest difference between experienced and less experienced undertakers was between the first and second corpse removals. If learning does occur, it perhaps requires but a few successful acts of securing a dead bee and finding the hive exit. Learning could not be demonstrated to occur progressively over a long series of trials. Because the vast majority of corpses in larger colonies are removed either by naive bees or by bees with considerable experience (VOSCHER 1983; TRUMBO et al. 1997), the benefits that could accrue from learning appear to be small.

It is possible that learning would have been more pronounced if the experience of bees before and between experimental trials could have been taken into account (this would be especially true if learning was focused during the first few trials). Although we cannot rule this out completely, analysis of the subset of bees that became active undertakers only after the experimental trials were well under way suggests that performance did not improve significantly over the first few observed learning trials. An alternative hypothesis for superior performance of experienced bees is that the most active undertakers worked faster from the outset. If this occurs in the absence of learning, then experienced (more active) individuals should complete tasks more quickly than less active individuals, but active individuals should show no improvement over their careers. The lack of improvement by active undertakers, demonstrated most convincingly by Yellow 54 (114 corpses removed), makes it clear that a difference in talent is a possible explanation for the superior performance of active vs. less active bees. In an intriguing study, CHEN (1937) found that Componotus japonicus workers that moved earth at a greater rate also were the ones that initiated this task more quickly and demonstrated less variation
in effort. If behavioural tendencies are strongly biased toward tasks for which individuals are more competent, then specialization would result in closer efficiencies of labour. The possibility that differences in talent contribute to inter-individual variation in behaviour among social insects exhibiting polymorphic warrants investigation.

Specializations are known to have potential costs as well as benefits. One recognized cost is that a lack of behavioural flexibility may prevent specialists from moving into tasks that urgently need to be performed (ONSTAD & WILSON 1978; GORDON 1989a,b). Limited moment-to-moment behavioural flexibility in undertakers appears to exact an additional cost because of manual interference; too many workers can be committed to the same task at the same time. Multiple undertakers were slower than single undertakers in pulling corpses toward the exit and were more likely to fall immediately to the ground when attempting to fly with a corpse (presumably because of aerodynamic inefficiencies). Thus, undertakers are not effective coordinated teams, unlike army ants that carry large loads (FRANKS 1986), and teams of Aplysia waps that effectively partition nest-construction tasks (JEANNE 1986a,b).

In summary, we do find that learning is an important component of corpse-removal specialization, but did find support for the hypothesis that too many workers devoted to this task will create inefficiencies. The potential benefits from the learning of hive tasks may be limited owing to the notable flexibility and broad repertoire of pre-foragers (TRUMBO et al. 1997), the limited tenure of specialists except in rare workers (SAKAGAMI 1953; MULHWINN et al. 1987; TRUMBO et al. 1997), and less environmental variation to which to respond (compared with foragers). When accounting for the ergonomic effects of specialization, the benefits of learning must be offset by costs, which in this study consisted of interference with task performance by workers responding to the same stimulus. The hypothesis that the consistent behavioural specialization among pre-foragers make a significant contribution to ergonomic efficiency though learning has yet to find widespread support.

Acknowledgements

We thank Sue TRUMBO for revising earlier versions of this manuscript. Jack KUTCH provided valuable technical assistance. This research was supported by NSF IBN-9219281 and IBN-9420083 (STT) and by NSHB grant M-18027-48 (Cot. R.)

Literature Cited

