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Abstract

Establishing cause—effect relationships for deforestation at various scales has proven difficult even when rates of deforestation
appear well documented. There is a need for better explanatory models, which also provide insight into the process of deforesta-
tion. We propose a novel hierarchical modeling specification incorporating spatial association. The hierarchical aspect allows us
to accommodate misalignment between the land-use (response) data layer and explanatory data layers. Spatial structure seem
appropriate due to the inherently spatial nature of land use and data layers explaining land use. Typically, there will be missing
values or holes in the response data. To accommodate this we propose an imputation strategy. We apply our modeling approach
to develop a novel deforestation model for the eastern wet forested zone of Madagascar, a global rain forest “hot spot”. Using
five data layers created for this region, we fit a suitable spatial hierarchical model. Though fitting such models is computationally
much more demanding than fitting more standard models, we show that the resulting interpretation is much richer. Also, we
employ a model choice criterion to argue that our fully Bayesian model performs better than simpler ones. To the best of our
knowledge, this is the first work that applies hierarchical Bayesian modeling techniques to study deforestation processes. We
conclude with a discussion of our findings and an indication of the broader ecological applicability of our modeling style.
© 2005 Elsevier B.V. All rights reserved.
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at least 20 yearsSingh, 2001; Whitmore, 1998But by human management practices (elamb et al.,
cognizance of the problem was apparent decades ear-1997).
lier (cf. Jarosz, 1993; Perrier de laamie, 192). Yet In this paper, we focus on deforestation processes
it has proven surprisingly difficult and controversialto and patterns of land use in the eastern wet tropical
obtain accurate estimates of deforestation rates or in- forests of MadagascaFig. 1). The prevailing percep-
deed to relate current forest cover to potential or histor- tion is that the patterns and processes here are well
ical extent of forest cover. This remains true even with understood. In fact the land-use change mafsreen
the advent of satellite imagery from the 1978gén, and Sussman (199@ye commonly reproduced in text-
1999. The difficulties arise from issues of definition books as standard examples of deforestation processes.
and benchmarks, spatial and temporal resolution, and Nevertheless current and historical patterns of de-
data adequacysingh, 2001; Angelsen and Kaimowitz, forestation in Madagascar remain poorly understood,
1999. As a consequence even the most recent esti- and controversial (e.gJarosz, 199%ersusGreen and
mates of deforestation rates, or more generally land- Sussman, 1990 Current estimates of forest cover in
use change, vary considerably, and debate continuesMadagascar vary by at least five-fold, from 42,00°km
over whether the rates of deforestation in the tropics for “closed forest,” up to 158,000 kfrfor “natural for-
are declining or increasing-AO, 2001; Matthews et  est,” to 232,000 krh for “total forest and woodland,”
al., 2000. Only for specific, narrowly defined regions respectively, about 7, 27 and 40% of the land area
can one obtain reasonably reliable data on deforesta-of MadagascarNEP, 1998; UNEP-WCMC, 2001
tion rates over specific time periods (eMertens and This underscores the pervasive difficulty of estimating
Lambin, 2000. forest cover, which in part reflects differing definitions
Establishing cause—effect relationships for defor- of forest (cf. Silander, 200p In contrast, the forest
estation or land use at various scales has also provencover in 1902 was estimated at about 20% of the land
difficult even when the process appears well docu- area Pelet, 1902 In 1921, based on extensive field
mented Angelsen and Kaimowitz, 1999; Irwin and reconnaissance from 1900 to 1915, Perrier desith®
Geoghegan, 2001; Barbier, 200The standard expla-  estimated that about 19% (110,0008m0f Madagas-
nation for deforestation in the tropics has been rapid carwas inforest orwoodland of one sort or another. But
population growth, associated poverty, and consequen-of this only about 35—70,000 kf{6—12%) was closed
tial environmental destructionLéach and Mearns, forest. In 1934, forest cover was estimated at only 10%
1988; Richards and Tucker, 1988; Mercier, 1991; ofthe land areaGrandidier, 193} These figures con-

Brown and Pearce, 1994; Sponsel et al., J996se- flict with estimates of forest cover in the 1960s: 33%
lected areas, commercial exploitation and clear cut- forested in the early to mid 1960d@mbert and Cours
ting are also important causes of deforestatiangten, Darne, 196%versus 21% a few years latéig Bourdiec

1992. However, conventional explanations for forest etal., 1969. The fact thatthese contemporary estimates
loss and environmental degradation have recently beenof forest cover are so different is surprising, given the
guestioned as too simplistic, general, or even mislead- availability of aerial photography and more precise car-
ing (Barbier, 2001 In the absence of a clear under- tographic methodology. Satellite data from the 1970s
standing of the role that various contributing explana- onward have been able to provide only limited esti-
tory variables may play in deforestation processes, mates of forest cover or deforestation rates. Virtually
let alone establishing cause effect relationships, it is all of the available images of the wet tropical forests of
not surprising that reforestation or forest conserva- the eastern Madagascar were too obscured by clouds
tion schemes have had relatively little or no success. through the 1990s to provide adequate estimates of for-
Most of the reports on failures are buried in the gray est cover, especially for the focal region of this study.
or secondary literature (e.gBloom, 1998; IUFRO, In fact, the most recent available maps reproduce “cur-
2001; Sharma et al., 1994f. Oates, 1999 relatively rent” forest cover for most of the east coast from the
few are to be found in the primary literature (e.g., maps published in 1969-aramalala, 1995; Du Puy
Olson, 1984; Elster, 2000and rarely does one find and Moat, 1999see alsdGreen and Sussman, 1990
reports of successful reforestation either via natural with no new data. These sources thus indicate current
succession (e.gGuariguata and Ostertag, 200dr forest cover for our focal region (Taomasina Province)
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study Area AVHRR 9/31/97 Bands 1,2,1

Fig. 1. Color composite AVHRR satellite image of Madagascar. The box encompassing Taornasina Province shows the focal area for the study.
The light and dark green areas in along the east coats of Madagascar correspond roughly to potential forest and mature, continuous forest,
respectively.

at 66%, while the center of our area (Fenerive Prefec- amination of deforestation or more generally land-use
ture) would be 95% forest cover. Clearly this is a gross patterns and processes. It also points up the need for
overestimate of actual forest cover (see results below), evaluating land-use patterns in a more thorough histo-
and a marked departure from all earlier estimates in the riography context. Moreover, if there is any indication
twentieth century, and is indeed at odds with historical that patterns of land-use change spatially from one re-
accounts from the 17th through 19th centuries. Even gion to another, this needs to be addressed or one may
Green and Sussman'’s seminal 1990 study of deforesta-risk obscuring pattern and process across scales.
tion rates in Madagascar are based largely on the same  With these objectives in mind, we present a novel hi-
set of maps provided bfjumbert et al. (1964—-1965) erarchical Bayesian model for explaining deforestation
The confusion and contradiction described above, processes applied to deforestation of Madagascar. Our
underscores the need for a more critical, in depth ex- method is able to address several issues that arise in the
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study of deforestation processes, which, to the best of 2. Model background and modeling issues

our knowledge, has notbeen addressed before. First, we

provide aframework to connect datalayers thatare spa- The goal of this paper is thus to develop, fit, and
tially misaligned. In our example, we explain land-use interpret stochastic models to clarify spatial processes
patterns (measured at a resolution of 1krhkm) in that can explain patterns of deforestation or more gen-
terms of population counts available at a much coarser erally land-use patterns. This is a rather challenging
resolution (by townships). We show that naive schemes undertaking on several accounts.

like allocating population uniformly to all pixels within First, there are numerous factors which have been
a given township perform poorly compared to the mul- linked to land use and deforestation. These factors can
tilevel hierarchical Bayesian model we suggest. Next, be socio-economic, e.g., population growth or eco-
we provide a novel multiple imputation method to deal nomic growth; physical factors, e.g., topography or
with missing data when modeling spatial processes like proximity of rivers and roads; policy-driven govern-
deforestation. Note that “filling up holes” created due mentintervention, e.g., agriculture and/or forestry poli-
to missing land-use classification using a crude method cies; external factors, e.g., demand for exports or fi-
like “majority vote due to neighbors” might fail to pro-  nancing conditions. For any given region, typically
vide correct estimates of uncertainty for model param- only some of this information is available or selectively
eters. Finally, our model can explicitly incorporate spa- available at different spatial scales.

tial structure, which has hitherto not been addressedin  Second, there is no well-accepted notion of a re-
the context of explanatory models that study deforesta- sponse variable. In some cases deforestation rates or
tion processes. Apart from providing better statistical forest areas may be used. Deforestation rates are typi-
inference by modeling excess heterogeneity present incally calculated over limited time spans. Forested areas
the data, maps of estimated spatial structure are infor- are usually obtained from cross-sectional studies of dif-
mative and can often lead to new ecological insights. ferent countries or different regions within countries.
However, this comes at a price of being able to fit com- The alternative, which we adopt is to partition the study
plex hierarchical Bayesian models, which is a com- region into disjoint areal units and then attach an or-
putationally challenging undertaking and may involve dinal land-use classification variable to each unit. This
writing special purpose code as is the case here. Hi- classification represents successive departure from a
erarchical modeling is just beginning to receive atten- potential, fully forested landscape, which all evidence
tion in the ecology literature (see our brief review of points to for eastern Madagascar. Of course, such a
this work at the end of Sectio?). Beyond the obvi-  variable is not uniquely defined in terms of number of
ous applications to land change problems, hierarchical and definition of classifications.

modeling has broad application to other ecological pat-  Third, the explanatory variables and the response
terns and processes which present many of the same isvariables are typically measured in different areal units.
sues listed above. For example, in attempting to explain For instance, in the dataset we investigate, the response
species presence—absence, abundance or richness usariable is land-use classification (e.g., forested, non-
ing ecological explanatory variables, such as climate, forested, etc.), which is ascribed to 1 ki km pix-

soil geology or topography, one must address miss- els derived from satellite images. On the other hand,
ing data, spatially misaligned explanatory data layers, population is recorded at various administrative areal
and spatial structure in the ecological pattern. Becauseunits. In our case, we use the equivalent of “township”
we had some a priori indication that there were sub- level data, which are considered to be the most reliable
regional differences in land use within our study re- census data at the finest spatial resolution. The resul-
gion, we subdivided the analysis spatially into separate tant challenge is to develop a regression model for data
northern and southern sub-regions. Finally we interpret collected on spatially misaligned areal units, i.e., areal
the results of the model in the context of the critical units (pixels, polygons, etc.) that do not correspond to
historical information available. Because the model- each other or line up as GIS data layers.

ing approach we take is novel and technically com- Finally, land use and deforestation are inherently
plex, we start with detailed discussion of the modeling spatial processes. So too, are many of the explana-
approaches. tory variables, such as population counts. Satisfying
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stochastic, as well as mechanistic objectives, modeling  In general, stochastic models provide considerable
should capture association between measurements oradvantage over deterministic approaches in situations
areal units in terms of proximity of these units. One where substantial variability is always present, as in
way to accomplish this is to introduce appropriate sets land-use change data. Stochastic modeling allows one
of spatial random effects, which can serve as spatial sur-to resolve the signal and to clarify the nature of the
rogates for unmeasured or unavailable covariates thatnoise, which obscures it. The development of satisfy-
are inevitable in any modeling protocol. ing stochastic models does raise a number of method-
Little formal modeling of deforestation was at- ological issues. Here, we offer an overview of a critical
tempted until the 19805ranger, 1998 Descriptive subset of these issues. We address the specific details
statistical summaries of land use or forest area obtainedof these issues later as part of the development section.
for certain regions at certain time points were custom-  First, there is a matter of modeling style. Do we
ary. Most of the ensuing statistical work, which has employ simulation modeling, say as is frequently done
appeared has been based on standard multiple lineawith cellular automata models, attempting to capture
regression models relating deforestation rates or for- mechanistic aspects of the process? Or do we employ
est area to a long list of potential explanatory variables phenomenological modeling to attempt to relate dif-
(Granger, 1998 In fact, Granger lists at least 28 differ-  ferent data layers, each measuring different variables?
ent variables, which have been linked directly or indi- Where there is theory to guide us, can we be somewhat
rectly to deforestation or land-use change in a forested mechanistic in relating data layers? Finally, do we take
landscape, while Anglesen and Kaimowitz list 140 a static or dynamic view of the process? There is no
different models developed to explain just economic simple right or wrong answer to these choices.
causes of deforestation. In these studies it appears that If we seek to explain land use, then we first have
the major objective has been simply to maximiZe to formally define the response variable. Even within a
and models with eight or more explanatory variables specific context there is not usually a well-accepted no-
have been put forward. This is no longer considered tion. Also, we have to identify which factors we seek to
sufficient or useful in statistical modeling these days. linktoland-use. Do we seek a socio-economic explana-
Moreover, none of these models are explicitly spatial tion? Do we seek a physical or ecological explanation?
in nature. The little work with an explicitly spatial fla- Here we must recognize that no proposed explanatory
vor, which does exist has arisen from an econometric model iscorrect, but that some are mongsefulthan
perspective introduced Walloni (1992)andChomitz others and that no proposed explanatory model estab-
and Gray (1996)and more recently summarized by lishes causality, merely relationship. Moreover, mod-
Irwin and Geoghegan (2001These models assume els employing different subsets of variables can explain
that land use will be devoted to the activity yielding the comparably well. One must decide which perspective
highest “rent”. The modeling connects output prices to to explore and which subset of possible factors to con-
input prices through “production” functions with the nect.
spatial aspect introduced solely by relating these prices  When data layers are to be interrelated, they can be
to market distance. These models remain quasi-spatialintroduced at various levels of a hierarchical specifica-
and econometric. tion, which becomes an explanatory model for the pro-
Hence, we claim that despite the already substan- cess (cfWu and David, 200R In this specification the
tial literature, there is a need for better, explanatory lowest level is the response. This modeling strategy is
models, which may provide better insight into the pro- referredto as hierarchical or multilevel modeling. Here,
cess of deforestation or land-use changel(afin and for example, the hierarchical levels of the full model
Geoghegan, 2001; Veldkamp and Lambin, 20®4r- include a population model, a land-use classfication
ious modeling lineages have been developed and ap-model, and a model specifying latent variables. This ap-
plied to explain deforestation with questionable suc- proach allows for considerable flexibility in modeling
cess and little attempt at synthesis. These include deter-and the possibility of incorporating mechanistic com-
ministic and stochastic models, statistical and simula- ponentsinlinking certain levels. Hierarchical modeling
tion models, phenomenological and mechanistic mod- is achieving increased utilization in analyzing data col-
els, spatial and non-spatial models, etc. lected from complex processes. See the recent papers
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by Wikle (2003) by Clark et al. (2004)and byGelfand But there will always be omitted, perhaps unobserv-
et al. (2003, 2005) able, explanatory variables, which also provide spatial
Full inference for hierarchical models is most easily explanation. In the absence of these variables, spatial
achieved (and often only possible) within a Bayesian association in the residuals will be expected, and hence
framework. In particular, this framework enables a pos- models introducing spatial dependence are needed.
terior distribution (i.e., a conditional distribution given For at least some data layers there will be missing
the observed data) for all model unknowns. This dis- data. For example, land-use classifications obtained by
tribution allows any desired inference about any of the remotely sensed satellite data, particularly for wet trop-
unknowns. Such models are fitted using simulation- ical regions, will have portions obscured (hence miss-
based methods, e.g., Gibbs sampling and Markov chaining) by cloud cover. Typically missing data are treated

Monte-Carlo methods. S&arlin and Louis (2000gnd in an ad hoc manner. Models of spatial association for
Gelman et al. (1995for an introductory presentation  gridded data assume there are no missing observations.
of this methodology. To accommodate sudiolesin the dataset, imputation

In the context of explaining land use, the data layers (i.e., statistical simulation of missing values) provides
are inherently spatial. Some are observed at particular an alternative to subjective assignments of values. That
point locations, and some are obtained through satellite is to say, one imputes observations at the missing loca-
imagery as raster pixel values at some degree of reso-tions according to the likelihood of the different pos-
lution. Other data may be associated with formal gov- sible values. Such imputation must be done randomly
ernmental units such as towns or other municipal sub- and, moreovermultiple hence variable, imputations
divisions, stored as polygons. Data, which is obviously are necessary in order to capture the effect of the uncer-
spatial should be modeled in an explicitly spatial fash- tainty associated with imputation and to better reflect
ion. Only rarely has this actually been done in modeling variability associated with inference in the presence of
land-use patterns, and where spatial models have beermmissing values.
developed, the analysis is not entirely spatially contin- Lastly, the multilevel hierarchical approach allows
uous (rwin and Geoghegan, 20DDeveloping spatial ~ for the specification of many different models; there
process models that lack spatial contiguity is analogous is flexibility at each level. But, with many possible
to developing models of time series processes that lackmodels to consider, tools for model comparison are
knowledge of the time order of the processes—not very required. Simple notions |ik& are clearly inappro-
useful (rwin and Geoghegan, 20pWhile there may priate for multilevel models with categorical or count
be issues of model choice in providing spatial structure variables as response. Criteria, which reflect the util-
as well as the scale or resolution at which the modeling ity for the model emerge as more attractive and better
is done, it seems clear that measurements which aresuited. However, such comparison is really only sensi-
closer to each other in space should be more strongly ble across models employing the same response data
associated than those farther from each other. Spatialand with explanatory objectives with regard to available
dependence should be incorporated, but since differ- data layers. So, these are the only model comparisons
ent spatial data layers are often collected at different we can provide.
scales, one needs a formal (rather than ad hoc) model- Hierarchical Bayes models have along and success-
ing strategy to carry out full inference in the presence ful history by nowin several areas butare justbeginning
of such consequential misalignment. Bayesian hierar- to be applied to problems in ecology (e Borsuk et al.,
chical modeling provides this framework. 2004; Qianetal., 2003; Borsuk etal., 2001; Prato, 2000;

In this regard, some spatial features can be describedClark, 2003. SeeBanerjee etal. (2003)r a general in-
through the mean structure of the model (or in the case troduction to the methodology. However, to the best of
of categorical or count data, the mean on a transformed our knowledge, the methodology has not been applied
scale). For instance, one can introduce distance to ato study deforestation processes other than a prelim-
road or to a town center with a coefficient as part of a inary paper we have published in the statistical liter-
regression structure. Or one can attempt to explain spa-ature Agarwal et al., 2002 Before providing details
tial features through a trend surface in the mean (e.g., on our model development and specification in next
a polynomial of low order in latitude and longitude). section, we would like to comment briefly on the dif-
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ference between our approach and the simulation mod-
eling approach that has been widely used to study de-

forestation (see, for examplgpares-Filho et al., 2002;
Duffy et al., 2001; Kok and Winograd, 20p2\e re-

111

We show how such models can be fitted using Gibbs
sampling Gelfand and Smith, 199thus allowing full
inference of all of the modeling levels (¢kelfand et
al., 2005. The misalignment problem extends recent

mark the latter is really a different philosophic approach work of Mugglin and Carlin (1998)Mugglin et al.

to the problem compared to the explanatory approach (2000)and Gelfand et al. (2003)In the present con-
we adopt. While simulation-based modeling seeks to text the other explanatory variables we employ are also
predict observed land-use behavior by capturing the measured at the (Ikm 1 km) pixel-level. However, if
known mechanistic aspects of the problem, our ex- this were not the case, a general strategy is as follows.
planatory approach attempts to explain a response vari-ldentify the data layer at the finest spatial resolution.
able (inthis case land use) in terms of other explanatory For each remaining layer create an individual overlay
variables. Moreover, simulation models are dynamic, on this one. For each overlay, carry out a rasterization
seeking to compare the evolution of deforestation. Our so that each areal unit of the latter is contained on one
model is static seeking to link land use to explana- and only one unit of the former. Then model the joint
tory variables, in particular to population pressure. As distribution of all the variable layers at this highest res-
such, the two approaches are not directly comparable olution. Such an approach yields a model for each data
to understanding deforestation patterns and processeslayer at its observed scale. Note that it is not neces-
In fact, the two approaches can in some cases comple-sary to align all pairs of data layers. Rather, we need
ment each other—insights into the mechanistic aspectsonly align each layer with the one at the finest spatial
of the problems can be incorporated when building resolution.

an explanatory model. However, this has rarely been  Two related implementation issues arise under our
attempted. modeling approach. First, for the response data we
work with, due to the presence of cloud cover, land-
use classification is missing for approximately 8% of
the roughly 47,000 pixels. Thus, we introduce an im-
putation approach, i.e., a spatial multiple imputation
(Schafer, 199y to handle this missing data. Second,

3. Overview of model development and
specification

Our approach is to formulate a model for the joint
distribution of local human population attributes and
forest exploitation, given other explanatory variables
that are explicitly spatial. In so doing we are imme-
diately faced with incompatibility of the data layers
(land use is obtained at the scale of 1 kit km pix-
els (see below) while population counts are obtained
at irregular town-level polygons). We then overlay the
town-level map on the pixel-level map and modify town
boundaries, usingnajority pixel rule so that each pixel
is contained in one and only one town. Upon stecst
terizationof the town data, we conduct the joint mod-
eling at the pixel level. This joint distribution is speci-
fied by modeling the unobserved pixel-level population
counts and, then the conditional distribution of land use
given the associated count. The model for the latent
population counts leads to a model for the observed

our modeling requires commitment of considerable
computational effort (tailored programs for the indi-

vidual application) and computer run time. To justify

this commitment we offer model comparison reveal-
ing the inferential benefits of our modeling relative to

simpler model specifications, which can be fitted more
easily and quickly.

4. The dataset

The data used in developing the deforestation model
are from Madagascar, an area of the world designated
as particularly high priority for conservation efforts. It
is recognized as 1 of 25 mega-diversity countries in the
world (Meyers et al., 2000and the eastern tropical wet
forest in Madagascar is globally one of 12 rain forest

counts. With two sets of spatial effects, one associated “hot spots”. At the same time, the forests in Mada-

with the town population counts, the other with pixel
level land-use model, a multilevel hierarchical model
results.

gascar have been characterized as under tremendous
threat from deforestatiotJSDA Forest Service, 2000;
Sussman et al., 1994; Oxby, 198Bs a consequence
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many of the most well-known plant and animal species cover types, their composition, distribution and loca-
are listed by the International Union for the Conserva- tion within the region. Two Landsat 5 Thematic Map-
tion of Nature (IUCN) as globally threatened. per TMimages (September 15,1993 and November 21,
Thereis considerable difference of opinionastohow 1994), a set of aerial photographs from the 1940s and
much of the original forest in Madagascar is left as we 1960s together with extensive independently collected
pointed out earlier, but estimates range down to as little ground-truthing data were used to aid fine scale pattern
as 10%, and perhaps only 25% of what is left is con- delineation. The 30 classes were iteratively assessed,
sidered primary or undisturbed foreSiussman et al.,  reclassified with a supervised, maximum-likelihood
1994; USDA Forest Service, 20p@®f these systems,  processand reducedto the final 5 used forthe modeling:
the coastal forests are the most threatened. Estimatedmature forest, secondary patch forest, cleared forest,
deforestation rates for Madagascar are quite variable: non-forest and missing values (for small patch areas
less than 1% per year to 5% or more. Some have esti- obscured by clouds or cloud shadows, haze, etc.). We
mated that within 20 years, little or no forest willremain  believe this provides the most accurate characterization
outside protected areas (currently about 1.85% of the of the landscape at this scale available. The vector maps
total land surface). But, as mentioned earlier, most of of forest cover currently availablé&-éramalala, 1995;
these estimates of forest cover and deforestation ratesDu Puy and Moat, 199%%re overly smoothed and in
are speculative and controversial. Concerns over defor-many cases report forested and non-forested areas that
estation and attempts to estimate rates is nothing new.based on our ground truth information, are misclassi-
In 1921 Perrier de la &hie estimated that between fied.
1900 and 1920, 49,000 Kof forest had been lost.
Early in the 19th century, the first King of Madagascar 4.2. DEM generation
proscribed the clearing and burning of forééiin and
Griveaud, 1968 The quality of existing global topographic informa-
The focal area for this study is the wet tropical for- tion (Gtopo30, Digital Chart of the World) we found to
est biome within Toamasina (or Tamatave) Province, beinadequate, containing numerous artifacts and noise.
Madagascar. This province is located along the East Instead we use vector elevation contour data (100 m)
Coast of Madagascar, and encompasses the greatdigitized by the Madagascar geodetic survey office (In-
est extent of tropical rain forest on the island nation titut National de Geodesie et Cartographie, or Foiben
(cf. Fig. 1). The aerial extent of Toamasina Province Taosarin-tanin 'l Madagasikara (FTM)). These were
is roughly 75,000k To model forest cover for used to generate a continuous, 1krkm grid sur-
the province, we obtained or constructed five dig- face, utilizing a combination of Surfer v. 6.04 (Golden
ital geospatial layers representing: town boundaries Software, Golden CO) and Arc View Spatial Analyst v.
(with asociated 1993 population census data), eleva- 2.0 (ESRI, Redlands CA) software. Spatial misalign-
tion, slope, road and transportation networks (1993) ments and misregistration errors were corrected to pro-

and land cover. duce the final 1 krhelevation grid layer. In turn, this
layer was used to calculate a slope (degrees) layer, us-
4.1. Forest classification ing Arc View Spatial Analyst v. 2.0.

A single NOAA-11 AVHRR, 10-day compos- 4.3. Town, population and other cartographic data

ite image for September 21, 1993 was obtained

from the USGS EROS Data Centédrttp://edcwww. Township (i.e., “firaisana”) boundary information
cr.usgs.goy Three reflective bands (1, 2 and 3) plus was digitized for all 162 firaisana in Taomasina
a Normalized Difference \Vegetation Index (NDVI) province by the Madagascar geodetic survey office
(bands 3-2\3+2), were presented to an unsuper- (FTM). Census data were obtained from the United
vised lIterative Self Organizing (ISODATA) cluster- Nations via the Madagascar census bureau (Direction
ing algorithm, within ERDAS Imagine v.8.4 software. et Statistique Sociales) for each firaisana for 1993.
This clustering output 30 initial classes, which were Vector point data for various population center fea-
interpreted using expert personal knowledge of the tures (i.e., village/hamlet localities or “fokontany”),
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firaisana “headquarter” villages, fivindronana head-
quarter towns, and the provincial capitol) were
digitized and supplied by FTM. Road and tracks were
also digitized and supplied by FTM (primary routes
(sealed roads) and railroads, motorable (in dry season)
tracks, rough ox cart tracks, and primary footpaths).
These vector layers were all rasterized to £lgrids.
Grid cells fell along town boundaries were assigned
to a particular town by majority area rule. Grid cells
with one type of road were assigned the appropriate
value. When two or more road/path network types fell
in a particular grid cell, the more developed road value
was assigned to the pixel.

The final layers were rasterized to 1 km and clipped
to the extent of the Town boundaries in the province. All
islands were clipped as was the one town that covered
less than 1 krh All data were obtained in, or projected
to, Laborde (m), WGS84 coordinate values.

Following clipping, 159 townships and 74,607 1:2500000
1kmx 1km pixels remained in our data sétg. 2
shows the town level map for the towns in the study @
region. In the western portion of the province an es-
carpment demarcates the eastern wet forest or potential Gk
egen

forest biome from the western, seasonally dry grass-
land/savannas mosaic. Visual inspection of the data
layers prior to analyses revealed some differences be-
tween the northern and southern parts of the province.
The North had fewer population centers most of which
tend to be clustered near the coast, and larger forest ’&
patches, while the South had more populations cen- @
ters scattered across the landscape, with many smaller
forest patches and more extensive road development,
including primary routes to the national capital, west Fig. 2. Northern and southern regions defined within the study re-
of the study region. With concern that pattern and pro- gion. All town boundaries are shown. Population size categories are
cess might differ between these regions and with in- shown for northern and southern towns studied.
terest in making comparisons between them, we cre-
ated two disjoint regions. In particular, we excluded ity of spatial pattern of the sub-regions. Rather, due
the western (non-forested majority) towns and intro- to the fairly simple mean specification of the model
duced, between North and South, a buffer region at described below, we were concerned that omitted or
least two towns wide (to provide separation of North unobserved variables which carry spatial information
and South spatial effects). This yielded the North and may differentially affect land use in the sub-regions.
South regions identified iRig. 2 The North included This implies that the spatial model for random effects
46 towns encompassing 22,3474pixels and total (which are introduced as surrogates for these variables)
population 707,786; in the South there are 66 towns may differ among sub-regions. Moreover, the regres-
encompassing 24,623 such pixels and total population sion coefficients of the observed explanatory variables
664,066. may also vary among sub-regions. In general, the mes-
We note that in creating these two disjoint sub- sage is that if, a priori, one suspects pattern or pro-
regions, the concern was not to strive for homogene- cess is operating differentially in portions of the study
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Fig. 3. Histogram for population for the 159 towns in the full study area.

region, it is prudent to fit individual models to these
portions.

road classifications. In fact, because the sparseness pat-
terns differed between the North and the South, we

The GIS data layers used in the modeling are shown used differently defined binary classifications for the

in Figs. 2-7 In Fig. 2 town population data for

two regions. In the North, no roads was one of the bi-

North versus South is overlaid on the town boundaries nary road classifications while the other four road types

for the entire provinceFig. 3 provides a histogram
of the population data for all towns included in the
model.

The ordinal land-use classifications for the north-
ern and southern region are showrFig. 4: the most

degraded land is shown as non-forest (class 1), fol-
lowed by cleared and degraded (potential) forest lands

formed the second classification. In the South, no roads
and footpath formed one category while the other three
road types were lumped into a second category.

5. Model details

(class 2), secondary patch forest (class 3) and mature  We model the joint distribution of land usk)(and
fores_t (cllass 4) and the missing value clags. Rel_atlve population count®) at the pixel level (1 krf). LetL;
contribution (in percentage) of each class is provided denote the land-use value for tjié pixel in theith

in Table 1 Fig. 5provides grey scale maps for elevation
while Fig. 6 provides grey scale maps for slope.
Road classification was modified prior to full model

township and lePj; denote the population count for
the jth pixel in theith township. The.jj are observed
but onlyP; = 'jPjj are observed at the town level. We

development. Initially, we had five road types assigned collect theLj andPj into town level vectors.; andP;

to pixels, viz. no roads, footpath, rough track, mo-
torable track and primary route or rail roallid. 7).

and overall vectoré andP. We also observe at each
pixel elevationFij, slope Sj and road classificatioR; .

However, due to the sparseness of counts in some of Lastly, lets; denote a spatial random effect for township
the categories, we needed to reduce this to a binaryi. We elaborate these effects below.

Table 1
Contribution of land-use classes in percentage
Class 1 Class 2 (cleared/ Class 3 (secondary Class 4 (mature forest) Missing
(non-forest) degraded forest) patch forest)
North 25 30.7 17.2 435 6.1
South 107 42.5 111 26.2 9.5
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Fig. 4. Ordinal land-use classifications for the study regions.

In specifying the joint distributionf(L, PI{Ej},  we condition in this fashion since one of our ob-
{Si}. {Ry}, {8i}), we factor this joint distribution as  jectives is to see if population provides a significant
effect for land use. Such explanation is evidently

f(P|{Eij}’ {Sij}’ {Rij}’ {Si})f(Llp’ {Eij}’ {Sij}v {Rij})- not causal; we could equa”y well-conditio®

Q) onL.
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Fig. 5. Grey scale elevation maps for the study regions displayed in a limited number of classes here.

Turning to the first distribution i(l), the population (2i) where logrj =log) jxj =log ) jexp(Bo + B1Ejj +
model, we assume that tiRy are conditionally inde- B2Sj + B3R + ).
pendent given th&'s, Ss, R'sands’s, i.e., we write In (3), the B’s are regression coefficients while,
F(PUES). 1S}, (Rij). 18:) again, thes;’s are township level spatial random ef-
fects. They are intended to capture anticipated spatial
= l_[Hf(Pij|Eij’ Sij, Rij, 8i)- (2) similarity for neighboring townships with regard to
i population. Unlike usual random effects which are
Moreover, sinceP; is a population count and since assumed to be independent and identically distributed

many of these (unobserved) counts will be sparse for Normal random variables, the distributions of thes
this region at this scale, we assuig Poisson ;) are specified conditionally given all of their neighbors.

where That s,

loghij = o + B1Eij + B2Sij + BaRij + i 3) S s )
widi 1

Since thePj’'s are conditionally independent Pois- (8, j # i~N (¢ )

son variables, summing ovgr yields P;: Poisson 2@ X i
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Fig. 6. Grey scale slope maps for the study regions.

wherew;; = 1 or 0 according to whether or not town tical for all pixels within a town and will be similar for

j is contiguous with town and<? is the spatial vari-  Pixels arising from adjacent towns. Also, since the
ance component. In other wordsjs expected to vary ~ are conditionally independent random variables with
about the average of its neighbors. Such models are re->_jPij =Pi, we have{Pj }|Pi: multinomial®i; {yi})
ferred to as conditionally autoregressive (CAR) mod- Whereyjj =1jj/A;.

els. See, for exampl&esag (1974)r Cressie (1993) In the second term i), the land-use classification
for further details. We note that since tRgare notob- ~ model, we assume conditional independence ot he
served we cannot introduce pixel level spatial effects given theP's, E's, Ss andR’s. To handle the ordinal
into the population model. We cannot adjust the mean nature of theLj’s, we follow Albert and Chib (1993)

of population counts we have not seen; unstable model introducing a latent variablé; associated with each
fitting results. So, spatial adjustmenttpwill be iden- Lij. W is conceived as a continuous random variable
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Fig. 7. Vector road classification for the entire province.

on the real line, interpreted as the extent of forest scale but the data cannaibsolutelyplace theW’s. To
cover. We then imagine that the four ordinal land-use do so, withoutloss of generality, we can set the cut point
classifications cut the real line into four intervals so y;=0buty;andyzare unknown. Hence, givéfij and
thatLj =1 if Wjj € (yi—1, »1), I=1, ..., 4 with regard they’s, Ljj is determined, i.e., the conditional distribu-
to degradation whereyg=—o00, y4=oc. Hence, tion degenerates to a particulasivenW;. Conversely,
mip=P(Ljj=0)=PWijje(y-1. ) I=1...,4, givenL; and they’s, W is restricted to an interval.
provides the four land-use classification probabilities Thus, the land-use classification model becofifes
at each pixel in each town. In other words; is a WI{E;j}, {Sj}, {Rj}, {Pi}, v2, ¥3) which we can
multinomial trial with possible outcomds=1, ..., 4 write as

having respective probabilitiesj, |=1, ..., 4. The

Wijs canonly beidentified up to translations. Thatis, the

Wij’s are locatedelativeto each other on thisimaginary  f(LIW, y2, v3) - fF(WKEij}, {Sij}, {Rij}, {Pyi}). (4)
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Again, due to the conditional independence, the first of Lj andPj;. However, with regard to conditional and

distribution in(4) can be written asT; IT; f(Lij/W |Ejj, marginal specifications, if we use these covariates to
y2, ¥3). The second becomds;IT; f(W; |Ejj, Sj, Rjj, explain Pjj, should we also use them to expldif
Pjj) where we use a linear regression model, givenPjj (or perhaps, vice versa)? In familiar normal

linear modeling, we would introduce redundant
E(Wj) = a0 + a1Eijj + 02Sjj + a3Rij + 2aPyj. - (5) parameters in the marginal model fgr. The marginal
However, note that because ¥4's are not observed, model is over-parametrized, the regression coefficients
their latent scale is not identifiable. We could multiply ~are not identified. Within the Bayesian framework, no
each by a constant, multiply thes by this constant problem arises. We would find little learning about the
and multiply the standard deviationdf; by this con- components of the coefficient vector but no problem
stant and the modeling would be unaffected. Hence, With the overall coefficient. In the present situation,
without loss of generality, we set vif)=1. Note with a Poisson model for thBj’s, the identifiability
further that we cannot introduce spatial random effects problem does not arise; in the marginal modellgr
(in fact any random effects at the pixel level) into the we have both an additive form and a multiplicative
land-use model. Were we to propose including effects form in the covariates. Perhaps more importantly, the
saygjj in (5), sincePj is not observed, the data would ~marginal model foiLj; would not involveP;. We are
not be able to separaf®j and¢jj in the component explicitly interested in a conditional explanation for
a4Pj +¢jj. Nonetheless, thé’s in (3) induce spatial ~ Lj givenP; and the other covariates.
smoothing in explaining theP;’s which, in turn,
produces some spatial smoothness in explaining the
Wi, hencelj. A simpler version of the model in 6. Fitting and inference for the model
(1)—(5) is presented with some analysis along with a
more technical perspective Agarwal et al. (2002) The model defined bf1)—(5)is referred to as a mul-
We conclude with several remarks: tilevel or hierarchical specification. In fact, atthe lowest
level we have the observed land-use classifications. At
Remark 1. A more customary modeling approach to the level above we have the latéffls. At the top level
explain thelj would be a non-hierarchical categorical we have the latent pixel level populations constrained
regression. For instance, we could model |67g4t_1 by the observed township populations. This model is of
ol : . . .
1=2, 3, 4 as a linear model i, §; andR;. Such  Nigh dimension with unknowngWi }, {Pj }, {5i}, o,
models can be routinely fitted using standard statisti- £ Y2, ¥3 @ndz. Fitting of this entire model is feasible
cal software packages but since we do not haye only within a Baye3|a_n_fran_1eV\_/ork_. That is, we have
what should we do? S&; =P;? SetP; =P (area of a!ready provided the joint distribution _fd)f, W andP
ijth pixel)/(area of townshif)? These spcifications are  9iven the model parameters. If we view these latter
equivalent since all pixels are the same size. However, Unknowns as random and add a so-called prior distri-
the assumption of a uniform distribution across town- Pution for them we have a complete model specifica-
ships is inappropriate a&ig. 9 below reveals. By in- tion, i.e., a specification for the joint distribution of all

troducing the latenP;’s, theEj;, Sj, R;, ands; allow the variables in the hierarchical model. With this joint
us to learn about them while reflecting our uncertainty distributionwe can provide inference regarding any as-
in their actual values. pect of the model. The prior distribution for this was

described above. For 8, y2, y3 andr?, the general ap-
Remark 2. More generally, note how our modeling Proach is to use whatever prior or partially data-based
explicitly handles the misalignment issue. To build a information we may have regarding these unknowns to
model at the town level for the;, what should we use ~ obtain some idea of what range they are likely to fall in.
for Ej, S, andR? To build a model fot.j, we should We use this range to develop proper prior distributions,
introduce &P which are as non-informative (i.e., as vague) as possi-

ble (in order to let the observed data drive the inference)
Remark 3. It is perfectly fine to use the covariates while still retaining stable computation. Details of the
Ej, Sj, andRjj, to characterize the joint distribution  prior specifications are supplied in Appendix A.
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The resulting model is fitted using simulation-based the variability in the model unknowns. Various impu-
methods, i.e., Gibbs samplings¢€lfand and Smith, tation models could be adopted; we employed a conve-
1990 and Markov chain Monte-Carlo methods (see, nient Potts modelRotts, 1952; Green and Richardson,
for exampleGilks et al., 199% The output from such ~ 2002. Details are supplied in Appendix C. We used
simulation is sampled from the joint posterior distribu- three imputations, finding negligible differences in the
tion of all model unknowns. Unfortunately, such model resulting parameter estimates across these imputations.
fitting requires considerable effort and time. (In fact,
we summarize the required full conditional distribu-
tions and provide some pseudo-code for implement- 8. Model determination
ing the sampling in Appendix B.) The reward is exact
inference (without relying on possibly inappropriate The model formalized ir{1)—(5) is elaborate and
asymptotics) and more accurate measurement of vari-challenging to fit. Is the effort justified? Here we con-
ability by capturing the uncertainty regarding the model sider three simplifications resulting in easier to fit mod-
unknowns, which is not obtained using classical statis- els and, using a model choice criterion, show that they
tical approaches. In fact, we know of no other way to are not as good.
fit models(1)—(5) Simplified versions may be fitted For instance, a crude model could ignore the pop-
using the E—M algorithmempster et al., 19370 ulation model(3). Instead, we could fit the land-use
obtain likelihood-based inference. But then we have modelin(5) inserting for the unknowRj’s an areally
concerns regarding associated asymptotic variance es-allocated portion of the total township population to
timates. It may also be possible to fit the model stages each pixel within the township. In other words, if there
separately rather than simultaneously. Again, we are aren; pixels in townshig, we setPj; = Pi/n;. Hence we
concerned that this will misrepresent the extent of vari- have only the one stage model(#) and(5) to fit.
ability. These relate to issues of model choice, which  Animprovement in this naive approach first fits the
we discuss below. model in(3) (with or without spatial effects). This fit-
ting considers thé;’s as the only data, thBj’s are
latent variables, and estimates thgs along with 8

7. Imputing missing land-use classification (ands if spatial effects are included). The resultant fit-
ting provides posterior meariPjj|P;) which could

Table 1shows the distribution of land-use classi- then be inserted into the land-use mog! These ex-
fications for the North and South regions. Note that pectedvalues are anticipated to provide better estimates
6.1% of classifications are missing (primarily due to of the truePjj than those from the crude allocation. Fur-
cloud cover) in the North and 9.5% are in the South. thermore, with the inclusion of th&, the E(P;j|{Pi})
One of our fundamental modeling assumptions is that will tend to be smoother than without. But regardless,
each pixel belongs to one and only one town and the we are still failing to capture the uncertainty in not
pixel level population, when aggregated over a town, knowing Pjj; we will underestimate the variability in
givesthe known town level population. Thus, we cannot the overall model. We note that in the absence of spa-
delete pixels with missing land-use classification from tial effects, our fitting approach is analogous to the use
our analysis. Ratherthan relying on subjective orad hoc of the E-M algorithm to obtain maximum likelihood
determination of these missing pixel values, we electto estimatesempster et al., 197 %ith incomplete data
impute missing land-use values in order to have a com- (thePj are missing). In fact, we can also obtain the cus-
plete set for fitting our hierarchical model. In fact, the tomary likelihood inference using the E-M algorithm.
imputation provides an entire set of missing land-use Again, concern is with the resultant interval estimates,
classifications using a neighbor-based joint spatial dis- i.e., the approximate normality assumption on which
tribution for the pixel values. Such a distribution should they are based and the goodness of the variability esti-
support (but not require) land use for a given pixel to mates (estimated standard errors) which they require.
be similar to that of its neighbors. Moreover, we do To compare the foregoing models we use a version
several such imputations to see the sensitivity of our of the posterior predictive loss approach@elfand
resulting inference to the imputation, to better assess and Ghosh (1998)Using squared error loss for con-
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Model comparison for the North and South regions

South
Model P D G P D
| (without population) 10949.68 11911.42 22861.10 15317.60 16788.42 32106.02
Il (without spatial) 10776.78 11489.25 22266.03 14667.41 15407.17 30074.58
Il (full bayesian) 10751.74 11460.42 22212.16 14670.59 15404.39 30074.98

G;i: goodness of fit tern®;: penalty termD;: combined.

venience this approach provides a criterion, which is imputation was implemented apart from the model
composed of two parts. One measures goodness of fitfitting, we chose the latter.

(G) of the model; the other is a penalty terR)(penal-

It is useful to record botls andP (in fact, in some

izing model complexity. In other words, more complex cases it might be useful to plot the component$of
models will tend to fit better but should be penalized andP. However, if we seek to reduce model choice to

for their “size” in order to encourage parsimony.

Specifically,
159 n; 4

G = Z Z Z (Lijt,obs — 7ij1)?

i=1 j=11=1
and
159 n; 4

P = Z Z Z V(Lij1)

i=1 j=11=1

where  Lijjops=1 if

a single number, then we choose the model which min-
imizesD =G +P. Table 2presents the values &f, G
andP for both the North region and the South region for
Model | (simple allocation, without population model)
Model Il (improved model, includes population model,
but not spatial effects) and Model IlI (the full Bayesian
model in(1)—(5). Clearly, Models Il and IIl are pre-
ferred to Model | and, at least in the North, Model Il
is preferred to Model II.

Lijobs=I, 0 otherwise,
mij =P(Ljj =l|Lopg and V(Lj) is the predictive

9. Model results

variability of L;j, i.e., m;3(1 — ;7). Recall that for

eachi, j, oneLij ohs=1 and the remaining three are

Table 3provides point estimates and 95% credible

0. Under G, a model is incrementally rewarded at intervals for both the population and land-use mod-
ani, j pair if its 7y ’s (which also sum to 1) behave els. For comparisorifable 4presents point estimates
similarly to theLjj obs UnderP, a model is rewarded  and associated interval estimates for Model Il fitted us-

ati, j if it produces “informative,” i.e., extreme;j's

ing an E—M algorithm. We see that with regard to the

. In calculatingG and P we could sum over only the population model, the two models provide very similar

observed. jj's or also over the imputel;’s. Since the

Table 3

point estimates but that the approximate likelihood in-

Median and 95% credible interval (in parentheses) for the full Bayesian Model 111

North

South

Population model parameters

B1 (elevation)x 104

B2 (slope)
B3 (roads)
Tg2

Land-use model parameters

a; (elevation)x 103
o (slope)

a3 (roads)

a4 (population)

-8.210 (-8.412,—8.038)
.0704 (.0682, .0725)
1157 (1.151, 1.163)

1.503 (1.058, 2.423)

4.144 (4.024, 4.242)
—.0089 (-.0198, .0020)

—.5931 (.6649,—.5232)
—.0101 (-.0119;-.0081)

—6.487 (~7.028,—5.986)
—.0226 (~.0302,—.0150)
2124 (.1922, .2314)
791 (1.297, 2.455)

942 (1.874, 2.018)
.0415 (.0306, .0526)

— 4587 (-.5373,—.3892)

—.0028 (-.0033,—.0024)
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Table 4

Point estimates and 95% interval estimates (in parentheses) obtained from the EM algorithm (Model Il)

Region North South

Population model parameters
B (elevation)x 104 —8.217 (-8.287,—8.147) —6.397 (-6.467,—6.327)
B2 (slope) .0703 (.0695-0711) —.0241 (-.0253,—.0229)
B3 (roads) 1157 (1.154, 1.160) .2182 (.2151, .2213)

Land-use model parameters
a1 (elevation)x 10-3 4.304 (4.292, 4.316) 84 (2.076, 2.092)
a2 (slope) —.0075 (-.0191, .0041) .0621 (.0499,-0742)
a3 (roads) —.7377 (-.8232,—.6522) — 4744 (-.5548,—.3940)
a4 (population) —.0019 (-.0033,—.0005) —.0024 (-.0028,—.0020)

ference in Model Il produces much tighter confidence the §’s.The figure clearly reveals that spatial proxim-
intervals revealing the significant underestimation of ity encourages similarity in the expected spatial effects
uncertainty. For the land-use model, at least for eleva- of population processes. Here, lighter colors indicate
tion, this continues to be the case. Thus, for the remain- a negative expected spatial effect, i.e., the adjustment
der of this section we describe the results for Model lll.  to the mean population for pixels in that township will

For this model, lower elevation and presence of road tend to diminish population, vice versa for the darker
networks are associated with population settlement in colors.
the North as well as the South with the effects being  We have claimed that a model for pixel population
more significant in the North. In the South, lower slope such ag(3) is more effective than a naive areal allo-
is associated with higher expected population, which is cation of township population to pixels. The results of
consistent with what we anticipate. In the North, how- the model comparison presentedTiable 2certainly
ever, higher slope is associated with higher expected support this. Here, we present some further informal
population, contrary to what one might expect. Turning support. InFig. 9 we have created a map of the pos-
to the land-use model, the coefficient for population al- terior mean populations (on the square root scale) at
though small is significantly negative for the North and the pixel level. The square root scale is employed since
the South with the influence being more pronounced in this is the customary symmetrizing and variance sta-
the North. In fact, the interval estimates for the North bilizing transformation for count data. The smoothing
and South do not overlap. Increased population pres- of the population is evident at finer pixel resolutions.
sure is associated with increased chances of deforesta-Overlaid on this map is the population center dot map.
tion with the effect being less in the South. Elevation The dots locate the villages, town centers or larger ad-
is associated with forest cover with the effect being ministrative centers. The size of the dot roughly corre-
more pronounced in the North. Here too, the interval sponds to population size. Though the dot map could
estimates for the two regions don’t overlap. Presence not be reliably used to model pixel level population,
of road networks significantly increase the chance of it is evident fromFig. 9that, generally, there is good
deforestation in the North as well as South. Slope is agreement between the maps.
mixed with regard to significance. While it emerges as
insignificant in the North, it significantly increases the
chances of forest cover in the South. 10. Discussion

Recall that the spatial random effects, 8is, were
introduced to provide spatial smoothing to the popu- Returning to the model issues section, we sum-
lation model which in turn induces such smoothing to marize first what has been accomplished. We have
the land-use model. A priori, under the CAR model, formulated an ordinal land-use classification scale.
all §;'s have essentially the same distribution and mean We have built a phenomenological hierarchical model
0. A posteriori, spatial pattern emerges. To see this, at the pixel level, which explains land use given
in Fig. 8we present a map of the posterior means of population and other covariates as well as population
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Fig. 8. Population model spatial random effects shown for the study regions.

given other covariates. We have accommodated the coefficient for population in the land-use model.
misalignment between the population data layer (at the Increased population pressure increases the chance
township level) and the land-use data layer (ona % km of forest degradation. We have argued, through a
pixel grid). We have employed a spatial imputation model comparison criterion, that a more sophisticated,
(simulation) strategy to handle the missing land-use hierarchical model, which includes spatial effects
pixels in an objective fashion. We have introduced explicitly and a population model outperforms models
spatial smoothing for the population model, the lacking these specifications. We have also argued and
only feasible possibility given the data available. We demonstrated that our hierarchical model captures
have uncovered significant explanation in the mean uncertainty, which was underestimated by simpler
structure from the elevation, slope and roads data models. Lastly, we have shown the sort of statistical
layers in both the population and land-use models. inference that is possible with our hierarchical model,
In this regard, we have found a significant negative particularly with regard to the spatial smoothing.
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Fig. 9. Expected population for the study regions (on the square root scale) at the pixel level with the population vector point map overlaid.

10.1. Historical context of landuse patterns in French colonial archives clearly shows concern over
Madagascar forestloss throughout French occupantgrpsz, 1993;
Perrier de la Bthie, 192). In fact the claim, certainly
Before we discuss the patterns revealed in our anal- exaggerated, was made that some 70% of the primary
ysis, it is instructive to review the historical context of forest was destroyed between 1895 and 19#%ifac,
land-use change in eastern Madagascar. Based on oufl943-1944 cited by Jarosz, 1998 In any case the
earlier summary of deforestation trends, controversy standard explanations offered for forest loss was the
surrounds issues of rates and timing of forest loss in extensive nature of traditional slash-and-burn upland
Madagascar. Claims that most of the forest loss has oc-rice culture practiced by the locals, forest concessions
curred in recent decades are clearly misleading. The encouraged by the French with associated destructive
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logging practices, and the advocacy of selective forest  The early accounts provide a picture of periodic cy-
conversion to plantation and cash croparpsz, 1993;  cles of landscape clearing for agriculture and abandon-
Perrier de la Bthie, 192). It is likely that all of these ment with some evidence for forest regrowth. In part
activities would have been encouraged by any site fac- this reflected local cycles of human population growth
tors that eased access to forested blocks, i.e., adjacencyand declineCampbell, 1991; Kent, 1992with the re-
to villages and towns, access by road or even foot- sultbeing a very heterogeneous landscape. The histori-
path, and lower, shallower slopes. Land tenure systemscal perspective is much clearer for the northern section
changed with the 1926 decree that all vacant land be de-of the region than the southern. This reflects the infre-
clared state land. Local populations no longer held title quent visits of Europeans to the southern half of our
to ownership over ancestral lands that might currently east coast focal region.
be unoccupiedEsoavelomandroso, 1983Moreover, In the central northern area (around Fenerive), there
during the late 19th and early 20th century several laws was a shift in human settlements evident in about the
were passed prohibiting the burning of foreskarpsz, 17th century{Vright and Dewar, 200Qwith the aban-
1993. Together these laws may well have acted to dis- donment of coastal villages, and the establishment of
enfranchise local populations with respectto traditional new villages on defensible hilltops at a distance from
land conservation practices, actually exacerbating land the coast (cfFlacourt, 1658 Map of Isle Ste. Marie
degradation. and adjacent Madagascar mainland). This is also re-
Yet despite these observations, there are many indi- flected in the narratives of 19th century travelers (cf.
cations that deforestation processes have been on go-Grandidier et al., 1920; Ellis, 18%8Many of these
ing for centuries. Few scholars have looked for older new villages were much larger than previous occupa-
records of forest extent in Madagascar. Such exist, tions, so that local population densities were increas-
in the form of historical accounts of the 17th—19th ing, and may have led to concomitant increase in local
century Ellis, 1858; Flacourt, 1658; Grandidier et anthropogenic effects on the countryside. All of these
al., 1920. These narratives make it clear that the changes are most plausibly accounted for by an in-
distribution of forests were patchy and geographi- crease in insecurity, and the virtual absence of trading
cally patterned long before the French colonial pe- orslaving along the southern coastal atéart, 19932,
riod. It is likely that modern patterns of forest distri- would have meant that population distributions and
bution reflect, in part, forest distributions of the rel- local environmental effects likely followed divergent
atively distant past. The patchy nature of the east- paths.
ern wet forests was evident to mid-17th century ex-
plorers Grandidier et al., 1920cf. Flacourt, 1658 10.2. Forest changes over the past century
Map of Isle Ste. Marie and adjacent Madagascar main-
land), as well as the early and mid-19th century trav- Putting the historical information into the context
elers Heébert, 1980; Ellis, 1858 All of these early of current land use, it is clear that deforestation has
accounts describe large tracts of deforested landscapecontinued up to the present, exacerbated by popula-
from the sea up to 600m on the mountains. This tion growth. The trend has tended to reduce the num-
landscape was clearly a patchwork of cultivated and ber and extent of patches of secondary and mature
grazed lands, secondary forests, abandoned lands, andorests in the landscape. This is easily seen on com-
mature forestsEllis (1858) characterized the limit  paring aerial photographs from the 1940s and 1960s,
of closed forest in the mid-1800s as a band along detailed forest patches mapped in the 19608&ydoy
the eastern mountains from 25 to 40 miles wide, not (1973) and byBenoit de Coignac et al. (1973pout
much different from what is found today. There is the same time, with recent ground truth and satel-
some evidence that extraction of forest resources waslite images (data not shown). The result today is a
frequent and widespread, together with land clearing much more homogeneous landscape of degraded lands,
along the east coast during the 7th—11th century erawith any remaining patches of forest relegated to hill
(Domenichini-Ramiaramanana, 1988; Dewar, 1997 crests and protected valleys. Only along the highest
continuing up to the beginning of the colonial era mountain slopes does one find continuous tracts of
(Kent, 1992. closed, mature forest. These have retreated in recent
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decades, but maps of large forest tracts today are sur-Over that time, population densities have simply in-
prisingly similar to those of 1969, 1934, 1921 and creased across the region.
1902.

The maps provided bidumbert et al. (1964-1965) 10.4. Interpretation
have figured prominently in depicting current for-
est cover for our regionQu Puy and Moat, 1999 How does this information integrate with the results
and in estimating deforestation rate&réen and of our spatial analysis of land-use patterns? Population
Sussman, 19900riginal forest cover was taken from levels are negatively associated with elevation and
the thumbnail “Types de &getation” maps, which pur-  forested landscape are positively associated with ele-
port to show potential vegetation in the absence of vation in both the North and the South. This obviously
man Humbert and Cours Darne, 196%p. 152-154). reflects the current and historical location of settlement
These are conjectured maps with little supporting in- area at low to moderate elevation and the fact that most
formation, and are primarily constructed from the main of the remaining forest blocks are spatially restricted
“V égetation Naturelle” maps of the east coast. These to the highest mountain slope or locally on hill tops.
are used as the baseline “original extent” of forest cover The effect of elevation is much higher in the North
by Green and Sussman (199b)it these provide amis-  than South. This reflects undoubtedly that fact that
leading benchmark at best. The mainétgtation Na- large blocks of forest are associated with the higher
turelle” maps of Humbert and Cours Darne are used mountains of this section of the province. Slope is neg-
to portray current forest cover in the most recent maps atively associated with populated blocks in the South
of forest cover Faramalala, 1995; Du Puy and Moat, but positively associated in the North. This may reflect
1999, as well as forest cover in 195@feen and the fact that settlements were shifted to fortified hill
Sussman, 1990The Humbert and Cours Darne maps tops (but not at great elevation) in the North beginning
were assembled by committee and the forest classi- in the 17th century (cflacourt, 1658Map of Isle Ste.
fication was based on surrogate elevation, bioclimate Marie and adjacent Madagascar mainland—the center
and edaphic variables with uncertain use of aerial pho- of our North region; no comparable maps are extant
tography, and little or no ground truthing. From our for the South). Pixels with hill tops would tend to
own experiences with aerial photography of the region, reflect higher slopes. However, this trend slope was not
vegetation classification without accompanied ground observed in the South. Rather settlements tend to be
truthing is difficult and misleading. Based on all avail- spread out more evenly across the landscape over time
able information it is apparent that the forest cover in areas of convenience, likely avoiding areas of slope
maps produced by Humbert and Cours Darne provide and elevation. Slope shows a similar trend in the spatial
a gross over estimate of the extent of forest either cur- distribution of forested blocks, North versus South. In
rently or for any point over the past half century. Cer- the South steep slopes are positively associated with
tainly this is true based on even a cursory comparison of forested blocks. In the North there is no trend with
the Cartes Forestier with current or recent forest cover slope. This may reflect the trend of finding some hill

on the ground. tops (and hence steep slopes) occupied by towns and
some by forests. An alternative explanation is that
10.3. Demographic trends the North may represent a rougher topography with

greater elevational change but also with greater slope
One can gain some insight on past populations pat- change within and among pixels. The net result may be
terns across the landscape from the available demo-little effective signal of slope on most of the landscape
graphic mapsde Martonne, 1911; Gourou, 1945; Le occupied by forest. We explore this possibility next.
Bourdiec et al., 1960 All show a trend North to South ~ While there is no generally accepted measure of spatial
that is reflected in the population densities observed in roughness for an areal unit, a measure of local variation
1993 (cf.Fig. 8). In the South the populations over the proposed byPhilip and Watson (19863 widely used.
past 90 years have tended to be more evenly spreadThis measure is computed through automatic triangu-
across the landscape. In the North the population cen-lation at locations within the areal unit. Larger values
ters tend to be more restricted to areas nearer the coastof this index indicate greater roughnessTable 5 we
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Table 5 lation centers and forested patches observed today in
Roughness comparison between North and South regions the landscape and appear to account for the differences
Quantiles seen between the northern and southern sections of the
Region 025 .25 5 75 975 province.
North (21466) 0 0002 .0033 .0072  .0403

Generalizing from our specific results, it is evident
that the structural hierarchical modeling style we have
employed is applicable to the modeling of land-use pat-
summarize the distribution of this index over 21,466 ternsin many other contexts. Similarity in land use be-
pixels in the North region and 22,950 pixels in the tween neighboring areal units would be expected, and
South region. The table offers descriptive comparison spatial random effects could be used to capture such as-
since there is no stochastic modeling of this index. sociation. Misalignment problems among data layers,
However, the quantiles for the distribution of rough- hence, between response and explanatory variables are
ness are somewhat larger in the North than the Southalso likely to be common themes.
providing quantitative support for a somewhat rougher ~ Our present application has led to a model for land
topography. use, which is static, since we lack temporal informa-

tion. However, were data available across time, we

could extend the modeling ifil)—(4) Formally, we
11. Conclusions need only add a subscriptto those measurements

which change over time. Mechanistically, we might

To summarize, we have provided a new framework think of the land-use process as evolving in both space
to explain deforestation patterns in the presence of mis- and time. Spatio-temporal random effeéscould be
alignment of data layers, missing data arising from introduced to capture association across both space and
cloud cover, and incorporating spatially explicit struc- time.
ture through the use of a bayesian hierarchical model.  Lastly, while the present setting has an ordinal cate-
Although illustrated in the context of Madagascar, the gorical response variable, in other applications the re-
methods are more generally applicable to other eco- sponse could be binary, e.g., presence or absence of a
logical processes as we have noted at the end of Secspecies, or a count, e.g., abundance of a species. The
tions 1 and 2 Returning to an examination of pop- first stage model for the response would change to re-
ulation block effects, these are negatively associated flect this but hierarchical modeling with spatial struc-
spatially with forested blocks, although the effect is ture could still be employed and would provide the
fairly weak. This weak signal may reflect the perva- same benefit in terms of richer inference than is avail-
sive influence of slash-and-burn agriculture practiced able with standard methods.
throughout the landscape even areas with low popula-
tion densities. This agricultural practice may be more
determined by accessibility than proximity to popula- Acknowledgements
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Detail on prior specifications

To complete the specification of the hierarchical e
model we require priors faz, y, B, 2, y3 andz2. To
obtain a well-behaved chain, we use priors doand
B that are “data-centered” with large variances. Infer-
ence is not sensitive to this centering (we could use say
mean 0 centering) but our Markov chain Monte-Carlo
algorithm burns in more rapidly with such centering. In
particular, we assumg~N(B, kDg) whereg is a point .
estimate obtained from an expectation maximization
algorithm Dempster et al., 199 7which imputes pop-
ulation at the pixel level anBg is the corresponding
dispersion matrix. Fo&, we adoptN (&, kD) obtain-
ing the estimates by fitting a multinomial ordinal re-
sponse model (using standard statistical packages like
SAS) that areally allocates the town population to each
pixel within the town. We experimented with several
values ofk and found little sensitivity fok>10. For
the two unknown cut-pointg, andys, we assume a
uniform prior subject to the constraint 05 < y3 <oo.

For 2 we adopt an inverse gamma prior. In particular
2 ~1G(2, .23). This specification has infinite variance
with mean roughly the sample variability in the log
(wherei,- = P;). As is customary, to ensure identifi-
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(5). Sampling from a multivariate distribution is
standard.
Pi~ multinomial®,;/2))[ ], expe-5(e) —aP;)?)
where gj =Wjj — ap — a1Ej — 22§j — 3Ry, i=1,
..., T whereT is the number of townships. We
updateP; using a Metropolis step with proposal
density which is multinomial R;, A};/Af) where
A;“j = Ajj explae;;). We have found]this to work
very well with acceptance rate of around 50%.
8i o EXP(—Xi))»fiN(ijijfsj/zjwip ?/Y jwij),
i=1...,T. This is log concave and updated
using adaptive rejection samplinGi(ks and Wild,
1992. Code is available fromhttp://www.mrc-
bsu.cam.ac.uk/BSUsit%/_Resgarch/ars.shtmI
B x (Hil_[j eXp(—)Lij))Ll.j”)N(ﬂ, kDg),1=0,1,2,3.
This is also log concave and up dated using adaptive
rejection sampling. Take care with regard to under-
flows when evaluating the log density.

2 ~ Inverse gamma (shapei#2+2, scaé =. 23 +
> i —8,-)2/2) where the relationr§ means andj
are neighbors. This is easily sampled using standard
routines for simulating from the gamma distribution
(seeDevroye, 198h

ability, i.e., a well-behaved posterior distribution, we Psuedo code to fit model HI

impose the constrainfs i§; =0. (Besag et al., 1995

Brief detail on model fitting

We briefly describe the conditional distributions of
each variable and how they get updated (simulated) in
the gibbs sampler. At timiave denote this operation by
gibbsup-daté#y, 6:+1) whered is a vector of all model .
unknowns that are to be updated.

e We assume théN's have a normal distribution
with mean given by(5) and variance 1. Then
Wii~N(E(W;j), L)1(yL,;—1 < Wij < y1,;) and gets
updated using draws from univariate truncated nor-
mals.

e yi~Uniform(a, b); a=maxty_1, max@Wj s.t.
Lij =1)); b=min(yi+1, min(W; s.t.Ljj =1+1)),1=2,
3,...

o a~N((X'X + D3Y/k) (X' + D Ya/k),
(X'X + D;Yk)"") where X is the design ma-
trix that results from the linear regression in

Initialize 6 to 6. We setPjjp = Pi/nj and takingxo,
¥20, Y30 €stimates obtained from fitting a multino-
mial ordinal response model arfly estimates ob-
tained by fitting Poisson regression assunirgPg.
The other parameters would be automatically initial-
ized by the operatiogibbsupdatédo,d1).

e foriin 1:(B+Thx Nsamp)gibbsupdaté;_1, 6;)

Discard the first B iterates, store every Thth iterate
thereafter and use the Nsamp iterates to make infer-
ence

For the current applicatiorB=20000, Th=50
and Nsamp = 1000 were appropriate.

Details on the multiple imputation

The imputation for all of the pixels with missing

land-use classification is carried outin an iterative fash-
ion using a joint spatial Potts distribution. Recall that
Lij denotes the classification for tfté pixel in theith
town andL denotes the set of dllj. The joint density
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