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Some Perspectives on Modeling Species

Distributions (Comment on article by Gelfand

et al.)

Jennifer A. Hoeting∗

I’d like to congratulate the authors for their important contributions to the study
of species distributions. This paper and the authors’ other publications that have re-
sulted from this research clearly demonstrate that interdisciplinary research can advance
several disciplines simultaneously.

While this paper deals with the scientific problem of species richness and diversity,
the authors should also be complimented for the richness and diversity of their statis-
tical results. This paper should be assigned reading for graduate students in statistics,
as an example of the range of results that can be examined via a Bayesian analysis.
Similarly, students of ecology should read this paper for both the ecological insights and
as motivation to take more statistics courses.

1 Modeling individual species level presence–absence

The authors make a number of contributions in the area of modeling individual species
level presence–absence. I examine several of these issues below.

One of the important contributions of this work is that the authors model species
level presence–absence instead of classifying the sites by some measure of species di-
versity. As noted by the authors in the introduction, many ecological studies model
an index which is a summary over many species. In stream studies, for example, sci-
entists use an index of biotic integrity, which quantifies a stream’s ability to support
and maintain a natural biological community. Scientists often relate these indices to
environmental covariates. However, as noted by Gelfand et al., effects of environmental
covariates may be different depending on the species. For example, the effect of mini-
mum July temperature varies across species (see Table 2 and Figure J). Understanding
the effect of environmental covariates on individual species is potentially useful and can
lead to new insights into species patterns. By examining species individually, Gelfand
et al. answer pertinent questions for ecologists.

While the authors can examine individual species with their models, the beauty of
their approach is that the results allow for examination of effects over all the species.
The authors present a number of insightful measures for this purpose (Section 6). One
overall measure considered by the authors is a summary of the effect of covariate l over

all species under consideration, or
∑40

k=1 β
(k)
l where βl is the posterior for coefficient
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l (Table 4). This quantity seems to be ad-hoc and some weighting of the individual
models is probably appropriate, e.g., weighting by the uncertainty in βl which is clearly
shown in Figures H–M, or weighting by the posterior model probability computed for
the model for each species.

I would like to emphasize the authors’ careful definition of a binary outcome for an
areal process (see discussion surrounding equations (1) and (4)). While block averages
have a long history in the literature (e.g., Cressie (1993)), this subtlety has been missed
by a number of other authors in applications ranging from species distributions to disease
mapping. The careful consideration of this issue by Gelfand et al. should encourage
others to properly examine this issue.

2 Issues of model assumptions, assessment, and selection

The authors’ model for species distribution is the most comprehensive of its kind to
date. Their advances lead to suggestions for future studies and areas where additional
focus may lead to new insights.

The authors make several simplifying assumptions which are necessary to expedite
inference. Two assumptions may benefit from further examination. A basic building
block of their model is the assumption that the probability of habitat suitability for

species k in grid cell i, p
(k)
i , is independent of the probability of land transformation,

(1− Ui) in cell i, so

P
(

V
(k)
i = 1

)

= (1− Ui) p
(k)
i ,

where V
(k)
i = 1 is the event that a randomly selected location in cell i is suitable for

species k when cell i has been impacted or changed by human use. I question the
validity of this assumption. In the United States, for example, housing developers and
foresters must pay close attention to the Endangered Species Act before developing an
area. Future authors may wish to explore this issue further.

Another simplifying assumption has to do with relationships between species. The
authors claim that the data are collected on such a small scale (1 min by 1 min grid)
that “interactions between species are not likely to be of substantial concern.” Simple
exploratory analyses may be in order to justify such a statement. The authors further
examine this issue in their consideration of vicariance in Section 8, and continued work
in these areas may be fruitful.

Additional examination of model adequacy may lead to insights about the quality
of fit. One could argue that there are so many parameters that the model has to fit the
data, but then how can be we sure that there are sufficient data to inform the posterior
for all the parameters of interest? Additional studies on the extent of Bayesian learning
from the prior to the posterior distribution may be worthwhile.

Another model assessment issue is the spatial scale for the analysis. The authors
chose 1 min by 1 min as the scale of the analysis, but inferences may depend on the
choice of scale. Exploration of the impact of scale may lead to useful ecological insights.
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As the authors point out, model selection is a complex issue for this problem. Here
the authors choose models where the model selection statistics are computed over all
species. As future work, it might be a worthwhile exercise to investigate model selection
at the species level. Just as the parameter estimates associated with environmental
covariates vary over species, so might the models themselves.

3 Bayesian Computation

The authors include little discussion of Bayesian computation. Such discussion was
probably omitted due to space constraints and due to the fact that many of these issues
are examined elsewhere. MCMC computations for the models adopted here require a
high degree of expertise and finesse. I briefly touch on several relevant issues below.
Several of these topics are discussed in the context of spatial models in the book by
Banerjee, Carlin, and Gelfand (2004).

In the previous section I questioned the assumptions of independence between poten-
tial species presence and land conversion and also independence in distribution patterns
between species. However, incorporating dependence between these quantities may
make the already difficult calculations extremely computer intensive. Such complex
models will become more tractable as statisticians continue to develop innovative so-
lutions to the problem of MCMC computations. The structured Markov chain Monte
Carlo method offers one such innovation by facilitating faster convergence for problems
with highly correlated parameters (Cowles 2003; Sargent, Hodges, and Carlin 2000).

For the models considered here, one issue of concern is sensitivity to the prior param-
eters, particularly for the random effects. This issue has received a great deal of interest
in the literature (e.g., Bernardinelli, Clayton, and Monomoli (1995); Carlin and Perez
(2000); Haneuse and Wakefield (2004)). Was sensitivity to the prior distributions for
the random effects investigated for this problem?

Another issue of continuing concern is how to diagnose convergence of the MCMC
runs when there are thousands of parameters to monitor. For the model considered
here, there are 2444 independent parameters in equations (5) and (6). The authors do
not discuss convergence diagnosis, but clearly it is a challenging problem for this model.
Brooks and Roberts (1998) provide one recent overview of work on issues related to
MCMC convergence, with some discussion of diagnostic methods for multiple chains.

4 Opportunities and challenges in ecology

Statisticians have much to offer to the field of ecology. There are a wealth of prob-
lems that have not been adequately solved and these present interesting challenges for
ecologists and statisticians.

For species distribution modeling, incorporating knowledge from the fields of pop-
ulation genetics, evolutionary biology, and biogeography may lead to useful inferences.
These types of models should help ecologists gain a more fundamental understanding
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of patterns of species distribution. However, many challenges lie ahead, not the least of
which are computational and mathematical problems. Gelfand et al. are taking some
major steps in this direction in their integration of results from population genetics into
models for interspecies dependence.

Mapping species distribution patterns over very large geographical regions (e.g.,
Africa or the Northern Hemisphere) and estimating trends in species distribution pat-
terns over time are also problems of keen interest for scientists and some policymakers.
The sparsity and quality of relevant data in space and time make such analyses chal-
lenging. Species distribution survey data are rarely collected in an optimal manner.
Some very old natural history museum data arise from studies where only sites with
presences were recorded and no records were kept of sites that were searched without
finding the species. In addition, it can be difficult to quantify other impacts such as the
effects of population growth, land conversion, and climate change. Models to address
these issues will continue to present new and interesting challenges for statisticians.

Another modeling challenge involves rare and/or hard-to-find species. A goal may
be to produce a map that shows scientists where to find the species. If the species is
very rare, creating the models can be problematic as there is so little data to use. These
issues are of key concern in the U.S. with the continuing importance of the Endangered
Species Act and the use of the courts to ensure its enforcement.

One problem we will probably always face as statisticians is how to communicate re-
sults such as the ones in this paper in an understandable manner for other scientists. In
my experience many good ecologists lack an understanding of even simple mathematical
notation, such as the definition of the transpose symbol. These same people are now
being asked to use Bayesian techniques and complicated models. (I don’t mean to pick
on ecologists; this is a universal problem). The need for mathematical and statistical
expertise is not new, but a study like the one presented here demonstrates the need
for continued focus on educating mathematically and statistically-savvy scientists. At
Colorado State University we are trying to meet these challenges by educating statisti-
cians and mathematicians in the area of ecology and ecologists in the areas of statistics
and mathematicians. Our PRogram for Interdisciplinary Mathematics, Ecology, and
Statistics (PRIMES), supported by a Integrative Graduate Education and Research
Training (IGERT) grant from the National Science Foundation, provides funding for
students to gain degrees in their home department while gaining training in other fields
and experience in interdisciplinary research (www.primes.colostate.edu). Other efforts,
such the short course on Bayesian statistics in ecology that was put on by Gelfand and
colleagues at Duke University in summer 2004, are new and creative ways to educate
experienced ecologists in these “new” methods. I hope that support for these programs
will continue as the need for continued statistical education is clearly great.

Bibliography
Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and

Analysis for Spatial Data. Boca Raton, FL: Chapman & Hall/CRC. 95



Jennifer A. Hoeting 97

Bernardinelli, L., Clayton, D., and Monomoli, C. (1995). “Bayesian estimates of disease
maps: How important are priors?” Statistics in Medicine, 14:2411–2431. 95

Brooks, S. P. and Roberts, G. O. (1998). “Assessing Convergence of Markov Chain
Monte Carlo Algorithms.” Statistics and Computing , 8:319–335. 95

Carlin, B. P. and Perez, M.-E. (2000). “Robust Bayesian analysis in medical and epi-
demiological settings.” In Robust Bayesian Analysis, volume 152 of D. Rios-Insua and
F. Ruggeri, eds., Lecture Notes in Statistics, 251–372. New York: Springer-Verlag.
95

Cowles, M. K. (2003). “Efficient model-fitting and model-comparison for high-
dimensional Bayesian geostatistical models.” Journal of Statistical Planning and
Inference, 111:221–239. 95

Cressie, N. A. C. (1993). Statistics for Spatial Data. New York: Wiley. 94

Haneuse, S. and Wakefield, J. (2004). Ecological Inference: New Methodological Strate-
gies, chapter Ecological Inference Incoprorating Spatial Dependence, 266–301. Gary
King and Ori Rosen and Martin Tanner, eds., Cambridge University Press. 95

Sargent, D. J., Hodges, J. S., and Carlin, B. P. (2000). “Structured Markov chain Monte
Carlo.” Journal of Computational and Graphical Statistics, 9(2):217–234. 95

Acknowledgments

Research supported in part by the U.S. Environmental Protection Agency (EPA) as part of

the STAR Research Assistance Agreement CR-829095 awarded to Colorado State University.

The views expressed here are solely those of author. EPA does not endorse any products or

commercial services mentioned here.



98 Modeling Species Distributions



Bayesian Analysis (2006) 1, Number 1, pp. 99–102

Comment on article by Gelfand et al.

Jay M. Ver Hoef∗

I have enjoyed reading the paper by Gelfand et al. (2005). My congratulations go
to the authors, as they have given us an important advance in the science of modeling
species diversity. First, I would like to emphasize the importance of this topic. I fully
agree with the authors that species diversity has been a central concept in ecology for
many years, yet the mechanisms that determine species diversity are still enigmatic.
How then has this paper helped us?

One of the first problems in assessing species diversity is to know where a species
occurs. While this may seem simple, it is actually very difficult. The authors have a
very fine data set that was systematically sampled in a very interesting, diverse part of
the world, where high species diversity is compacted into a relatively small space. One
of the questions that I want to ask is, “Can the methods of Gelfand et al. (2005) be used
more generally?” That is, can I use them in Alaska? Alaska is a rather large state, but
if we consider plants, being far to the north, it is not really very diverse. We know of
only about 1600 different plant species in Alaska. Rhode Island has more plant species
(2600). The methods of Gelfand et al. (2005) are fairly complex, but in principle it
seems that they could be adapted for hundreds (perhaps thousands) of different plant
species as computational power increases. However, for a more general application,
there are problems with species presence data that do not occur for Gelfand et al.
(2005). Sampling has not occurred uniformly over my state, or any large geographic
area that I know of. For example, I’m pretty sure that if we added a covariate such as
distance to the nearest university, there would be a highly significant, negative regression
coefficient when modeling species presence or diversity. The reason is clear. For years,
botany professors have been sending out legions of graduate students and classes to
collect plants, and they stay relatively close to home. Thus, not all zeros are created
equal. This is known as ascertainment bias in the epidemiology literature. Gelfand et
al. (2005) have done an outstanding job in distinguishing other factors that do create
zeros, such as transformed landscapes. This is an important step, but it is information
that is relatively easy to gather as compared to effort. Eventually, it will be important
to solve the effect of effort (ascertainment bias).

Now, what about prior information? Gelfand et al. (2005) use a hierarchical model
with vague priors. This makes sense, given the complexity of the model. Eliciting priors
from most plant collectors that I know would be very difficult. It would be hard for
them to make sense of priors on parameters in a model with the complications of the
potential and transformed surfaces, hidden random effects, etc. Still, these same plant
collectors have a wealth of prior knowledge; they have spent years crawling through the
bushes. Early in my career I collected plants as my job, and I lived by the maps drawn
in Hulten’s (1968) Flora of Alaska. It was a big deal to extend any of the species ranges
drawn in his book. Plant collectors, such as Hulten, simply used their experience and
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knowledge of terrain, climate and the known collection locations for a species to draw
a line on a map that formed the species range. How can we tap such information?
One interesting approach has been taken by Lele and Das (2000), who did not adopt
a Bayesian formulation. Their thesis is that we should elicit predictions, not priors, on
parameters. I think this is the right idea, and it would be interesting to incorporate a
Bayesian approach that uses elicited predictions into the models developed by Gelfand
et al. (2005), and indeed many others.

The model that Gelfand et al. (2005) propose is very interesting; it is a major
improvement on many other approaches. As noted earlier, it is fairly complex compared
to almost all other approaches so far. Nevertheless, there is one part of the model that
is perhaps too simple. In eq. (5), Gelfand et al. (2005) give us

log

(

p
(k)
i

1− p
(k)
i

)

= w′

iβk + ψk + ρi.

This model allows each species to have its own intercept ψk and covariate response
vector βk, but all species have a common spatial pattern ρi in the “residuals” – or that
part of the model not explained by the fixed effects. A model such as

log

(

p
(k)
i

1− p
(k)
i

)

= w′

iβk + ψk + ρ
(k)
i

has too many parameters, allowing a separate spatial pattern (in the residuals) for each
species. Undoubtedly, some species are responding to similar spatial effects. As the
authors point out, this residual spatial random effect accounts for (at least in part)
unmeasured spatially-patterned covariates. Some species will respond in a similar man-
ner to a particular unmeasured covariate, while other species will respond in a similar
way to another unmeasured covariate. A more flexible approach that does not have
too many more parameters would be to allow for just a few spatial patterns, and then
assume that each species’ residuals are a linear combination of those spatial random
effects:

log

(

p
(k)
i

1− p
(k)
i

)

= w′

iβk + ψk +
M
∑

m=1

η
(m)
k ρ

(m)
i ,

where M is, say, 1 to 5. Bayes factors, DIC, or reversible jump MCMC methods could
be used to choose M .

None of this detracts from the fundamental contributions that Gelfand et al. (2005)
have given us. I hope that both statisticians and ecologists take notice, and that they use
and build upon the models and ideas that these authors have developed. The synergy
of collaboration among statisticians and ecologists is apparent from this article.
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Rejoinder

Alan E. Gelfand, John A. Silander Jr., Shanshan Wu, Andrew Latimer,
Paul O. Lewis, Anthony G. Rebelo and Mark Holder

We very much appreciate the positive comments of both Jay Ver Hoef and Jennifer
Hoeting. We were particularly delighted by their appreciation of our “synergy between
statisticians and ecologists” and our demonstration “that interdisciplinary work can
advance several disciplines simultaneously.” We briefly address the key points they
have brought up.

Regarding Jennifer’s criticism of the “independence” assumption in expression (2) of
the paper, we agree that this is surely not true though it may be roughly true. However,
the “correlation” calculation in (2) is a bit more complicated than it initially appears
in that the calculation is with respect to a uniform distribution over say, the locations
in unit i. In fact, the randomness arises from the fact that the objects being integrated
are random functions, rather than from randomness in the choice of locations. So, in
fact, the integral in (2) is a stochastic integral and the assumption demands that the
resulting random variable factor almost surely into the product of the random variables

1− Ui and p
(k)
i . In the absence of this assumption, we would have little choice but to

model P (V
(k)
i = 1) analogously to (5) in the paper and, as a consequence, we would

sacrifice the ability to consider both potential and transformed species distributions.

Jay raises the important issue of sampling bias in the data collection. We recognize
that this occurs in most presence-absence species sampling and, indeed, it does for our
data as well. The expert botanist on our team (Rebelo) was sure that for large areas
within the CFR, no protea would be found and thus that there was no need to sample
in these areas. We did not take this information as “data,” e.g., in the form of null
sites; rather, we counted upon the second stage spatial modelling to provide smoothing
for the random effects associated with unsampled grid cells. In this regard, Jennifer
also comments upon sampling concerns, particularly with, say if one were working with
museum data where there are no nulls. We note that there seems to be a component
of the ecology community that is comfortable with developing species ranges in this
setting (see, for instance, Engler et al., 2004). We are troubled by such inference for
handling presence-only data (as most statisticians would be) and, in a manuscript in
preparation, will attempt to illuminate more clearly the flaws in this work along with
possible remedies.

Jay has noted the limitations in expression (5) of the additive form in species random
effects and spatial random effects. We completely agree and have looked at for example,
an additional multiplicative term of the form αψkρi as well as other possibilities. How-
ever, in forthcoming work (Latimer, et al., 2005) we have focused on species level spatial

random effects, ρ
(k)
i . Assuming these to be independent across species enables us to fit

our model one species at a time. This allows simple parallelization of the computation
and is permitting us to make our way through range prediction for the more than 300
protea species in the CFR. This approach also fits in nicely with Jennifer’s suggestion
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that we investigate model selection at the species level. Indeed, in the Latimer et al
paper we carry out a modest version of this. We note that in other new work we consider
the issue of spatial scale, working with 1 min × 1 min grids as well as 4 min × 4 min
and 16 min × 16 min grids. The differences in predicted species range are expected and
noteworthy.

Finally, two issues were raised which we have not investigated. First, Jennifer sug-
gests that an uncertainty weighted sum of the β’s would be more appropriate to work
with. The challenge in this case would be to specify these weights so that the resulting
sum is still a parametric function in order that we can examine its posterior. In our

current formulation the β
(k)
l are i.i.d. for each l making it unclear where the weights

would come from? Second, Jay suggests that informative prior specification could be
elicited in the form of predictions. This is an attractive idea and has some history in
the Bayesian community. See, for instance the work of Ibrahim and colleagues, e.g.,
Ibrahim (1997).

In summary, we thank Jay and Jennifer for their thoughtful remarks and expect that
they, along with us, will continue to collaboratively address challenging model problems
that arise when studying complex ecological processes. There is much opportunity for
statisticians to contribute in such enterprise.
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