Delineating Forest Canopy Species in the
Northeastern United States Using
Multi-Temporal TM Imagery

John G. Mickelson, Jr., Daniel L.

Abstract

W genarated o detaiied forest bvpe map of the dominant
cannpy species within northwestern Conneciicuf using mulfi-
sensonol Landsat Thematic Mapper {1a1) dota which were
around referenced with the Global Positioning System (GPS),
The map wos designed os o colibrulion layer for o spatially
explicit forest dynunics model we hove developed, called
SCRTIE, aond will allow us to les! the model's effectiveness in
prediciing landscape fevel poltecns, The precizely located
field data were ased Lo derfve the forest closs sipnotures used
i Lhe clossification. Combining the six reflective bands cach
from spring, summear, and foll Lovdsat T images to creats
an 1 E-band compaosite allowed for genus level forest clnssifi-
ciation precision. We delineated o fotal of 33 forest classes:
20 dominant types with 13 additional sub-classes represent-
ing differing understory composition. Accunaey assessment
using the Gapal-Woodcock furey set process returned on
overall forest closs gocuraey of 78,8 percenl at the proce-
dure's Acceplable leval,

Introduction

The lield of remole sensing has added greatly o our ability
te undersland lorested systems, wilh the production of in-
creasingly detailed maps and attribute sats, from the level of
the stand to the landscape. Surprisingly, few studies have
bieen published which document efforts to use satellite dota
to map the mixed deciduous temperate forest types of the
northeastern United States at Anderson Level 2 or better
[Anderson ef al., 1976). The many broad scale offorts under-
tnken (Brown e al.,. 1993 Coward &f ol., 1983; Loveland ef
nf.. 1891; Townshend &t al., 1991; Zhu and Evans, 1994)
have delivered regionally peneralized cover types with the-
matic and spatial resolutions oo broad to assist adequalely
local forest researchers and resource managers focusing on
smaller scales, The lew remole sensing studies analyzing lor-
ested syslems of the Mortheast (Brvant ef of., 19680; Harwirz
et al, 1990; Nelson el al., 1984; Rock and Vogelmann, 1989,
Voaelmann, 1988; Vopelmann and Rock, 1989) have effoc-
Hvely omitted attempts to delineate among deciduous forest
P .

Aconptable estimates of detailed forcst cover for Now
England and the compositionally similar Great Laokes States
are now being obtained by researchers using multi-seasonal
remolely sensed imagery, Using phenological change infor-
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malion in 4 layered approach, Wolter f al. (1983) have re-
cently mupped foresl classes in northern Wisconsin al the
genus and species level, where previously only peneralized
Anderson Level 2 [coniferous/deciduousfinixed) delineation
was achieved [Bauer ef af., 1994; Beaubien, 197% Benson
and DeCGloria, 1985; Karleris, 1890), Slaymaker ef of, [1993)
oblained class delail lor the lorests within New England at
Andarson Lewvels 3 ancd 4, with a total of a0 forest classes, us-
ing GPa-referenced videography to interpret a summerdfall
clustered TM image sequence.

Vast and rapid improvements in technologicnl capabili-
ties have no doubt facilitated much of this progress. Access
to faster and more capable computer platforms has aided our
ahility to store and process larger and more detailed fmage
and attribute sels. The Global Positioning System (GP5] has
provided a precise and cost-elfective ground relerencing
method to aid in relaling the infonnation rom mulli-lempao-
ral and mulli-source digital data lavers Lo the patlerns and
processes recorded wilhin lield plots, These advances have
allowed us Lo extend the scope of our analysis of the spatial,
spaclral, and contextual patterns within natural systems
across more complete four-dimensional fields; X, ¥, 2 (cleva-
tion], and T {time). We can, in effect, more effectively recog-
nire and incorporate patterns from o wider array of source
data. For instance, Lee et al. [1989). Franklin and Peddle
(19849), and Woodcock ef ol (1994) have shown thal adding
spatial or spectral texture information for conilerous and
mixed forest types can significantly improve map classilica-
tion accuracy. Linking biogeopraphic data wilth knowledge of
specific species response pallerns Lo variables such as soils,
elevation, slope, and aspecl has evolved as a commaonly ac-
cepled method for improving vegetation maps in many areas
(Damman and Kershner, 1977; Damman, 1979; Bolstad and
Lillesancd, 1992; Loe of af, 1992 Brovwn of aof ) 1903 Cood-
child, 1994). Tracking ditfrrences in specteal retlectance ot
the landscape scale lovel with multi-date imagery allows us
to detect the apparent change of cover type at a specific geo-
graphical location, for example, deforestation (Varjo, 1996) or
the emergence and senescence of a wheat field (Reed ef ol.,
1994].

The overall purpose of our sludy was Lo develop a de-
tailed loresl-cover Lype map as a calibration laver for a forest
dynamics model we have developed, named SORTIE, SORTIE
is a spatially explicil explanatory and predictive forast dy-
namics modal that was calilvated from Aeld data to approxi-
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Figure 1. Study site location, 04 May 1985, v Band 5.

mate stand level interactions of individual rees, It was
constructed from four sub-models that estimale performance
parameters for propagule dispersal, recruitmenl, growth, and
mortality as well as [uncticns of local resource availability,
primarily light [Pacala ef al., 1993). Accurate predictions of
the dynamics and species compositions of stands have been
proeduced [Pacala ef of., 1906) [or intermediate soil moisture
and nutrient conditions,

Among our project goals was the production of an inde-
pendent Lest of a landscape version of SORTIE. For this pur-
pose, a map depicting the region’s tan dominant canopy
traes and [orest Lypes was generated 1o test the maodel at
varving scales and levels of complexity. Because we wished
to study apparent vegetation geadient relalionships derived
from overlays of our output map with ancillary digital lavers
(s0ils, clevation, slope, aspect) and compare them wilh
SORTIE outputs, biogeographic data wore not atilized 1o aid
this portion of the classification, Only the spectral patlems
from the T8 data were considered in order to avoid circular-
ily in the classification and subsequent overlay process, The
resulls from the forest type map and biogeographic data
overlays are reported clsowheare (Mickelson, 1997). The oh-
jective of this project was to assess whether the spectral pat-
torns contained wilhin multi-seasonal TR data could be used
to improve discrimination among the forest canopy specics
in novthwestern Connecticut. This paper describes the utili-
gation of multi-seasonal TM data and GPS-referenced ground
data to produce a forest type map at Anderson Levels 3 and
1,

Methods

Study Site

The study site comprises 16 USGS #/e-minule quadrangles in
the northweslern highlands of Connecticul, an area of approxi-
mately 240,000 heclares (Fioure 1) The dominant forest-cover
types have heen described as transitional between vak-hickory
central hardwood and northern hardwood forest associations
(Eyre, 1960). Snils are predominantly inceptisols wilth occa-
sional spodsalic areas and span from rich mnist calcareous
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hotlomlands to dry, thin nutrient poor ridges, Relief ranges
from 150 Lo 530 metres above sea lavel, The underlving peo-
logical formations are highly metamorphosed Precambrian
gniisses and shisls with inclusions of limestone and marble,
Glacial Hll and alacio-Auvial deposits overlie most of the
bedrack. Rainfall averages 1220 mm per vear and is evenly
distributed throughout the vear,

The UL 8. Forest Service (Dickson and bMesfee, 19835)
lists the ten dominant species for Litchficld county, in rela-
Live abundance, ns red oak [Quercas rubea L), rod maple
[Acer ruliram L), hemlock [Tsupo canadensis L), white pine
[(Pinus slrobus L), American beech (Fogus grandifolin Bhvdy),
sugar maple (Acer saccharnm Marsh,), white ash (Froxinos
americane L), yellow birch [Hetule allegheniensis Brite),
white cak [Luercas alba L), and black cherry (Prunas sero-
tina #hehl), These are also the species lor which SORTIE was
calibraterd. Common understory associates which we found
to affect spectral responses include mountain laurel (Kalmia
tatitalic L] and juvenile hemlock. Intensive land-use prac-
tices over the past 300 years (Egler, 1040; Winer, 1955, Wesl-
veldt &t al, 19536: Foster, 1992) include charaoaling of
hardwoods and intensive sollwood harvesting, with most of
the landscape having been cleared and allowed to regenerate
repeatedly, Such widespread impacts have helped lead to the
greal compositional and structural helerogeneity of today's
Fovest [IFoster, 1993).

GPS Field Sampling

Field sampling was conducted according to a modified Dam-
man method (Damoman and Kershner, 1977), with all sites he-
ing sampled prior to image classification. The purpose was 1o
provide a detailed chavacterizalion of the composition and
slruclure of each sample plot [5P) on a per-pixel basis for can-
npy and understory, and to relate those fatures to the corre-
sponding spectral patterns within the lavered v image. The
percent composition (total of 100 percent) for vach canopy
species grealer than 10 cm in diameter was visually estimated
tor a 30-m radius at 405 Sps. Additional estimates wers taken
for the type and percent composition of understory (2 o 5
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Kakaks CLUSTER/CLASS-SUACLASS DESCRPTORS

1. RO
Real owk dominaled stands
hlean #3% min. 70% with other hardwoods minor componasnts,
20 LI = s above with mi, loorel onderstory
3. IO
Red oak stands with mixed hardwoods
Red oak mean 35%. min 13% with mixed havdwoods,
d, HOMNALL — as above with mt. laurel undarstory
G, TGN — s above with hemlock understore
G (AR Mx
White oak dominated stands
helesan 40% min, 20% wilh chestnut oak, red cak, red maple,
FoOAKSLL — s above with mb. laorel arelerstory
8 HOYHM
Mixed red ok and red maple stands,
Fed oak mean 33% min. 15% min., red maple mean 29% i
13% with mixed hardwood.
9. HOCRMALLY — ag above with mi. laeral amelerstory
0. RORMATT — ag above with hemlock anderstory
T At
Fed maple dominated stands
Mean G3% min 5% will: mixed hordwoods
12, HMAHL — ag above with hemlock understory
15, BMVLLT — as alove with ol lawrel understory
T4, SM
Hugar maple dominated stands
Menn 36% i 18% with white ash,
15, SMAHL — ga above with hamlock understory
16, SO M
Wi sugar maple red oak stands
Sugar maple mean 36% min, 20%, red oak mean 36% min. 20%
wilh while Ashand mixed hacdwoods.
Mo subclass
L7, WA RMAMY
Mzl while Ash and red maple stands
White Ash mesn 43% min. 20%., with red maple comman and
mixed hardwoods
TR, WAMMAPAL — as above with while pine
1. BEATMAMy
Hlazck Cherry with sugar maple stads with indsed hardwoods
Cherry mean 42% min 25%, sugar maple mean 37% min, 15%.
White ash common.
Mo Subclass
2. He
Heech dominated stands
Beech mean G7% min, 30% with sugar maple, red oak, ancd
hemlock
21 fiedhi

ag above with hemlock understory

-2

I W BesSM
Morthern hardwond stands dominated by berch
Beech mean 35% min. 17% with rod maple, sesar maple,
yallow hirch.
25, MNHABe S0 AHU
24, NHdSYBARM He
Mixed northern hardwood/conilerons stands
Denninated by yellow bivch, mean 30% min, 10% with red
maple and hamlock
Mo Subclass
. MxHdA
Mixed hiardwond no speoific dominanne,
Muostly recd oak, while ash, red maple, sugar maple, mixed
hirches,
26, MMl LT
E7. Mx/Hd/WE
hlined hardwoodfwhite pine stands
Denminaled by Black cherey mean 53% min, 35%, with white
ping and red maple.
Ma Subclass
2R WP
White ping dominated stands
White pioe mean 5% min, 30%, with white ash, red maple,
red oak
Ma Subiclass
2 P ol
Red ping dominated stands
Red pioe mean Y0% min, 83%, white pine, hemlock, sproce,
and mixed conifers common.
Ma Subclasses
At Hedid
Hamlock and red maple dominated. stands.
Flemlock, mean 38% min, 16%, red maple mean 38% with
hiardwioods,
My Subiclass
. HeMxHd
Mixed hemlock and hardwood slands
Hemlock mean 49% min, 30% with rad maple, red oak, mixed
hardwoods.
Mo Subclass
32, He
Hemlock dominated stoneds
Mean 0% min. B5% with red maple, Beech, Yellow Bivch.
Mo Sublass
Ad. Asp
Black ar red apruce dominated stands
Mo 91% min. #53%. With minor components of hemlock and
red maple,
Mo Sublasses

as above with hemlock understory

[
)

as above with hemlock understory

melres in height) and herk laver (1 to 2 metres) for the ever-
araen apecies, hemlock and mountain laurel, Hemlock unders-
tory (HU) and laurel understory [LU] indices were caleulated
by multiplying the total percent cover of the understory and
herb laver by the percent composition accounted for by eilher
specics. Index values ranged from O Lo 25, with O representing
a site with no sub-canopy componenl o 25 [or a site com-
pletely covered by g combination of either species. All sites
were wilhin three miles of a road in order 1o reduce travel
time betwean 5Ps, Three-hundred and ten of the plots were se-
lected to be al least 150 melers [rom o houndary with a differ
ing composition or structure type. This was done to maintain
accurale site depictions, once GRS and satellite pixel misregis-
tratiom (optimally, 2 to 5 metres and 15 metres, respectively)
were taken into acconnt. We received data for another 95
plots, which were acquired in a random manner, with plots
falling within a compositional gradient betwesn cover Lypes,
Universal Transverse Mercator eastings and northings or sach
plot were determined by averaging 180 dillerentially correcled
GPS point readings, Field checks on Conneclicul geodetic sur-
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vey monnent markers showed the GPS accuracy to be within
2 10 b omelres,

Forast Cover-Type Class Generation

We wished 1o develop and test a reproducible vegetation
classification procedure, which would be constructed from
the Th spectral data alone. Existing classifications, which are
basad on vegetation or taxonomic units alone, may not have
possoaaed o sufficiently unique spectral sipnal Lo allow for
adequate class separability [Treite et al., 1992; Schreiver and
Congalton, 1985). For this reason, we sturted by classilying
the 405 3Ps using a K-Means cluslering process Lo produce
20 forest type clusters. Bach of these 20 classes was sub-clas-
sified based on percent composition of hemlock or mountain
laurel in the understory, yielding an additional 13 classes
[Tables 1 and 2], Outpul statistics for the clusterad classes
reporled minimum and mean percent compozsition for the ten
dominant canopy species as well as the nnderstory compo-
nant, To avoid obvious confusion, none of the 20 dominant
classes that contained more than 10 to 15 percent hemlock
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TaBLE 2,

SUGAR MAZLE; WA wrEIE asH, BC, BLATK CHERRY. BE, AMERICAN BECCH, SR,
OTHER GEMERA, HIS, HEMLEEDK UMDERSTORY 1h

PERCENT SPECIES ComPosITion FoR THE Final 33 Forest Gover TYPES, INMAL GROUPING OF SP00I0S INGLUDED: £a4, a1 Daks: R, RED MAPLE; S,
ALL RIRCHES, WiPa, wHITE PINE; HE, EASTERM HEMLOCEK, 5S¢, ALL SPRUCE; 0w,

A LU MOUNTAIR LAURCL LACERSTORY INDEX.

Class Spp. Composition (%] Total 100
Clasy

Mumlbacr Farest Class Nak Ehd “hid WA B G Tirzh WhEm Hp Sp {1th HI LIJ
1 e} Ao 3 2 1 1 1 4 ] 0l i i 0 ]
X ROV e & i )] i i 2 1 0 ] ] 0 15
! RO 7 4 1 4 4 i 2 i 1 [ ! ] L
4 ROGMXAHTE ! 5 i 1 0 11 4 [} i 0 i 15 ]
i RO, 72 ¢ z 1] ¥ 2 a 1 4 [ 1 2 7
f AR s 1 7 I i 2 ] 2 il 0 )] ] 2 0
7 AR LT 7 10 0 4 1l 0 7 il i I ] 0 20
i RoTind 44 2R { 4 3 3 4 1 5 0 3 1 1
o ROV RMAHTT 1] 27 0 ] | 4 17 1 5 1 1 17 4
0 RO AL it ] )] i (l z il 0 0 1 0 [ 22
11 i 11 i1 1 3 5 G £ 1 2 ] ] ] ]
12 BMAHLT 2 £i3 )] i} 0 7 3 3 7 0l 3 13 i
13 AN 1 34l 7 0 4 ] 101 4 1 il 2 1 11
14 SM 7 & il 17 4 @ I ] 1 i 2 1 ¥
15 SMHLE 14 10 40 A 0 i i i 10 ] il q 1]
14 SMA 43 0 36 G 4 4 4 0 2 il 2 1 1]
17 A SN M 11 16 fi 40 4 3 7 1 2 ] 1 2 1
14 WA AN P & 14 5 a7 ¥ [ 1 ar [ 0 il 3 1
149 RS Mx 1 0 37 14 42 0¥ P 4 I i i} 1 2
0 iz 5 3 3 7 fifl 4 )] fi 0 ] | 0
1 RBedHL 4 i 5 1 7 67 5 H 4 0 0 13 2
s Wl Beis M 7 13 14 4 11 35 I 1] fi 0 3 0 0
21 NHA Bel SN # 25 0 3 7 33 20 1 111 0 0 16 il
24 NI YRR e [ az 3 1 10 2 a3 3 17 0 i i i
25 MxHd a7 o 4 13 2 3 17 2 b 0 11 0 0
20 A el T a7 14 4 1 1 3 i 12 4 ] Z i s
ar A Hd WP 4 11 B 3 42 0l ki 5 0 i 0 fi 2
21 Wwe 3 4 1 e 1 0 1 A5 ' 0 0 i 4
259 PidaCongl ] n 0 0 ] 0 2 0% & ] 0 i 0
A Hidiad 16 11 4 1 3 f 6 2 44 [ 1 & 2
i1 HediMyHd 3 37 2 1 z 3 7 0 a0 )] 1 0 1
32 He 2 & 0 0 1 5 4 1 i1 i ] I 1
KM Sp il 3 1] ] 0 0 i ] 3 02 [ i i

in the canopy were stratified by the evergresn understory.
The results of our classification would later be compared Lo
currently used forest cover types [Evre, 1980,

Remote Sensing

Eemote sensing studies of foresled svslems in the northeast-
ern United States which have focused on pallern extraction
from within single date imagery have maostly failed 1o pro-
vide detailed depictions of forested landoover, especially of
deciduous types. (Franklin of ol 1986; Moore and Bauer,
1990; Spanner et al., 1900; Bauer ot of., 1994). Schreiver and
Congalton [1993) showed that deciduous forest tvpe map ac-
curacy for the Mortheast can be improved by incliding
multi-seasonal salellile data in the classification procedure.
Theyv utilized the seasonally unique spectral patterns of nine
southern New Hampshire [orest types to delineate among
them using spring, late surmer, and early fall images. They
concluded that the stand dilferences in foliar presentation
and dichack contained within fall and spring images made
these data superior to those acquired during the full leat-out
conditions of summer. However, their research [ocused on
clussilication processes applicd to and compared between
imapes ol individual seasons, without following pallerns Lhal
the species mighl exhibit throughout the year. Slaymaker ef
al. [1995] have incorporated a spring-summer hyperclustared
image [12 bands/240 classes) coupled with terrain and neigh-
borhood informalion lo provide detailed forest-type maps of
southern New lngland which include seven Andorson Level
3 forest types and 33 Level 4 subelasses. Our approach is
similar to this, though we chose 1o concatenate the six reflec
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tive bands each from three seasonal Th images, This would
allow us to test whether analyzing the phenologically depen-
dent spectral patterns extending across an enlire prowing
season would significantly improve species discriminalion,

TM Satellite Data Selection

Three Landsat-i Thematic Mapper images (Path 13/Row 31)
woere chosen that span seasonal and apparent phenological
changes in the forest. These include images [or spring (4 hMay
1O8A), summer (30 August 19900, and fall (6 Oclober 1992),
The images were acquired as precision corrected data from
EOsAT, and the May and October scenes were cloud-free. The
Aupust scene had less than one percent cloud cover, and we
accownted for clonds and their shadows as a comhined spec-
trally classified map unit. The Mayv image captured early bud-
break and pre-leafout conditions for most angiosperms in
southern Mew England (Egler, personal communication, 1994)
and was chosen o aid in the discrimination of upland doecidu-
ous, coniforons, and wetland Torests and moist soil conditions.
The August sceme was used as a baseline summer vegetation
laver depicting full leaf-on conditions, The Cctober image was
chosen because of its depiction of heighlened color and senes-
cent leal condition for maples and naks [Smith, 1992), Though
the [our-vear interval between image dates would likely creale
g change class, we considered the likelihood that this cover
type would account for more than o small fraction of the for-
esled scene Lo be neglipible. Thirty road intersections from
within he sludy area were located within both the reference
and test imagery, and then referenced on the ground with Ges,
to check intra-image spatial registration. Additional inspection
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for the presence of “phosling” along the boundaries of perma-
nenl waler bodies confirmed the imagery Lo he approaching
the 13-metre (L5 pixels) BMS evror of the data,

Ancillary relerence dala included region-wide USGE Digi-
tal Line Graph (D043) road and hydrography coverages. These
ware nsed to check inter-image registration and alipnment of
linear features. A SPOT panchromatic image [10-m resolation)
frorn May 1988 was nased to verify selection of non-forest
rlass cover type signatures, as weree black-and-white 1
12,000 -scale acrial photographs from May 19910,

Signature Selection and Image Classifleation

Inilial exploration of our image dala suggested that phenolog-
ical segquences mighl be used 1o separale understory sub-
classes ol the dominanl canopy ypes. Figure 2 contains the
mean relleclance values across the three imape dates Tor
three forest plots: O o mixed oakfharvidwondd stand: its
clusterad hemlock understory sub-class BOYMxAHES and a
hemlock dominated stand He. The stands are clearly strati-
ficed within the spectra of the May image, espocially within
the red and mid-infrared portions of the spectrum (Bands 3,
5, and 7). The hardwood stand exhibits & heightened overall
reflectunce which is especially demonstated in the red and
middle infrared, possibly from the early stages of leal lush
from the juvenile shrubfsub-canopy layer or, more likely, the
high relleclance of dried leal litter on the forest foor (Ripple,
14986; Curran ef ol., 1991) showing through the canopy. He-
cause, wilhin this scene, components of the oak canopy are
exhibiling little leaf-oul, the REMMAHL stand displays a sig-
nature more like the He than the mixed oak, becanse it is
principally the hemlock which the sensor detects. As the leaf
canopy has fully thushed by the acquisition time of the sum-
mer image, the oak masks the hemlock subeanopy, and that
aame stand most closely matches the spectral pattern of the
compositionally similar ROy - The Oclober T8 image
stratifies the classes somewhat further, with the RO/ class
axhibiling a heighlened reflleclance in the near and middle
inlrared bands, without the dampening elfect of the ever-
areen componenls. Classificalions run on any single image
would likely have sorted the classes dillerently, likely parti-
lioning the HOAMx/HE as a hemlock stand in the spring
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Figure 2. 0N values for three sample plots for May, August, October images.
ROANx, a mixed cak/hardwood stand, its clustered hemlock understory sub-
class FOAMxAHU, and a hemlock dominated stand He.

scene, as hardwood in the summer, and mixed hardwood!
conifar in the fall, We chose to include three seasons in our
test data, because signatures exhibited across an entive grow-
ing season (18 bands) might provide a unique specteal pat-
tern that wonld not be found in any single image.

For our classification regime, woe adopted a modified tra-
ditional hybrid unsupervised-supervised pixel-based classifica-
tion method [Richards, 19868). Typically during a supervised
classification, cover-type signatures are chosen by deriving the
mean pixel values from within a user-selected region, These
regions are generaled in one of two ways, In the [irsl, areas
of known or assumed composition are localed wilhin a reler-
ence dala source, such as a foresl stand map or aerial photo-
praph, These areas ave then localed within the digital
imagery, and boundaries are drawn around an area of inter-
esl (A0T], with the speciral properties [mean vector, variance-
covariance, etc.] being caleulated from all pixels within the
palvgon. In the second method, the signature relating to a
single specific seed pixel is chosen from within an Ao, and
the sipnatures of contiguous pixcls are comparcd and in-
clhaded, until a prosct spatial or spectral threshold is met,

Following the second method, our forest class signalures
were region grown within the 18-laverad imape, bul we used
the cps-referenced sumple points as the seed pixels, This al-
lowed us o lie the measns of the speclral sipgnalures 1o the
detailad species composition thal we measured within the
precisely located sample plols. To minimize edge effects, a
Lypical spectrally grown region was limited to & to 15 pixels
(0.72 1o 1.35 ha) and was spatially constrained to be con-
tained fully within a larger region of known composition,
based on our geound survey. From the 405 sample points,
oneg to three replicates for cach of the 373 forest classes (total
of A3 5Pa] were zelected as sipnatures. Within-class replicates
wore selected to account for compositional variance s well
s a range of site conditions, Ideally, we would have liked to
have had & greater number of test plols [rom which to select
both calibration areas as well as test sites [or the linal classi-
ficution. Congallon (19491) recommends thal an appropriate
rule of thumb is o collect 30 samples lor each map unit or
cover lype being derived. However, given the limited time
and resources thal most projects and ours operate under
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Flate 1. Final 40-class land cover fforest classification.
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(Thompson et al., 1996), we felt that the high qualily [com-
positional and spatial accuracy) of our plots compensated for
Lhe statistical question of sampling numbers.

signatures for seven non-forested classes — open water,
urfan, agricoltural lneds, barren, non-forested wetfonds,
elouds and clowd shadow, and unelossified — wore visually
selected from a 250 class 1500ATA unsupervised classifica-
tion of the 18-bund image. The upelossified group contained
those pixels within the image which we knew 1o be com-
monly confused with one another (conilarous forest, conifer-
ous wetlands, impervious surfaces, shadowed west and
northwest facing slopes) (Franklin et ol 1936) and where
such a confusion would lead to extreme creovs. The unclassi-
lied portion of the image represented less than 1.5 percent of
the final output map, and will be the subject of foture classi-
fication refinements. Shadow and topographic influences on
the data™ radiometric properties were not accounted for in
this phase of the analvsis in oeder Lo relain the imagery's
original speciral integrity, Non-foresi-class masking was also
forgome, due 1o minor pixel shift effects observed in carly
masking atlempls. The final sipnatures were checked for con-
fuzion within an error matrix, vsing a minimum-distance
metric, with all lesl signatures achieving lass than 25 percont
amission rates.
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A minimum-distance-to-means classifier (MDM] has been
shown 1o produce accuracy results equal o or excesding a
miaxitmumlikeliliood (ML) decizion rule in a momber of land-
cover and forest mapping efforts (Hixon of of ) 1980; Thoe-
masson et al, 1994; Lell and Merry, 1993 Zhoang et al,,
1995), This is especially true when the multizpectral data are
nol normally distributed across the information elasses. In
our own study, preliminary resulls comparing the two classi-
fiers indicaled that MM also produced an image with less
spatial heterogeneity (selt-ond-pepper] al a fine scale. Third,
because the MOM decision rule has less rigorous statistical re-
quirements, because no covariance matrix is required. the re-
gion grown around the Gop could he confined 1o 4 more
spatially discrele area (e, contain fewer pixels) than that
which the ML rule demands, This allowed for a more precise
signature characterizalion. For these reasons, we ulilized an
pMoa classifier to generate our fAnal classification (Plate 1),

Fuzzy Accuracy Assessment (FAA)

Forest-cover mapping stralegies must be sensitive to the spe-
cilic pallerns which the vegetation for a particular locale ex-
hibil (Beaubien, 1979; Damman, 1979 Woodcock and
Strahler, 1987} Within the compositionally mixed forests of
southern Mew England, distinet stand boundaries seldom ox-
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isl, This makes the traditionally difficult decision of where tn
place class transition lines even more challenging. Fven the
lew species that exhibit clear canopy dominanee and form
“pure,” locally dense stands, eg., oaks on rideges, red maples
in swamps, and hemlocks and while pine in mature stands,
follow near continuous gradations [rom one Lype into another,
This produces great compositional variability at the stand
leveel and spectral averlap [mixerd pixels) al the pixel lovel,
and commonly results in moederate map class uncertainly
(Wang and Civen, 1992; Manyara and Lein, 1994), A simpla
binary accuracy assessment procedore (e, right versus
wrong| seemed inappropriate for assessing the set membership
and subsequent forest clazs boundaries in our study, given the
depth of thematic and spatial detail likely to exist in our clas-
sified map,

We believe that membership criteria in forest classes for
sites such as ours are best deall with by allowing for multiple
set mamberships, sy sel thwory [Zadeh, 1965; Banyiknwa
et al, 1990; Wang, 1990; Manvary and Lein, 1994; Woodoock
and Gopal, 1992; Woodcock and Gopal, 1992, Woodcock ef
al, 1994) has been shown o aid in the application of re-
maotely sensed data products by analyeing and quantilying
vague, indistinet, or overlapping class memberships, Wang
[1990]) concluded that much of the information from within
digital data can be lost duving the course of tradilional one-
pixel-one-class classification methods, due 1o efforts Lo apply
“hardened” or discrete classes to mixed pixels containing
mulliple cover types. Compared to traditional acouracy assess-
menl procedures, the Gopal-Woodeock fusey accurcy assess-
menl operalor provides useful and otherwize lost information
as o e mapnilude snd frequency of errors. and veports on
the distribution of inlraclass confusion (Gopal and Woodcock,
1994), Vor these reasong, o [usey accuracy assessment (Fana)
program developed al Boslon Universily was employed to
evaluate the mapping resulls (Collins, 1994),

Fallowing the supervised MDM classificalion procedure,
the pixels comtaining the remaining 322 (405 minus 83)
ground sample units were located within the image, and the
forest class assigned to those locations was recorded. As inpul
into the Faa program, our 322 test 8Ps ware arranpged inoa 33-
column (Clags) by 322-row [5P) matrix. An expert evaluation
was caleulated for each 5P, which grades the degree of accept-
ability al each site for each for each of the 33 possible forest
classes, The evalualion scale ranged from 5, for best fit, to 1,
for poorest fil, us described in Table 3. CGenus level interclass
error among vaks [ved, white, uther), maples [red, sugar) and
bivches [hlack, yellow, paper, olher] were counted as Accept-
ahfe as were ervars where hemlock in the canopy was misclas-
sified as hemlock in the understory. I is al the slage of
acceptability rating that the greatest depree of subjectivily is
introduced in a fuzzy accurncy assessment, T'o counler this,
wi used the simple percent mean cluster similarvity indesx
[Ludwig and Reynolds, 1988) to provide an initial quantitative
measure of fuzey ranking. The percent similarity between two
classes was culeulated as the sum of the minimum percent
composilion for all species that the two classes had in com-
I, 1.,

Zmin (A, AL)

where A, and A, are the abundances (in percent composition)
of all species § in samples [ and & The total percent similarity
which was possible between two classes was 125, which in-
cluded values for the canopy [maximum of 100 percent) as
well as the understory index [maximum of 23 percent). Al
though the threshold criteria were different for many classes,
only one Heat fuzezy rank value of 5 was allowed per class,
that af the seed class.

The Fas program successively evaluales the impacl on
the map’s acouracy that classifying each of the Les| sites s

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

TADLE 2. Fuzey Accumany Assessked —FEresg Evalanion RaMkinG SYETEM,
ey
SOOTE Ranking Dussription

3 Hest Possille Classified as exact class/ cluster

4 Wiy Giard Classified as class, subclass replicate

o alher with percenl cluster similazity
typically = B0-55%

Classilied as other. Genns level interelags
dizcrimination was aceepted, e, ced
ik S white ek, red maple for supar
maple, hernlock subdominant canopy for
himlock understory.

Similarily Lepically = 70%.

4 Actoeplable

2 [Indarstandable,
bt wirang,

Llsually correct at Anderson Lovel I (e,
Conilerias, Deciduoas [orast], bot containg
serious problems at genus level of detail.
Similarity = 7

Absolutely wrong.

1 Fntiraly wrong

each of the possible land-cover classes woulid have, and oot-
puls the results in three tables, The MAXMRIGHT operator [Table
4) delivers a general measure of the overall accuracy of the
map and presents the number and frequency of the ranked or-
rers. U lists the number of test sites which ranked the sac (5
or Hest] and those whose sites were ranked as gRIGHT (3 or Ae-
ceptable], The DIFFERENCE mebic {Table 5] lor o particular test
site reprasents the expert score [or thal class minus the score
for any other higher ranked closs. The maximom value possi-
ble (5 minus 1) is & score of 4, indicaling a class which is per-
fectly unigque (no other classes il at all] as well as correctly
classificd. In our case, il is an approximale measure of the
amount of overlap, or uniqueness, for a class as well as a
value for the magnitude of the map's errors.

Traditional confusion or classification eveor matrices pro-
vide a means of cvaluating the thematic accuracy of a classi-
lied image, by comparing the class assigned to a group of test
pixels to the sclual ground information at those sites. The an-
alvsl can benelil by identilving which categories are being
confused wilh each other, either by being erroneously ex-
clieded feom one class (mmission error), or included in another
(commission error), and determine the seriousness of such an
errar. In an Fas procedure, the CONFUSION: AMBICUITY opera-
tor provides similar though slightly different information, be-
cause multiple classes can be acceptable [or any piven sanple
plot [(Woodecock et ol 19492), with the number of errors pre-
somted actually exeeeding the number of test pixels. [n addi-
tion, values are provided for twn levels of ervor. The
CONPUSION value containg the number of instonces another
map category scored hisher than a particular map class. The
AMEBICUITY value contains the number of classes whose scores
equaled the value [or thal map category, As in a traditional er-
ror malrix, column lolals represent errors of omission and the
row tolals indicate the total commission errors,

Results and Discussion

Overall lorest class noouracy was surprisingly aood, 78.9 per-
cenl al the Acceptable or RICIT level, but rather low, 13 por-
cenl, for the MAX level [Table 1), Such low Max percentages
are not alarming given w noumber and detail of classes and
the level af composiltional helerogeneily of the lorest. It is
clear that many of the more commaon errors within the wap
are due to intuitively obvious and penerally acceplable mis-
takes that stem from the spectral overlap thal exisls snong
compositionally similar forest classes (Treitz ef ol 1992; Man-
vara and Lein, 1964). Overlays of our classified foresi-type
map with ancillary data stz (soils, clevation, slope, aspect)
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TABLE 4. FUZzv ACCURAGY ASSESSMENT-MAX-RIGHT ClassiFicanion Resuirs, Mesn MAY PERCCHTAGE |5 13,35, Meay RIGHT PergenTacs |s 78,88
Class # MAK MAK RICGHT RIGHT Increasa Tncronse
M. Frrest Tvpe Hiles Mumbe: Peroent Mumber Percent Mol Pareend

1 KE o 14 3 21.44 13 Q2.4 10 714

2 HOELET 14 1 5,006 17 94 .4 1 R0

3 TN 12 il il B B 7 i (i, 7

4 ROEANAHU 4 ( il a Lo h 83.3

5 ROV AT 10 ul 0 £i [ETNRA] i 3000

L] AR 51 vl ] il G0 3 aln

7 AR T 1a ul ul 10 100.0 Lil T

5 HEMHM 11 1 .01 110 Q0.g 9 H1.8

4 RN H 0 0 & 10060 i A
10 ROV 15 0 0 14 9.3 14 a3.1
11 HM i ul 0 2 BE.¥ 4 Gl 7
12 ML 3 1 n 5 1000 a BO.0
13 HMdAL i 0 0 2 B ¥ z Gl 7
14 Snd 11 1 NN a A8 i Fa.7
15 AMAHL 3 0 0 q 100,00 4 1000
16 SR 7 i} 0 4 n7A q 37.1
17 WA AT 110 [ I ¥ F0.0 7 700
T8 WA A/ P fs 1 1667 4 fil:. 7 1 LRI
a9 HUSRM A 1 1l 100 1 ILHERY] n 0.1
20 i 16 1 L.25 11 LT 10 SV
21 HaiHU o 2 23,22 0 T4HE.0) 7 KR
24 MW RelS0T G 2 a3.ad fi 1000 “ (i 7
23 MNH B/ Sad L 14 0l ] 1l 0.9 1 h.A
24 IS Y BARMHe it i i h H2,4 b AL
25 Adwie 12 2 16,67 14 533 i B, ¢
20 MxfidsHU 4 i il 1 25,0 1 5.0
a7 M HA e 12 1 ] 4 750 a GG 7
20 e 17 4 R 11 Gl 7 2 118
20 PodCond) 3 1 3334 i Lo 2 G, 7
a0 HadfHM 14 0 0 10 10004 10 00
31 HedMdx I 21 2 9,52 17 #1.0 15 71.4
32 Hea ] 14 A2 B 14 GF.A 7 250
A3 .‘:'y 3 1 ] 1 A3 { 0.0

bz 13.35'%

TiER

validated both generalized species distribution patterns we ob-
served in the field and malched patterns output from SORTIR
[(Kobe, 1995; Mickelson, 1997), For instance, our red mapla
classes occureed more frequently on wel soils and our onk
classes dominated higher elevalions and steeper terrain,
matching commaonly described species distributions (Egler,
1840; Winer, 1955; Damman, 1977; Kobe, 1996), Because this
study focused on forest-type discriminalion, we omilled non-
forest classes from the acouracy assessment,

There are several reasons immediately apparent (hat
would avcount for many of the classification errors, The large
number of classes, the level of compositional and specieal
similarily among classes, and the possible need for a more
reprasentalive and better distributed training set are among
the obvious [Wang, 1992), Additionally, while inter-image reg-
istration was found lo approach the 0.3-pixel (15 metee) RS
orror as stated by BOSAT, such a shilt applied across three im-
ages with such a diverse lorested land-cover pattern could in
itself create a large degres of per-pixel spectral ambiguity. In
addition, it should be noted that, because the majority of sam-
ple plots were specitically selected 1o avoid the boundary le-
tween lorest types, the final classification may nol adequately
represent “edge classes.” A change class was nol incorporated
within the classification, which, given the four-vear inlerval
hetween the spring and fall images, conld ideally have ac-
eounted for harvested or burned forest cover as well as regen-
crated shrulb areas.

Much of the oulpul classification's value and limitations
are apparent within the Fuzey Accuracy Assessment COMPL-
SI0N and AMBIGUITY tables, While il is bevond the scope of
this paper to discuss the detailed interactions among the 33
lorest classes, we present CONFUSION and AMBIGUITY Lables for
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the thees broad dominant forest cover type groups found
wilhin the study aren. These groups include the oaks (red,
white, otherf, the maples [red, sugar). and the conifers [hem-
lock and pine), Combined, they account for more than two-
thirds of the forest cover for the study site (Dickson and Me-
Afee, 1988], and composilionally, they compose a similar perc-
centage, G7 paercent, of our 405 sample plots.

Tables 6 through & show pair-wise comparisons of thres
sets of commonly mistaken classes, red oak (0] and red oakd
mountain larel (ROSLL) (BA and GB), red maple (M) and
sugar maple (S0 [7A and 7B), and white pine [WF] ad hem-
luck (He) (84 and 8B). The tables were constructed by sorting
the combined omission errors found for each pair of classes,
and show, in descending order, those forest types that were
most commonly included within the two example classes. Sig-
nificant composilion overlap is apparent within the tables,
which contain examples of the fuzey CONFUSION and ArdBic1-
Iy aperator walues, For inslance, in Tuble 64, the classes
most commonly confused, or ranked higher in the classifica-
tiom than RO or ROALL, possess a larpe oak component. The
upper ten classes, which account for 74 percent of the com-
bined sorted ommission errors, have a mean oak composition
of 39 percent. comparad to 14 percent for the remaining clas-
s, The upper tive classes exhibit an even more concentrated
oak component, & mean of 78 percent, as compared to 19 [pe-
cent for the remaining classes, and account for 50 percent of
the combined omission errors. Clearly, oaks are mostly heing
confused wilh other vaks,

Table GB lists the classes whose asvmcurry ranking
equaled that of the HCror ROYLE class, There is nearly o two-
thirds increase in the number ol omission errors. However, an
examination of the species composilions reveals that most of
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Tasle B,

Fugey dccuracy ASSESSMENT-DIFFEREMCE Tapie., Oemisuna DIFFERENCE Vaiue Qoours wiey MAK CLass ValUE 15 9 (BEST PoSSinLE) ANSWER ARD

sl OTHERS Aks 1 [ComPLETELY WhRonG), YIELDING & DIFFERENCE oF 4.

Class Mo, Forest Ty I A 3 i -1 1 z 3 1
1 R 14 ] 1 B 4 H] ] 0 M
2 RO 1i ] 1 1z 4 1 [ 0 u
3 RO M 12 2 2 4 4 1] ] ] {
4 RO KL fi 1 1 3 0l 1] 0] [ il
] ROMNAL 10 ] q 1 2 1l ] n 0
i (LK i 1 u 1 i i 0 3 0
7 OARA LT " 0 ] 7 o il {1 1] 0
F2 R 11 il 1 5 3 1 ] 1 0
] TS ] ] ] i i il il L] }]

] ROFRMAHLT 15 0 1 0 5 ] i} il [
11 FEnsS 3 ] 1 2 0 ] il ] 1]
12 HMAHE 3 0 0l 4 0 1 il il 1]
14 AMALET 3 il 1 i 0 0l 0l 0 1]
14 SM 11 ] i 7 1 1 il i 1l
15 SMAILT 1 0 ] 3 1 ] il ] L]
15 AN 7 1 x 4 n il il ] il
17 WA A M 10 0 a 7 ] 0 0l 0l a
18 WA ST NPT [¥] | 1 3 1] i 1 0 ]
14 ROASMA 1 [ 0 i ] 0 1 0 il
20 Rz 11 1 1 1 i L 0 ] 0l
21 B a [y ] 3 4 z il ] i
a2 SN BosSM I n 1] 4 ] 2 i] 0 ]
25 N R SN AL 11 1 2 141 0 0 il 0 ]
24 ST AT T i 1 2 ) 1l 0 0 0 ]
25 Al el 12 1] g i i 2 i 0 0
25 Akl FETLT 4 1l 3 1 il 0 ] 0 0
27 A A A 12 1 o 7 1 [ 1 0 0
h we 17 1 5 s il [ ] 0 0l
24 FiddxConif 3 I b 1 0 0] 1 0 0
0 Hed AL 1 0 ] 10 ] 0] ] 0 0
kY] Hiz M 21 1 4 1% 0l 1] P 0 0
K5 e 28 0 1 4 i 12 ] 0 il
a3 Sp 3 0 2 )] i 1 ] 1 0

Tatal Mot 322

Parcent 3A% 17.7% 05 14.2%, B,0%, 4, 5% 1,3% 0%

the errors can be understood and are Acceploble. The species
overlap patterns are very similar to those found within the
COMFUSION table, The upper ten classes account for 71 percent
of the combined omission error, and have o mean oak percent
of 54 percent, compared to 16 percont for the remaining clas-
S,

The coniler-dominated classes at the bottom of the oak
and maple CONFUSION and AMBGUITY tables contain no com-
mission errors, indicating a good messure of the separability
between the oak/maple classes and the coniler groups. The
stremgth of the species spectral response pallerns can be con-
sidered to be the classification signal allowing [or successful
class separation. Conversely, the sum of the unaccounled vari-
ables (eg.. topographic effects, canopy crown densily, intra-
class and interdata spectral variability] [Bastlett of of., 1088
Kharuk ef al., 1992), combined with the compositional and
spectral ambiguity due to inter-class hoterogoneity, can be
considered Lo be classilication noise. Below an undetermined
signal threshold, which allows for the successful separation of
the classes al the lop and bollom of the tables, the classes
within the middle of the tables likely have low signal-to-noise
rating. The errors found within these classes are more difficult
to interpret in all our tables, and likely represent actual classi-
foation process oreor.

Within the BM and S8 tabies, similar CONFUSION and
AMBGUITY patterns are found although, compared Lo oak, the
maple composition is less concentrated in the upper classes;
the overall maple signal appears to e Iess strong. Both maple
species were considered interchangeable within the acouracy
assessment, and their percentage values in the CONFUSION and
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AMBIGUITY tables are considered as o combined group. Within
the CONFUSION table (7A), the uppor ton classes contain 61
percent of the combined ommission errors for BAM and 50,
bul contain o mean of only 33 percent combined red maple or
sugar maple versus 21 percent for the remaining classes. This
difference is jusl sipnilicant. while the composition differences
within all other tables are very significant at the 0.95 percent
confidence level, The composilion values increase slishtly
within the AMBIGINTY error lable [Table 7B, with a mean
camhbined maple percent of 40 percent for the upper len clas-
sos and 18 percent for those remaining. While not all classes
with high maple peroentages are being incheded within the
higher commission levels, the significant amount of maple
that is within the upper classes likely contributes greatly to
both the CONFUSION and AMBIGUITY orrors.

The errors found within the WP and He classes (Tahles
BA and BB [ollow patterns which are similar to those for oak
and maple though their interpretution involves a bit more con-
sidleration. Genus level discriminalion was accepted among
oaks and maples while we ranked serrors belween white pine
and hemlock as a fuzey value of %, meaning “understandable
but wrong.™ All of the upper ten classes wilhin both the CoN-
FUSION and AMBIGUITY tables for WP and He conlain a major
coniferous component, 47 percent and 19 percent, respec-
tively, within either the canopy or the sub-canopy. More spe-
cifically, where conifer errors ocour, white pine and hemlock
are Lypically being misclassified as each other. For example,
wilhin the CONFUSION table [Table 8A), looking at He, more
than 80 percenl of the upper len CONFUSION errors have white
pine as dominant or co-dominant (the mean WP percentage is
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TADLE B, FUZZY ACCURALY ASSESSMENT-RED Cak/RED Qap-Laurel Conrusow anp Aveicury CLass CoMeamsons, TALE 84, Comnason Bown LINE IMDIGaTES
Urper TEw CLASSES, WHICH CoLLECTVELY ACCoUNT FoR T4 Percout oF THE DomBinen Taral Onission ERRoRs FoR THE Two CLasses, MEsk Oak ComMPosITION

WHICH COLLECTIVELY ACCCUNT FOR 71 PERCENT OF THE COMBINED ToTal OnSsinn EsRass FOR THE Two CLasses, Nead Oax Conrosimion or THesE ToM
Crasses s DA PERCENT CompaRer o 16 PERCERT FOR THE REMANIMNG CLASSES.

Tabla BA

Table 61

CrakSLaure] Confusion

(Jﬂ-k-u'.]-..i]ll]"l.!] .-"uuhi@zi‘.j.-‘

Class e s Total Class ; Taotal
Ma, Class Nanme 28] ROVTLT Oimission i, Class Nome RO ROCLLS (rnissinn

& AR M a 12 15 4 RO AN HLT 3 11 16
3 RN x K] 10 14 16 SMG MY 4 11 13

1 o X 110 110 o XL 3 11 14

7 OAR AL 4 4 &1 A B RM a 11 14
10 ROMMMALT i 1 B 10 FOGRMALLY 1 12 13
f RCEHM < 2 &3 q BURMIHLE &} ] 12
11 g _ 4 2 [ 7 CIAR M LT 3 0 12
106G SMARCE Y 4 2 = 25 Ml 5 &} 11
i ROMSAALLT 2 2 q il ML 5 f 11
26 HOVEMH 2 1 El fi AR My b 2 e}
25 Mxiied 2 1 i 3 IO I a a
14 S 2 1 B 17 ROAEML 4 2 &3
12 AL z 1 i 2 THLLS i X 5
13 RadiLlr 2 1 3 1 Rl Y 4 4
17 WA N 1 1 o 12 RASATIT 7 1 5
22 M Bessl 1 1 2 13 AL 2 1 A
15 S 1 1 2 14 S 2 1 K}
a ROVTIN TS 1 1 2 22 MHA oS0 2 1 3
et RO 2 x 2 a1 Heddx e 1 1 2
b M Bo/RAA T 1 0 1 11 R 1 1 2
19 B 1l 1 1 3 N Bed B 1 1 2
44 NS Y BN  e 1 {1 1 24 MNHASYERMHe 1 1 2
BN HeMxHd 1 1l 1 a7 M W R 1 1 2
K] HedTind il 4l il 13 SAdAHL 1 1 1
21 Ha/H! il 8l 1l an HelHn 1 U 1
32 e ] 0 ] 20 e 1 1 1
20 Ha il u} i 2 HedHLU 1 U 1
18 WA PSS 0 i} i} 16 DM 1 0l 1
27 el H e 0 0 0 18 WA R W A { 1 1
4 RN LT i} i} { 42 e { il i}
28 Hr u} ul 0 33 Sp i il 1
29 PédxConit 0 0 ] 23 Wwe 0 a ]
33 S 0 0 0 20 PidxConif i ] ]
Tatal commission 413 55 1061 Total commission Fd 1035 174

26 percenl for all ten classes, compared to & percent for the
remaining classes), Conversely, classes which are erronconsly
being confused wilth WP contain g significant He composition,
commonly in the sub-canopy (the mean He canopy composi-
tiem for the upper len classes is 21 percent versus 9 percent
for the remaining classes, while the I value is 7 for these
classes compared to A for those remaining), The errors found
within the AMBGUITY fable [Table 813) are more dilluse, but
more acceptable. As a group, the total conifer canopy compo-
sition is relatively lovw for the upper ten classes, 19 percend (7
percent WP and 12 percent He), though individually we find
that seven out of the ten classes have a significant He compo-
nenl. Given the abundance of hemlock across the landscape,
especially wilhin mixed broadleaf-coniforous classes, such er-
rovs are understandable and sven expected.

Dur inilial assumptions, matching the conclusions of
Treitz (1992), that classes which wers simpler (made up of
one ar twn dominant species) lend Lo be easier to classily ac-
curately, proved incorrect, A simple sorling of classes by
number of significant canopy componenls, from grealest Lo
fewest, showed no clear or cohervent trend in terms of those
classes which consistently scored higher and those which at-
Lained poor accuracy. In our study, class composilion and het-
erogenezily seemed to have less effect on classification
accuracy performance than did the sum of the unaccounted
variables [Beaubien, 19749). Among the more consistent clas-
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sas, pine and hemlock exhibited interesting patterns. They
each had among the highest pax classification accuracy, but
among the lowest RIGHT; they improved little by applyving the
RIGHT metric, which is a somewhal relaxed level of accep-
tance. This means that the classes thal were righl were very
right, but that the errors were more exirems, and class accu-
racy improved little by allowing for compositional Aexibility
or canopy-understory contusion among conifers. Among the
single-species conifer classes, the white pine class more com-
monly included hemlock (commission error) than the hemlock
class included white pine. The white-pine-dominated class
had more commizsion than omission errors and so tends to be
somewhal over-represented within the map, Comparisons with
the U5F5 statislics Jor Lilchlield county (Dickson and MeAfee,
14688) confirm this pattern, with their estimates for hemlock
accounting for nearly two lo three limes the areal extent of
white pine. Knowledge of this sort is uselul when considering
methods for improving map accoracy, especially when deline-
ating classes with overlapping composition,

The most common DIFFERENCE vilue returned in ooar anal-
wais, thal of —2 (Table 8), accounted for a total of 51.5 parcent
ol all sample plots and cumulatively 78.5 percent of all of our
lest plols were ranked af or above this value. This sugaests
that the detail of the classes may be in excess of what can be
reasonably and successfully resolved al the species level, us-
ing this mathod. However, review ol the experl evaluation de-
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TaHiE 7,

RED MarLE/SuGan MAPLE SONTUSion sHD Aasuy Dlass Covparison, TABLE T4, Conrvsion. Boln LNE IMoicares Usssa Ten GLasses, WHICH

COLLCCTIVELY ASCOURT Fom B PERCENT oF THE COMBINED ToTaL OMISSIoN ERRoRS fom THE Two Cuasses, Mesy COMBIMNED MARLE CoMPOSITION ToR THESE Ten
Clagsss |5 33 PeacenT, CovPARSD TO Z1 PEAceNT FOR THE REManinG CLassES, TABLE 78, AwdicuiTy, Douh LINE INDICATES Ureer TEM GLASSES, WHICH
COLLCCTIVELY ACCOURT For BE PERCEMT OF THE CoMBINED ToTaL OMISsIon ERRORS For THE Twen CLasses, Mesy COMBINED MASLE COMPOSITION FoR THESE Ten
CLasscs 5 A0 PERCENT Comparen 10 18 PERCENT FoR THE REMAIMING CLASSES.

Table 7A

Talide 718

RMSERM Confusion

RM/SM Ambiguily

Claza Total Closs z Ay Tatal
M Class Mame H Shd Oission M. Class Mame | A [lmissinn
106 BALERC 1 < 5 203 MxHSHL 2 L 10

i RO 1 4 4 11 RAALLT I i ]
[¢] ey 4 4 17 WA RS N X ] | 8]
19 BB X 1 3 4 22 N B S M 2 7 ]
17 WASRMN % 3 1l 3 20 MxHA B £i a
] MY (1 2 2 12 NS L] # 1]
12 TN 1 1 2 15 HMAHL 2 1] i
5 SMAHL 1 1 2 10 RO 3 1 7
2 NI Bed S 1 1 i 10 SMARO M x 2 5 7
23 MNHRe AL 0 2 2 11 ik X fi i
28 Ml el 1 1 Z 14 BLASM ATy 2 4 K
1 i 0 | 1 A TIENNALT S 1 q 5
2 RO 0 1 | HORM 3 2 ]
3 RO 0 | 1 2 IR 0 4 4
A RN ALY 1] 1 1 H Ry 0 4 A
i1 OAKMX 1] | 1 7 AR 0 4 4
7 CrAR ST 1] 1 | ] BOGRMALT 3 1 1
10 ROGRMALLY n | 1 27 M R 0 4 4
11 Had X 1 il 1 o 0 3 3
13 RAGLLT il ] 1 4 XY i 3 ]
14 S 1 X 1l 5] AKX ] 3 a
20 R 0 1 1 T8 AN R K} il 3
A RelHL 1 1 1 14 s & X 2
24 NHASY B T 1 1 1 24 NS YBARM He 1 1 2
27 M AW 1 (] il 21 HeHU [l 1 |
g0 e/ il 1 1 23 W Be A AT 1 0 1
Fl HeMxHd il I 1 28 i 1 1 1
a2 I 0 1 1 2% FidxCiansf i 1 1
18 WA W M i 4] ] 30 Hed T ] 1 1
25 Alxd il 0 0 4] 31 MM Hd 1 0 1
28 W ul 0 0 a3 S al 1 1
24 P Conif 0 0 0 20 fe 0 0 M
33 bl 0 0 il 33 He Nl N L}
Total commizsion 1% 47 44 Tatal commission a1 110 141

cision tree shows Lthal at the genus level, ar the stage where a
class was considerad (o be acceptable, the method waorks quite
well, with an overall forest classification accuracy rivaling
maps with far fewer and less delailed classes. The patterns
displaved within the DIFFERENCE lable also reinforce the
broadness and frequency of class overlap.

Summary

The Fores| classification results provide cneouraging suppor
for the method. IU is apparent that seasonal specics-specific
spectral signals, as represented within T data, are strong
enough to aid greatly in the mapping of the mixed deciduous
forests of the northeastern Uniled States, Ulilizing the spectral
patterns from within a combined springfsummerfall image,
we obtained satisfactory foresi-type classilfication aceuracy
(78.49 percent) at the genus level, delinealing a total of 33 for-
esl-lype classes, with thematic detail as fine as Anderson
Lewel 4 for sub-categorical nnderstoey classes. Preliminary dis-
criminanl analysis between the three dates indicated that
spring and fall dala are polentially more useful than those ac-
auired during summer, and it is lkely that utilizing well-
timad image acquisition dates from within these periods, com-
bined with specific knowledge of canopy and understory phe-
nologies, can improve discriminalion further. For detailed
vegetation mapping, the G5 is clearly valuable for referencing

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

the spectral patterns found within multi-date imagery to the
specilic veselation composition of individual forest stands,

The forest-type classification we adopted was tailored 1o-
wards our own research needs, thoush such an approach has
broad utilization [or regional biodiversity and vegetation map-
ping, forest invenlorving and ecologicsl analvsiz for the foreats
of the Northeast. Seasonally acquired salellite data could sup-
ply the foundation for o hybrid vegetation classilicalion sys-
tem which could deliver map units approaching the Federal
Geopraphic Data Committon's (Fo0c) compurily and allionce
level [05GS, 19896). This would areatly aid the efforts of such
programs as the National Gar Analvsis project [Scott of of,,
1993) and others nesding detailed vegetative land-cover infor-
mation,

While il seems unlikely that vesetation cover types for
the forests of the Northeast can be delineated consiatently at
the FGIK: cammily or allianee level [USGS/MNGDC, 1996)
when using strictly speciral inlormalion and computer-derived
clagzifications, much work needs to be underlaken 1o evaluate
the maximum level of vegetation information contained
within satellite-derived romately sensed data, A wide variety
ol lechnigues and methodalogics are oorrently heing em-
oved Lo improve delineation of the forests of this region,
and it is likely thal an optimum strategy would make use of
aspects of each, Adding derived information (hand ratios, veg-
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elalion indices, or texture indices), physical duta [soil mois- Acknowledgments

ture, slope, aspect, elevalion), structural stand inlormalion
{canopy heighl, percenl cover, underslory composilion and
densily], as well as site specilic vegelalion knowladge [phenol-
opyvl, would likely improve the thematic map resolation of
these forests. hoproved peocesses and algovithms such as sub-
pixel clagsifiers, resolution merging enhancoments, and neural
network classificrs might contribute to the more detailed pat-
tern extraction capabilities that will be needed.

Table 3, Fuesy foousasy ASSESSMEMT-PERZENT anD CURULATIVE PERCEMT

CLass DIFFEREMNCE Totals

Ditlerence Value T ol 5P Value Total Cumulative %

4 000

3 0.31%

z 3,66

1 HLOF %

1 14 211%
—z 01.55% 7R F!-ES"

3 17.70% $16, 58
-4 A.42% 100
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