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Abstract

Establishing cause–effect relationships for deforestation at various scales has proven difficult even when rates of deforestation
appear well documented. There is a need for better explanatory models, which also provide insight into the process of deforesta-
tion. We propose a novel hierarchical modeling specification incorporating spatial association. The hierarchical aspect allows us
to accommodate misalignment between the land-use (response) data layer and explanatory data layers. Spatial structure seems
appropriate due to the inherently spatial nature of land use and data layers explaining land use. Typically, there will be missing
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values or holes in the response data. To accommodate this we propose an imputation strategy. We apply our modelin
to develop a novel deforestation model for the eastern wet forested zone of Madagascar, a global rain forest “hot sp
five data layers created for this region, we fit a suitable spatial hierarchical model. Though fitting such models is compu
much more demanding than fitting more standard models, we show that the resulting interpretation is much richer.
employ a model choice criterion to argue that our fully Bayesian model performs better than simpler ones. To the be
knowledge, this is the first work that applies hierarchical Bayesian modeling techniques to study deforestation proc
conclude with a discussion of our findings and an indication of the broader ecological applicability of our modeling sty
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1. Introduction

The demise of the world’s tropical rain forests h
been of central concern to conservation biologists
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at least 20 years (Singh, 2001; Whitmore, 1998). But
cognizance of the problem was apparent decades ear-
lier (cf. Jarosz, 1993; Perrier de la Bâthie, 1921). Yet
it has proven surprisingly difficult and controversial to
obtain accurate estimates of deforestation rates or in-
deed to relate current forest cover to potential or histor-
ical extent of forest cover. This remains true even with
the advent of satellite imagery from the 1970s (Apan,
1999). The difficulties arise from issues of definition
and benchmarks, spatial and temporal resolution, and
data adequacy (Singh, 2001; Angelsen and Kaimowitz,
1999). As a consequence even the most recent esti-
mates of deforestation rates, or more generally land-
use change, vary considerably, and debate continues
over whether the rates of deforestation in the tropics
are declining or increasing (FAO, 2001; Matthews et
al., 2000). Only for specific, narrowly defined regions
can one obtain reasonably reliable data on deforesta-
tion rates over specific time periods (e.g.,Mertens and
Lambin, 2000).

Establishing cause–effect relationships for defor-
estation or land use at various scales has also proven
difficult even when the process appears well docu-
mented (Angelsen and Kaimowitz, 1999; Irwin and
Geoghegan, 2001; Barbier, 2001). The standard expla-
nation for deforestation in the tropics has been rapid
population growth, associated poverty, and consequen-
tial environmental destruction (Leach and Mearns,
1988; Richards and Tucker, 1988; Mercier, 1991;
Brown and Pearce, 1994; Sponsel et al., 1996). In se-
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by human management practices (e.g.,Lamb et al.,
1997).

In this paper, we focus on deforestation processes
and patterns of land use in the eastern wet tropical
forests of Madagascar (Fig. 1). The prevailing percep-
tion is that the patterns and processes here are well
understood. In fact the land-use change maps ofGreen
and Sussman (1990)are commonly reproduced in text-
books as standard examples of deforestation processes.
Nevertheless current and historical patterns of de-
forestation in Madagascar remain poorly understood,
and controversial (e.g.,Jarosz, 1993versusGreen and
Sussman, 1990). Current estimates of forest cover in
Madagascar vary by at least five-fold, from 42,000 km2

for “closed forest,” up to 158,000 km2 for “natural for-
est,” to 232,000 km2 for “total forest and woodland,”
respectively, about 7, 27 and 40% of the land area
of Madagascar (UNEP, 1998; UNEP-WCMC, 2001).
This underscores the pervasive difficulty of estimating
forest cover, which in part reflects differing definitions
of forest (cf. Silander, 2000). In contrast, the forest
cover in 1902 was estimated at about 20% of the land
area (Pelet, 1902). In 1921, based on extensive field
reconnaissance from 1900 to 1915, Perrier de la Bâthie
estimated that about 19% (110,000 km2) of Madagas-
car was in forest or woodland of one sort or another. But
of this only about 35–70,000 km2 (6–12%) was closed
forest. In 1934, forest cover was estimated at only 10%
of the land area (Grandidier, 1934). These figures con-
flict with estimates of forest cover in the 1960s: 33%
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ing are also important causes of deforestation (Torsten
992). However, conventional explanations for for

oss and environmental degradation have recently
uestioned as too simplistic, general, or even misl

ng (Barbier, 2001). In the absence of a clear und
tanding of the role that various contributing expla
ory variables may play in deforestation proces
et alone establishing cause effect relationships,
ot surprising that reforestation or forest conse

ion schemes have had relatively little or no succ
ost of the reports on failures are buried in the g
r secondary literature (e.g.,Bloom, 1998; IUFRO
001; Sharma et al., 1994; cf. Oates, 1999); relatively

ew are to be found in the primary literature (e
lson, 1984; Elster, 2000); and rarely does one fin

eports of successful reforestation either via nat
uccession (e.g.,Guariguata and Ostertag, 2001) or
orested in the early to mid 1960s (Humbert and Cour
arne, 1965) versus 21% a few years later (Le Bourdiec
t al., 1969). The fact that these contemporary estim
f forest cover are so different is surprising, given
vailability of aerial photography and more precise
ographic methodology. Satellite data from the 19
nward have been able to provide only limited e
ates of forest cover or deforestation rates. Virtu
ll of the available images of the wet tropical forest

he eastern Madagascar were too obscured by c
hrough the 1990s to provide adequate estimates o
st cover, especially for the focal region of this stu

n fact, the most recent available maps reproduce “
ent” forest cover for most of the east coast from
aps published in 1965 (Faramalala, 1995; Du Pu
nd Moat, 1999; see alsoGreen and Sussman, 199)
ith no new data. These sources thus indicate cu

orest cover for our focal region (Taomasina Provin
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Fig. 1. Color composite AVHRR satellite image of Madagascar. The box encompassing Taornasina Province shows the focal area for the study.
The light and dark green areas in along the east coats of Madagascar correspond roughly to potential forest and mature, continuous forest,
respectively.

at 66%, while the center of our area (Fenerive Prefec-
ture) would be 95% forest cover. Clearly this is a gross
overestimate of actual forest cover (see results below),
and a marked departure from all earlier estimates in the
twentieth century, and is indeed at odds with historical
accounts from the 17th through 19th centuries. Even
Green and Sussman’s seminal 1990 study of deforesta-
tion rates in Madagascar are based largely on the same
set of maps provided byHumbert et al. (1964–1965).

The confusion and contradiction described above,
underscores the need for a more critical, in depth ex-

amination of deforestation or more generally land-use
patterns and processes. It also points up the need for
evaluating land-use patterns in a more thorough histo-
riography context. Moreover, if there is any indication
that patterns of land-use change spatially from one re-
gion to another, this needs to be addressed or one may
risk obscuring pattern and process across scales.

With these objectives in mind, we present a novel hi-
erarchical Bayesian model for explaining deforestation
processes applied to deforestation of Madagascar. Our
method is able to address several issues that arise in the
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study of deforestation processes, which, to the best of
our knowledge, has not been addressed before. First, we
provide a framework to connect data layers that are spa-
tially misaligned. In our example, we explain land-use
patterns (measured at a resolution of 1 km× 1 km) in
terms of population counts available at a much coarser
resolution (by townships). We show that naive schemes
like allocating population uniformly to all pixels within
a given township perform poorly compared to the mul-
tilevel hierarchical Bayesian model we suggest. Next,
we provide a novel multiple imputation method to deal
with missing data when modeling spatial processes like
deforestation. Note that “filling up holes” created due
to missing land-use classification using a crude method
like “majority vote due to neighbors” might fail to pro-
vide correct estimates of uncertainty for model param-
eters. Finally, our model can explicitly incorporate spa-
tial structure, which has hitherto not been addressed in
the context of explanatory models that study deforesta-
tion processes. Apart from providing better statistical
inference by modeling excess heterogeneity present in
the data, maps of estimated spatial structure are infor-
mative and can often lead to new ecological insights.
However, this comes at a price of being able to fit com-
plex hierarchical Bayesian models, which is a com-
putationally challenging undertaking and may involve
writing special purpose code as is the case here. Hi-
erarchical modeling is just beginning to receive atten-
tion in the ecology literature (see our brief review of
this work at the end of Section2). Beyond the obvi-
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2. Model background and modeling issues

The goal of this paper is thus to develop, fit, and
interpret stochastic models to clarify spatial processes
that can explain patterns of deforestation or more gen-
erally land-use patterns. This is a rather challenging
undertaking on several accounts.

First, there are numerous factors which have been
linked to land use and deforestation. These factors can
be socio-economic, e.g., population growth or eco-
nomic growth; physical factors, e.g., topography or
proximity of rivers and roads; policy-driven govern-
ment intervention, e.g., agriculture and/or forestry poli-
cies; external factors, e.g., demand for exports or fi-
nancing conditions. For any given region, typically
only some of this information is available or selectively
available at different spatial scales.

Second, there is no well-accepted notion of a re-
sponse variable. In some cases deforestation rates or
forest areas may be used. Deforestation rates are typi-
cally calculated over limited time spans. Forested areas
are usually obtained from cross-sectional studies of dif-
ferent countries or different regions within countries.
The alternative, which we adopt is to partition the study
region into disjoint areal units and then attach an or-
dinal land-use classification variable to each unit. This
classification represents successive departure from a
potential, fully forested landscape, which all evidence
points to for eastern Madagascar. Of course, such a
variable is not uniquely defined in terms of number of
a
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ion, we subdivided the analysis spatially into sepa
orthern and southern sub-regions. Finally we inter

he results of the model in the context of the crit
istorical information available. Because the mo

ng approach we take is novel and technically c
lex, we start with detailed discussion of the mode
pproaches.
-

nd definition of classifications.
Third, the explanatory variables and the respo

ariables are typically measured in different areal u
or instance, in the dataset we investigate, the resp
ariable is land-use classification (e.g., forested,
orested, etc.), which is ascribed to 1 km× 1 km pix-
ls derived from satellite images. On the other h
opulation is recorded at various administrative a
nits. In our case, we use the equivalent of “towns

evel data, which are considered to be the most rel
ensus data at the finest spatial resolution. The r
ant challenge is to develop a regression model for
ollected on spatially misaligned areal units, i.e., a
nits (pixels, polygons, etc.) that do not correspon
ach other or line up as GIS data layers.

Finally, land use and deforestation are inhere
patial processes. So too, are many of the exp
ory variables, such as population counts. Satisf



D.K. Agarwal et al. / Ecological Modelling 185 (2005) 105–131 109

stochastic, as well as mechanistic objectives, modeling
should capture association between measurements on
areal units in terms of proximity of these units. One
way to accomplish this is to introduce appropriate sets
of spatial random effects, which can serve as spatial sur-
rogates for unmeasured or unavailable covariates that
are inevitable in any modeling protocol.

Little formal modeling of deforestation was at-
tempted until the 1980s (Granger, 1998). Descriptive
statistical summaries of land use or forest area obtained
for certain regions at certain time points were custom-
ary. Most of the ensuing statistical work, which has
appeared has been based on standard multiple linear
regression models relating deforestation rates or for-
est area to a long list of potential explanatory variables
(Granger, 1998). In fact, Granger lists at least 28 differ-
ent variables, which have been linked directly or indi-
rectly to deforestation or land-use change in a forested
landscape, while Anglesen and Kaimowitz list 140
different models developed to explain just economic
causes of deforestation. In these studies it appears that
the major objective has been simply to maximizeR2;
and models with eight or more explanatory variables
have been put forward. This is no longer considered
sufficient or useful in statistical modeling these days.
Moreover, none of these models are explicitly spatial
in nature. The little work with an explicitly spatial fla-
vor, which does exist has arisen from an econometric
perspective introduced byPalloni (1992)andChomitz
and Gray (1996), and more recently summarized by
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In general, stochastic models provide considerable
advantage over deterministic approaches in situations
where substantial variability is always present, as in
land-use change data. Stochastic modeling allows one
to resolve the signal and to clarify the nature of the
noise, which obscures it. The development of satisfy-
ing stochastic models does raise a number of method-
ological issues. Here, we offer an overview of a critical
subset of these issues. We address the specific details
of these issues later as part of the development section.

First, there is a matter of modeling style. Do we
employ simulation modeling, say as is frequently done
with cellular automata models, attempting to capture
mechanistic aspects of the process? Or do we employ
phenomenological modeling to attempt to relate dif-
ferent data layers, each measuring different variables?
Where there is theory to guide us, can we be somewhat
mechanistic in relating data layers? Finally, do we take
a static or dynamic view of the process? There is no
simple right or wrong answer to these choices.

If we seek to explain land use, then we first have
to formally define the response variable. Even within a
specific context there is not usually a well-accepted no-
tion. Also, we have to identify which factors we seek to
link to land-use. Do we seek a socio-economic explana-
tion? Do we seek a physical or ecological explanation?
Here we must recognize that no proposed explanatory
model iscorrect, but that some are moreusefulthan
others and that no proposed explanatory model estab-
lishes causality, merely relationship. Moreover, mod-
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o market distance. These models remain quasi-sp
nd econometric.

Hence, we claim that despite the already subs
ial literature, there is a need for better, explana
odels, which may provide better insight into the p

ess of deforestation or land-use change (cf.Irwin and
eoghegan, 2001; Veldkamp and Lambin, 2001). Var-

ous modeling lineages have been developed an
lied to explain deforestation with questionable s
ess and little attempt at synthesis. These include d
inistic and stochastic models, statistical and sim

ion models, phenomenological and mechanistic m
ls, spatial and non-spatial models, etc.
ls employing different subsets of variables can exp
omparably well. One must decide which perspec
o explore and which subset of possible factors to
ect.

When data layers are to be interrelated, they ca
ntroduced at various levels of a hierarchical speci
ion, which becomes an explanatory model for the
ess (cf.Wu and David, 2002). In this specification th
owest level is the response. This modeling strateg
eferred to as hierarchical or multilevel modeling. H
or example, the hierarchical levels of the full mo
nclude a population model, a land-use classfica

odel, and a model specifying latent variables. This
roach allows for considerable flexibility in modeli
nd the possibility of incorporating mechanistic co
onents in linking certain levels. Hierarchical mode

s achieving increased utilization in analyzing data
ected from complex processes. See the recent p
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byWikle (2003), byClark et al. (2004), and byGelfand
et al. (2003, 2005).

Full inference for hierarchical models is most easily
achieved (and often only possible) within a Bayesian
framework. In particular, this framework enables a pos-
terior distribution (i.e., a conditional distribution given
the observed data) for all model unknowns. This dis-
tribution allows any desired inference about any of the
unknowns. Such models are fitted using simulation-
based methods, e.g., Gibbs sampling and Markov chain
Monte-Carlo methods. SeeCarlin and Louis (2000)and
Gelman et al. (1995)for an introductory presentation
of this methodology.

In the context of explaining land use, the data layers
are inherently spatial. Some are observed at particular
point locations, and some are obtained through satellite
imagery as raster pixel values at some degree of reso-
lution. Other data may be associated with formal gov-
ernmental units such as towns or other municipal sub-
divisions, stored as polygons. Data, which is obviously
spatial should be modeled in an explicitly spatial fash-
ion. Only rarely has this actually been done in modeling
land-use patterns, and where spatial models have been
developed, the analysis is not entirely spatially contin-
uous (Irwin and Geoghegan, 2001). Developing spatial
process models that lack spatial contiguity is analogous
to developing models of time series processes that lack
knowledge of the time order of the processes—not very
useful (Irwin and Geoghegan, 2001). While there may
be issues of model choice in providing spatial structure
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But there will always be omitted, perhaps unobserv-
able, explanatory variables, which also provide spatial
explanation. In the absence of these variables, spatial
association in the residuals will be expected, and hence
models introducing spatial dependence are needed.

For at least some data layers there will be missing
data. For example, land-use classifications obtained by
remotely sensed satellite data, particularly for wet trop-
ical regions, will have portions obscured (hence miss-
ing) by cloud cover. Typically missing data are treated
in an ad hoc manner. Models of spatial association for
gridded data assume there are no missing observations.
To accommodate suchholesin the dataset, imputation
(i.e., statistical simulation of missing values) provides
an alternative to subjective assignments of values. That
is to say, one imputes observations at the missing loca-
tions according to the likelihood of the different pos-
sible values. Such imputation must be done randomly
and, moreover,multiple, hence variable, imputations
are necessary in order to capture the effect of the uncer-
tainty associated with imputation and to better reflect
variability associated with inference in the presence of
missing values.

Lastly, the multilevel hierarchical approach allows
for the specification of many different models; there
is flexibility at each level. But, with many possible
models to consider, tools for model comparison are
required. Simple notions likeR2 are clearly inappro-
priate for multilevel models with categorical or count
variables as response. Criteria, which reflect the util-
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nt spatial data layers are often collected at diffe
cales, one needs a formal (rather than ad hoc) m
ng strategy to carry out full inference in the prese
f such consequential misalignment. Bayesian hie
hical modeling provides this framework.

In this regard, some spatial features can be desc
hrough the mean structure of the model (or in the
f categorical or count data, the mean on a transfor
cale). For instance, one can introduce distance
oad or to a town center with a coefficient as part
egression structure. Or one can attempt to explain
ial features through a trend surface in the mean (

polynomial of low order in latitude and longitud
ty for the model emerge as more attractive and b
uited. However, such comparison is really only se
le across models employing the same response
nd with explanatory objectives with regard to availa
ata layers. So, these are the only model compar
e can provide.
Hierarchical Bayes models have a long and succ

ul history by now in several areas but are just beginn
o be applied to problems in ecology (e.g.,Borsuk et al.
004; Qian et al., 2003; Borsuk et al., 2001; Prato, 2
lark, 2003). SeeBanerjee et al. (2003)for a general in

roduction to the methodology. However, to the bes
ur knowledge, the methodology has not been ap

o study deforestation processes other than a pr
nary paper we have published in the statistical l
ture (Agarwal et al., 2002). Before providing detail
n our model development and specification in n
ection, we would like to comment briefly on the d
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ference between our approach and the simulation mod-
eling approach that has been widely used to study de-
forestation (see, for example,Soares-Filho et al., 2002;
Duffy et al., 2001; Kok and Winograd, 2002). We re-
mark the latter is really a different philosophic approach
to the problem compared to the explanatory approach
we adopt. While simulation-based modeling seeks to
predict observed land-use behavior by capturing the
known mechanistic aspects of the problem, our ex-
planatory approach attempts to explain a response vari-
able (in this case land use) in terms of other explanatory
variables. Moreover, simulation models are dynamic,
seeking to compare the evolution of deforestation. Our
model is static seeking to link land use to explana-
tory variables, in particular to population pressure. As
such, the two approaches are not directly comparable
to understanding deforestation patterns and processes.
In fact, the two approaches can in some cases comple-
ment each other—insights into the mechanistic aspects
of the problems can be incorporated when building
an explanatory model. However, this has rarely been
attempted.

3. Overview of model development and
specification

Our approach is to formulate a model for the joint
distribution of local human population attributes and
forest exploitation, given other explanatory variables
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We show how such models can be fitted using Gibbs
sampling (Gelfand and Smith, 1990), thus allowing full
inference of all of the modeling levels (cf.Gelfand et
al., 2005). The misalignment problem extends recent
work of Mugglin and Carlin (1998), Mugglin et al.
(2000)andGelfand et al. (2003). In the present con-
text the other explanatory variables we employ are also
measured at the (l km× 1 km) pixel-level. However, if
this were not the case, a general strategy is as follows.
Identify the data layer at the finest spatial resolution.
For each remaining layer create an individual overlay
on this one. For each overlay, carry out a rasterization
so that each areal unit of the latter is contained on one
and only one unit of the former. Then model the joint
distribution of all the variable layers at this highest res-
olution. Such an approach yields a model for each data
layer at its observed scale. Note that it is not neces-
sary to align all pairs of data layers. Rather, we need
only align each layer with the one at the finest spatial
resolution.

Two related implementation issues arise under our
modeling approach. First, for the response data we
work with, due to the presence of cloud cover, land-
use classification is missing for approximately 8% of
the roughly 47,000 pixels. Thus, we introduce an im-
putation approach, i.e., a spatial multiple imputation
(Schafer, 1997), to handle this missing data. Second,
our modeling requires commitment of considerable
computational effort (tailored programs for the indi-
vidual application) and computer run time. To justify
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t irregular town-level polygons). We then overlay

own-level map on the pixel-level map and modify to
oundaries, usingmajority pixel rule, so that each pixe

s contained in one and only one town. Upon suchras-
erizationof the town data, we conduct the joint mo
ling at the pixel level. This joint distribution is spe
ed by modeling the unobserved pixel-level popula
ounts and, then the conditional distribution of land
iven the associated count. The model for the la
opulation counts leads to a model for the obse
ounts. With two sets of spatial effects, one assoc
ith the town population counts, the other with pi

evel land-use model, a multilevel hierarchical mo
esults.
his commitment we offer model comparison rev
ng the inferential benefits of our modeling relative
impler model specifications, which can be fitted m
asily and quickly.

. The dataset

The data used in developing the deforestation m
re from Madagascar, an area of the world design
s particularly high priority for conservation efforts

s recognized as 1 of 25 mega-diversity countries in
orld (Meyers et al., 2000) and the eastern tropical w

orest in Madagascar is globally one of 12 rain fo
hot spots”. At the same time, the forests in Ma
ascar have been characterized as under treme

hreat from deforestation (USDA Forest Service, 200
ussman et al., 1994; Oxby, 1985). As a consequenc
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many of the most well-known plant and animal species
are listed by the International Union for the Conserva-
tion of Nature (IUCN) as globally threatened.

There is considerable difference of opinion as to how
much of the original forest in Madagascar is left as we
pointed out earlier, but estimates range down to as little
as 10%, and perhaps only 25% of what is left is con-
sidered primary or undisturbed forest (Sussman et al.,
1994; USDA Forest Service, 2000). Of these systems,
the coastal forests are the most threatened. Estimated
deforestation rates for Madagascar are quite variable:
less than 1% per year to 5% or more. Some have esti-
mated that within 20 years, little or no forest will remain
outside protected areas (currently about 1.85% of the
total land surface). But, as mentioned earlier, most of
these estimates of forest cover and deforestation rates
are speculative and controversial. Concerns over defor-
estation and attempts to estimate rates is nothing new.
In 1921 Perrier de la B̂athie estimated that between
1900 and 1920, 49,000 km2 of forest had been lost.
Early in the 19th century, the first King of Madagascar
proscribed the clearing and burning of forest (Verin and
Griveaud, 1968).

The focal area for this study is the wet tropical for-
est biome within Toamasina (or Tamatave) Province,
Madagascar. This province is located along the East
Coast of Madagascar, and encompasses the great-
est extent of tropical rain forest on the island nation
(cf. Fig. 1). The aerial extent of Toamasina Province
is roughly 75,000 km2. To model forest cover for
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cover types, their composition, distribution and loca-
tion within the region. Two Landsat 5 Thematic Map-
per TM images (September 15, 1993 and November 21,
1994), a set of aerial photographs from the 1940s and
1960s together with extensive independently collected
ground-truthing data were used to aid fine scale pattern
delineation. The 30 classes were iteratively assessed,
reclassified with a supervised, maximum-likelihood
process and reduced to the final 5 used for the modeling:
mature forest, secondary patch forest, cleared forest,
non-forest and missing values (for small patch areas
obscured by clouds or cloud shadows, haze, etc.). We
believe this provides the most accurate characterization
of the landscape at this scale available. The vector maps
of forest cover currently available (Faramalala, 1995;
Du Puy and Moat, 1999) are overly smoothed and in
many cases report forested and non-forested areas that
based on our ground truth information, are misclassi-
fied.

4.2. DEM generation

The quality of existing global topographic informa-
tion (Gtopo30, Digital Chart of the World) we found to
be inadequate, containing numerous artifacts and noise.
Instead we use vector elevation contour data (100 m)
digitized by the Madagascar geodetic survey office (In-
titut National de Geodesie et Cartographie, or Foiben
Taosarin-tanin ’I Madagasikara (FTM)). These were
used to generate a continuous, 1 km× 1 km grid sur-
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tal geospatial layers representing: town bounda
with asociated 1993 population census data), e
ion, slope, road and transportation networks (19
nd land cover.

.1. Forest classification

A single NOAA-11 AVHRR, 10-day compo
te image for September 21, 1993 was obta
rom the USGS EROS Data Center (http://edcwww
r.usgs.gov). Three reflective bands (1, 2 and 3) p

Normalized Difference Vegetation Index (NDV
bands 3− 2\3 + 2), were presented to an unsup
ised Iterative Self Organizing (ISODATA) cluste
ng algorithm, within ERDAS Imagine v.8.4 softwa
his clustering output 30 initial classes, which w

nterpreted using expert personal knowledge of
ace, utilizing a combination of Surfer v. 6.04 (Gold
oftware, Golden CO) and Arc View Spatial Analys
.0 (ESRI, Redlands CA) software. Spatial misal
ents and misregistration errors were corrected to
uce the final 1 km2 elevation grid layer. In turn, th

ayer was used to calculate a slope (degrees) laye
ng Arc View Spatial Analyst v. 2.0.

.3. Town, population and other cartographic data

Township (i.e., “firaisana”) boundary informati
as digitized for all 162 firaisana in Taomas
rovince by the Madagascar geodetic survey o
FTM). Census data were obtained from the Un
ations via the Madagascar census bureau (Dire
t Statistique Sociales) for each firaisana for 1
ector point data for various population center f

ures (i.e., village/hamlet localities or “fokontany

http://edcwww.cr.usgs.gov/
http://edcwww.cr.usgs.gov/
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firaisana “headquarter” villages, fivindronana head-
quarter towns, and the provincial capitol) were
digitized and supplied by FTM. Road and tracks were
also digitized and supplied by FTM (primary routes
(sealed roads) and railroads, motorable (in dry season)
tracks, rough ox cart tracks, and primary footpaths).
These vector layers were all rasterized to 1 km2 grids.
Grid cells fell along town boundaries were assigned
to a particular town by majority area rule. Grid cells
with one type of road were assigned the appropriate
value. When two or more road/path network types fell
in a particular grid cell, the more developed road value
was assigned to the pixel.

The final layers were rasterized to 1 km and clipped
to the extent of the Town boundaries in the province. All
islands were clipped as was the one town that covered
less than 1 km2. All data were obtained in, or projected
to, Laborde (m), WGS84 coordinate values.

Following clipping, 159 townships and 74,607
1 km× 1 km pixels remained in our data set.Fig. 2
shows the town level map for the towns in the study
region. In the western portion of the province an es-
carpment demarcates the eastern wet forest or potential
forest biome from the western, seasonally dry grass-
land/savannas mosaic. Visual inspection of the data
layers prior to analyses revealed some differences be-
tween the northern and southern parts of the province.
The North had fewer population centers most of which
tend to be clustered near the coast, and larger forest
patches, while the South had more populations cen-
t aller
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Fig. 2. Northern and southern regions defined within the study re-
gion. All town boundaries are shown. Population size categories are
shown for northern and southern towns studied.

ity of spatial pattern of the sub-regions. Rather, due
to the fairly simple mean specification of the model
described below, we were concerned that omitted or
unobserved variables which carry spatial information
may differentially affect land use in the sub-regions.
This implies that the spatial model for random effects
(which are introduced as surrogates for these variables)
may differ among sub-regions. Moreover, the regres-
sion coefficients of the observed explanatory variables
may also vary among sub-regions. In general, the mes-
sage is that if, a priori, one suspects pattern or pro-
cess is operating differentially in portions of the study
ers scattered across the landscape, with many sm
orest patches and more extensive road developm
ncluding primary routes to the national capital, w
f the study region. With concern that pattern and
ess might differ between these regions and with
erest in making comparisons between them, we
ted two disjoint regions. In particular, we exclud

he western (non-forested majority) towns and in
uced, between North and South, a buffer regio

east two towns wide (to provide separation of No
nd South spatial effects). This yielded the North
outh regions identified inFig. 2. The North include
6 towns encompassing 22,347 km2 pixels and tota
opulation 707,786; in the South there are 66 to
ncompassing 24,623 such pixels and total popul
64,066.

We note that in creating these two disjoint s
egions, the concern was not to strive for homog
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Fig. 3. Histogram for population for the 159 towns in the full study area.

region, it is prudent to fit individual models to these
portions.

The GIS data layers used in the modeling are shown
in Figs. 2–7. In Fig. 2, town population data for
North versus South is overlaid on the town boundaries
for the entire province.Fig. 3 provides a histogram
of the population data for all towns included in the
model.

The ordinal land-use classifications for the north-
ern and southern region are shown inFig. 4: the most
degraded land is shown as non-forest (class 1), fol-
lowed by cleared and degraded (potential) forest lands
(class 2), secondary patch forest (class 3) and mature
forest (class 4) and the missing value class. Relative
contribution (in percentage) of each class is provided
in Table 1. Fig. 5provides grey scale maps for elevation
while Fig. 6provides grey scale maps for slope.

Road classification was modified prior to full model
development. Initially, we had five road types assigned
to pixels, viz. no roads, footpath, rough track, mo-
torable track and primary route or rail road (Fig. 7).
However, due to the sparseness of counts in some of
the categories, we needed to reduce this to a binary

road classifications. In fact, because the sparseness pat-
terns differed between the North and the South, we
used differently defined binary classifications for the
two regions. In the North, no roads was one of the bi-
nary road classifications while the other four road types
formed the second classification. In the South, no roads
and footpath formed one category while the other three
road types were lumped into a second category.

5. Model details

We model the joint distribution of land use (L) and
population count (P) at the pixel level (1 km2). Let Lij
denote the land-use value for thejth pixel in the ith
township and letPij denote the population count for
the jth pixel in theith township. TheLij are observed
but onlyPi =

∑
jPij are observed at the town level. We

collect theLij andPij into town level vectorsL i andPi

and overall vectorsL andP. We also observe at each
pixel elevation,Eij , slope,Sij and road classificationRij .
Lastly, letδi denote a spatial random effect for township
i. We elaborate these effects below.

Table 1
Contribution of land-use classes in percentage

Class 1
(non-forest)

Class 2 (cleared/
degraded forest)

Class 3 (secondary
patch forest)

Class 4 (mature forest) Missing

North 2.5 30.7 17.2 43.5 6.1
South 10.7 42.5 11.1 26.2 9.5
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Fig. 4. Ordinal land-use classifications for the study regions.

In specifying the joint distribution,f(L, P|{Eij},
{Sij}, {Rij}, {δi}), we factor this joint distribution as

f (P |{Eij}, {Sij}, {Rij}, {δi})f (L|P, {Eij}, {Sij}, {Rij}).
(1)

We condition in this fashion since one of our ob-
jectives is to see if population provides a significant
effect for land use. Such explanation is evidently
not causal; we could equally well-conditionP
onL.
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Fig. 5. Grey scale elevation maps for the study regions displayed in a limited number of classes here.

Turning to the first distribution in(1), the population
model, we assume that thePij are conditionally inde-
pendent given theE’s, S’s, R’sandδ’s, i.e., we write

f (P |{Eij}, {Sij}, {Rij}, {δi})
=
∏
i

∏
j

f (Pij|Eij, Sij, Rij, δi). (2)

Moreover, sincePij is a population count and since
many of these (unobserved) counts will be sparse for
this region at this scale, we assumePij : Poisson (λij )
where

logλij = β0 + β1Eij + β2Sij + β3Rij + δi (3)

Since thePij ’s are conditionally independent Pois-
son variables, summing overj yields Pi : Poisson

(λi) where logλi = log
∑

jλij = log
∑

jexp(β0 +β1Eij +
β2Sij +β3Rij + δi).

In (3), the β”s are regression coefficients while,
again, theδi ’s are township level spatial random ef-
fects. They are intended to capture anticipated spatial
similarity for neighboring townships with regard to
population. Unlike usual random effects which are
assumed to be independent and identically distributed
normal random variables, the distributions of theδi ’s
are specified conditionally given all of their neighbors.
That is,

δi|δj, j 
= i∼N

(∑
jωijδj∑
jωij

,
τ2∑
jωij

)
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Fig. 6. Grey scale slope maps for the study regions.

whereωij = 1 or 0 according to whether or not town
j is contiguous with towni andτ2 is the spatial vari-
ance component. In other words,δi is expected to vary
about the average of its neighbors. Such models are re-
ferred to as conditionally autoregressive (CAR) mod-
els. See, for example,Besag (1974)or Cressie (1993)
for further details. We note that since thePij are not ob-
served we cannot introduce pixel level spatial effects
into the population model. We cannot adjust the mean
of population counts we have not seen; unstable model
fitting results. So, spatial adjustment toλij will be iden-

tical for all pixels within a town and will be similar for
pixels arising from adjacent towns. Also, since thePij
are conditionally independent random variables with∑

jPij =Pi , we have{Pij}|Pi : multinomial(Pi ; {γ ij})
whereγ ij =λij /λi .

In the second term in(1), the land-use classification
model, we assume conditional independence of theLij
given theP’s, E’s, S’s andR’s. To handle the ordinal
nature of theLij ’s, we follow Albert and Chib (1993),
introducing a latent variableWij associated with each
Lij . Wij is conceived as a continuous random variable
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Fig. 7. Vector road classification for the entire province.

on the real line, interpreted as the extent of forest
cover. We then imagine that the four ordinal land-use
classifications cut the real line into four intervals so
that Lij = l if Wij ∈ (γ l−1, γ l), l = 1, . . ., 4 with regard
to degradation whereγ0 =−∞, γ4 =∞. Hence,
πijl ≡ P(Lij = l) = P(Wij ∈ (γl−1, γl)), l = 1, . . . ,4,
provides the four land-use classification probabilities
at each pixel in each town. In other words,Lij is a
multinomial trial with possible outcomesl = 1, . . ., 4
having respective probabilitiesπijl , l = 1, . . ., 4. The
Wijs can only be identified up to translations. That is, the
Wij ’s are locatedrelativeto each other on this imaginary

scale but the data cannotabsolutelyplace theWij ’s. To
do so, without loss of generality, we can set the cut point
γ1 = 0 butγ2 andγ3 are unknown. Hence, givenWij and
theγ ’s, Lij is determined, i.e., the conditional distribu-
tion degenerates to a particularl givenWij . Conversely,
given Lij and theγ ’s, Wij is restricted to an interval.
Thus, the land-use classification model becomesf(L,
W|{Eij}, {Sij}, {Rij}, {Pij}, γ2, γ3) which we can
write as

f (L|W, γ2, γ3) · f (W |{Eij}, {Sij}, {Rij}, {Pij}). (4)
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Again, due to the conditional independence, the first
distribution in(4) can be written as�i�j f(Lij /Wij |Eij ,
γ2, γ3). The second becomes�i�j f(Wij |Eij , Sij , Rij ,
Pij ) where we use a linear regression model,

E(Wij) = α0 + α1Eij + α2Sij + α3Rij + α4Pij. (5)

However, note that because theWij ’s are not observed,
their latent scale is not identifiable. We could multiply
each by a constant, multiply theα’s by this constant
and multiply the standard deviation ofWij by this con-
stant and the modeling would be unaffected. Hence,
without loss of generality, we set var(Wij ) = 1. Note
further that we cannot introduce spatial random effects
(in fact any random effects at the pixel level) into the
land-use model. Were we to propose including effects
sayϕij in (5), sincePij is not observed, the data would
not be able to separatePij andϕij in the component
α4Pij +ϕij . Nonetheless, theδi ’s in (3) induce spatial
smoothing in explaining thePij ’s which, in turn,
produces some spatial smoothness in explaining the
Wij , henceLij . A simpler version of the model in
(1)–(5) is presented with some analysis along with a
more technical perspective inAgarwal et al. (2002).

We conclude with several remarks:

Remark 1. A more customary modeling approach to
explain theLij would be a non-hierarchical categorical
regression. For instance, we could model logit

πij,l−1
πij,l

,

l = 2, 3, 4 as a linear model inEij , Sij andRij . Such
m tisti-
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of Lij andPij . However, with regard to conditional and
marginal specifications, if we use these covariates to
explainPij , should we also use them to explainLij
givenPij (or perhaps, vice versa)? In familiar normal
linear modeling, we would introduce redundant
parameters in the marginal model forLij . The marginal
model is over-parametrized, the regression coefficients
are not identified. Within the Bayesian framework, no
problem arises. We would find little learning about the
components of the coefficient vector but no problem
with the overall coefficient. In the present situation,
with a Poisson model for thePij ’s, the identifiability
problem does not arise; in the marginal model forLij ,
we have both an additive form and a multiplicative
form in the covariates. Perhaps more importantly, the
marginal model forLij would not involvePij . We are
explicitly interested in a conditional explanation for
Lij givenPij and the other covariates.

6. Fitting and inference for the model

The model defined by(1)–(5)is referred to as a mul-
tilevel or hierarchical specification. In fact, at the lowest
level we have the observed land-use classifications. At
the level above we have the latentW’s. At the top level
we have the latent pixel level populations constrained
by the observed township populations. This model is of
high dimension with unknowns,{Wij}, {Pij}, {δi}, α,
β, γ2, γ3 andτ2. Fitting of this entire model is feasible
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odels can be routinely fitted using standard sta
al software packages but since we do not havePij ,
hat should we do? SetPij =Pi? SetPij =Pi (area o
j th pixel)/(area of townshipi)? These spcifications a
quivalent since all pixels are the same size. How

he assumption of a uniform distribution across to
hips is inappropriate asFig. 9 below reveals. By in
roducing the latentPij ’s, theEij , Sij , Rij , andδi allow
s to learn about them while reflecting our uncerta

n their actual values.

emark 2. More generally, note how our modeli
xplicitly handles the misalignment issue. To buil
odel at the town level for thePi , what should we us

or Ei , Si , andRi? To build a model forLij , we should
ntroduce aPij .

emark 3. It is perfectly fine to use the covariat
ij , Sij , andRij , to characterize the joint distributio
nly within a Bayesian framework. That is, we ha
lready provided the joint distribution forL, W andP
iven the model parameters. If we view these la
nknowns as random and add a so-called prior d
ution for them we have a complete model speci
ion, i.e., a specification for the joint distribution of
he variables in the hierarchical model. With this jo
istribution we can provide inference regarding any
ect of the model. The prior distribution for theδ’s was
escribed above. Forα,β,γ2,γ3 andτ2, the general ap
roach is to use whatever prior or partially data-ba

nformation we may have regarding these unknown
btain some idea of what range they are likely to fal
e use this range to develop proper prior distributi
hich are as non-informative (i.e., as vague) as p
le (in order to let the observed data drive the infere
hile still retaining stable computation. Details of
rior specifications are supplied in Appendix A.
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The resulting model is fitted using simulation-based
methods, i.e., Gibbs sampling (Gelfand and Smith,
1990) and Markov chain Monte-Carlo methods (see,
for example,Gilks et al., 1996). The output from such
simulation is sampled from the joint posterior distribu-
tion of all model unknowns. Unfortunately, such model
fitting requires considerable effort and time. (In fact,
we summarize the required full conditional distribu-
tions and provide some pseudo-code for implement-
ing the sampling in Appendix B.) The reward is exact
inference (without relying on possibly inappropriate
asymptotics) and more accurate measurement of vari-
ability by capturing the uncertainty regarding the model
unknowns, which is not obtained using classical statis-
tical approaches. In fact, we know of no other way to
fit models(1)–(5). Simplified versions may be fitted
using the E–M algorithm (Dempster et al., 1977) to
obtain likelihood-based inference. But then we have
concerns regarding associated asymptotic variance es-
timates. It may also be possible to fit the model stages
separately rather than simultaneously. Again, we are
concerned that this will misrepresent the extent of vari-
ability. These relate to issues of model choice, which
we discuss below.

7. Imputing missing land-use classification

Table 1shows the distribution of land-use classi-
fications for the North and South regions. Note that
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the variability in the model unknowns. Various impu-
tation models could be adopted; we employed a conve-
nient Potts model (Potts, 1952; Green and Richardson,
2002). Details are supplied in Appendix C. We used
three imputations, finding negligible differences in the
resulting parameter estimates across these imputations.

8. Model determination

The model formalized in(1)–(5) is elaborate and
challenging to fit. Is the effort justified? Here we con-
sider three simplifications resulting in easier to fit mod-
els and, using a model choice criterion, show that they
are not as good.

For instance, a crude model could ignore the pop-
ulation model(3). Instead, we could fit the land-use
model in(5) inserting for the unknownPij ’s an areally
allocated portion of the total township population to
each pixel within the township. In other words, if there
areni pixels in townshipi, we setPij =Pi /ni . Hence we
have only the one stage model in(4) and(5) to fit.

An improvement in this naive approach first fits the
model in(3) (with or without spatial effects). This fit-
ting considers thePi ’s as the only data, thePij ’s are
latent variables, and estimates thePij ’s along withβ

(andδ if spatial effects are included). The resultant fit-
ting provides posterior meansE(Pij |Pi) which could
then be inserted into the land-use model(5). These ex-
pected values are anticipated to provide better estimates
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ur analysis. Rather than relying on subjective or ad
etermination of these missing pixel values, we ele

mpute missing land-use values in order to have a c
lete set for fitting our hierarchical model. In fact,

mputation provides an entire set of missing land-
lassifications using a neighbor-based joint spatial
ribution for the pixel values. Such a distribution sho
upport (but not require) land use for a given pixe
e similar to that of its neighbors. Moreover, we
everal such imputations to see the sensitivity of
esulting inference to the imputation, to better as
f the truePij than those from the crude allocation. F
hermore, with the inclusion of theδi , theE(Pij |{Pi})
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e are still failing to capture the uncertainty in n
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he overall model. We note that in the absence of
ial effects, our fitting approach is analogous to the
f the E–M algorithm to obtain maximum likelihoo
stimates (Dempster et al., 1977) with incomplete dat
thePij are missing). In fact, we can also obtain the c
omary likelihood inference using the E–M algorith
gain, concern is with the resultant interval estima

.e., the approximate normality assumption on wh
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To compare the foregoing models we use a ver

f the posterior predictive loss approach inGelfand
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Table 2
Model comparison for the North and South regions

North South

Model G P D G P D

I (without population) 10949.68 11911.42 22861.10 15317.60 16788.42 32106.02
II (without spatial) 10776.78 11489.25 22266.03 14667.41 15407.17 30074.58
III (full bayesian) 10751.74 11460.42 22212.16 14670.59 15404.39 30074.98

Gi : goodness of fit term;Pi : penalty term;Di : combined.

venience this approach provides a criterion, which is
composed of two parts. One measures goodness of fit
(G) of the model; the other is a penalty term (P), penal-
izing model complexity. In other words, more complex
models will tend to fit better but should be penalized
for their “size” in order to encourage parsimony.

Specifically,

G =
159∑
i=1

ni∑
j=1

4∑
l=1

(Lijl,obs− πijl)
2

and

P =
159∑
i=1

ni∑
j=1

4∑
l=1

V (Lijl)

where Lijl ,obs= 1 if Lij ,obs= l, 0 otherwise,
πijl =P(Lij = l|Lobs) and V(Lijl ) is the predictive
variability of Lij�, i.e., πijl(1 − πijl). Recall that for
eachi, j, oneLijl ,obs= 1 and the remaining three are
0. UnderG, a model is incrementally rewarded at
an i, j pair if its πijl ’s (which also sum to 1) behave
similarly to theLijl ,obs. UnderP, a model is rewarded
at i, j if it produces “informative,” i.e., extremeπijl ’s
. In calculatingG and P we could sum over only the
observedLij ’s or also over the imputedLij ’s. Since the

imputation was implemented apart from the model
fitting, we chose the latter.

It is useful to record bothG andP (in fact, in some
cases it might be useful to plot the components ofG
andP. However, if we seek to reduce model choice to
a single number, then we choose the model which min-
imizesD=G+P. Table 2presents the values ofD, G
andP for both the North region and the South region for
Model I (simple allocation, without population model)
Model II (improved model, includes population model,
but not spatial effects) and Model III (the full Bayesian
model in(1)–(5)). Clearly, Models II and III are pre-
ferred to Model I and, at least in the North, Model III
is preferred to Model II.

9. Model results

Table 3provides point estimates and 95% credible
intervals for both the population and land-use mod-
els. For comparison,Table 4presents point estimates
and associated interval estimates for Model II fitted us-
ing an E–M algorithm. We see that with regard to the
population model, the two models provide very similar
point estimates but that the approximate likelihood in-

Table 3
Median and 95% credible interval (in parentheses) for the full Bayesian Model III

North South

P
.412,−
682, .0
51, 1.1
58, 2.4

L
24, 4.2

.0198,

.6649,−

.0119,−
opulation model parameters
β1 (elevation)× 10−4 −8.210 (−8
β2 (slope) .0704 (.0
β3 (roads) 1.157 (1.1
τδ2 1.503 (1.0

and-use model parameters
α1 (elevation)× 10−3 4.144 (4.0
α2 (slope) −.0089 (−
α3 (roads) −.5931 (−
α4 (population) −.0101 (−
8.038) −6.487 (−7.028,−5.986)
725) −.0226 (−.0302,−.0150)
63) .2124 (.1922, .2314)
23) 1.791 (1.297, 2.455)

42) 1.942 (1.874, 2.018)
.0020) .0415 (.0306, .0526)
.5232) −.4587 (−.5373,−.3892)
.0081) −.0028 (−.0033,−.0024)
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Table 4
Point estimates and 95% interval estimates (in parentheses) obtained from the EM algorithm (Model II)

Region North South

Population model parameters
βl (elevation)× 10−4 −8.217 (−8.287,−8.147) −6.397 (−6.467,−6.327)
β2 (slope) .0703 (.0695,−0711) −.0241 (−.0253,−.0229)
β3 (roads) 1.157 (1.154, 1.160) .2182 (.2151, .2213)

Land-use model parameters
α1 (elevation)× 10−3 4.304 (4.292, 4.316) 2.084 (2.076, 2.092)
α2 (slope) −.0075 (−.0191, .0041) .0621 (.0499,−0742)
α3 (roads) −.7377 (−.8232,−.6522) −.4744 (−.5548,−.3940)
α4 (population) −.0019 (−.0033,−.0005) −.0024 (−.0028,−.0020)

ference in Model II produces much tighter confidence
intervals revealing the significant underestimation of
uncertainty. For the land-use model, at least for eleva-
tion, this continues to be the case. Thus, for the remain-
der of this section we describe the results for Model III.

For this model, lower elevation and presence of road
networks are associated with population settlement in
the North as well as the South with the effects being
more significant in the North. In the South, lower slope
is associated with higher expected population, which is
consistent with what we anticipate. In the North, how-
ever, higher slope is associated with higher expected
population, contrary to what one might expect. Turning
to the land-use model, the coefficient for population al-
though small is significantly negative for the North and
the South with the influence being more pronounced in
the North. In fact, the interval estimates for the North
and South do not overlap. Increased population pres-
sure is associated with increased chances of deforesta-
tion with the effect being less in the South. Elevation
is associated with forest cover with the effect being
more pronounced in the North. Here too, the interval
estimates for the two regions don’t overlap. Presence
of road networks significantly increase the chance of
deforestation in the North as well as South. Slope is
mixed with regard to significance. While it emerges as
insignificant in the North, it significantly increases the
chances of forest cover in the South.

Recall that the spatial random effects, theδi ’s, were
introduced to provide spatial smoothing to the popu-
l g to
t el,
a ean
0 this,
i s of

theδi ’s.The figure clearly reveals that spatial proxim-
ity encourages similarity in the expected spatial effects
of population processes. Here, lighter colors indicate
a negative expected spatial effect, i.e., the adjustment
to the mean population for pixels in that township will
tend to diminish population, vice versa for the darker
colors.

We have claimed that a model for pixel population
such as(3) is more effective than a naive areal allo-
cation of township population to pixels. The results of
the model comparison presented inTable 2certainly
support this. Here, we present some further informal
support. InFig. 9 we have created a map of the pos-
terior mean populations (on the square root scale) at
the pixel level. The square root scale is employed since
this is the customary symmetrizing and variance sta-
bilizing transformation for count data. The smoothing
of the population is evident at finer pixel resolutions.
Overlaid on this map is the population center dot map.
The dots locate the villages, town centers or larger ad-
ministrative centers. The size of the dot roughly corre-
sponds to population size. Though the dot map could
not be reliably used to model pixel level population,
it is evident fromFig. 9 that, generally, there is good
agreement between the maps.

10. Discussion

Returning to the model issues section, we sum-
m have
f ale.
W del
a en
p tion
ation model which in turn induces such smoothin
he land-use model. A priori, under the CAR mod
ll δi ’s have essentially the same distribution and m
. A posteriori, spatial pattern emerges. To see

n Fig. 8 we present a map of the posterior mean
arize first what has been accomplished. We
ormulated an ordinal land-use classification sc

e have built a phenomenological hierarchical mo
t the pixel level, which explains land use giv
opulation and other covariates as well as popula
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Fig. 8. Population model spatial random effects shown for the study regions.

given other covariates. We have accommodated the
misalignment between the population data layer (at the
township level) and the land-use data layer (on a 1 km2

pixel grid). We have employed a spatial imputation
(simulation) strategy to handle the missing land-use
pixels in an objective fashion. We have introduced
spatial smoothing for the population model, the
only feasible possibility given the data available. We
have uncovered significant explanation in the mean
structure from the elevation, slope and roads data
layers in both the population and land-use models.
In this regard, we have found a significant negative

coefficient for population in the land-use model.
Increased population pressure increases the chance
of forest degradation. We have argued, through a
model comparison criterion, that a more sophisticated,
hierarchical model, which includes spatial effects
explicitly and a population model outperforms models
lacking these specifications. We have also argued and
demonstrated that our hierarchical model captures
uncertainty, which was underestimated by simpler
models. Lastly, we have shown the sort of statistical
inference that is possible with our hierarchical model,
particularly with regard to the spatial smoothing.
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Fig. 9. Expected population for the study regions (on the square root scale) at the pixel level with the population vector point map overlaid.

10.1. Historical context of landuse patterns in
Madagascar

Before we discuss the patterns revealed in our anal-
ysis, it is instructive to review the historical context of
land-use change in eastern Madagascar. Based on our
earlier summary of deforestation trends, controversy
surrounds issues of rates and timing of forest loss in
Madagascar. Claims that most of the forest loss has oc-
curred in recent decades are clearly misleading. The

French colonial archives clearly shows concern over
forest loss throughout French occupancy (Jarosz, 1993;
Perrier de la B̂athie, 1921). In fact the claim, certainly
exaggerated, was made that some 70% of the primary
forest was destroyed between 1895 and 1925 (Hornac,
1943–1944, cited by Jarosz, 1993). In any case the
standard explanations offered for forest loss was the
extensive nature of traditional slash-and-burn upland
rice culture practiced by the locals, forest concessions
encouraged by the French with associated destructive
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logging practices, and the advocacy of selective forest
conversion to plantation and cash crops (Jarosz, 1993;
Perrier de la B̂athie, 1921). It is likely that all of these
activities would have been encouraged by any site fac-
tors that eased access to forested blocks, i.e., adjacency
to villages and towns, access by road or even foot-
path, and lower, shallower slopes. Land tenure systems
changed with the 1926 decree that all vacant land be de-
clared state land. Local populations no longer held title
to ownership over ancestral lands that might currently
be unoccupied (Esoavelomandroso, 1985). Moreover,
during the late 19th and early 20th century several laws
were passed prohibiting the burning of forests (Jarosz,
1993). Together these laws may well have acted to dis-
enfranchise local populations with respect to traditional
land conservation practices, actually exacerbating land
degradation.

Yet despite these observations, there are many indi-
cations that deforestation processes have been on go-
ing for centuries. Few scholars have looked for older
records of forest extent in Madagascar. Such exist,
in the form of historical accounts of the 17th–19th
century (Ellis, 1858; Flacourt, 1658; Grandidier et
al., 1920). These narratives make it clear that the
distribution of forests were patchy and geographi-
cally patterned long before the French colonial pe-
riod. It is likely that modern patterns of forest distri-
bution reflect, in part, forest distributions of the rel-
atively distant past. The patchy nature of the east-
ern wet forests was evident to mid-17th century ex-
p
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The early accounts provide a picture of periodic cy-
cles of landscape clearing for agriculture and abandon-
ment with some evidence for forest regrowth. In part
this reflected local cycles of human population growth
and decline (Campbell, 1991; Kent, 1992), with the re-
sult being a very heterogeneous landscape. The histori-
cal perspective is much clearer for the northern section
of the region than the southern. This reflects the infre-
quent visits of Europeans to the southern half of our
east coast focal region.

In the central northern area (around Fenerive), there
was a shift in human settlements evident in about the
17th century (Wright and Dewar, 2000), with the aban-
donment of coastal villages, and the establishment of
new villages on defensible hilltops at a distance from
the coast (cf.Flacourt, 1658: Map of Isle Ste. Marie
and adjacent Madagascar mainland). This is also re-
flected in the narratives of 19th century travelers (cf.
Grandidier et al., 1920; Ellis, 1858). Many of these
new villages were much larger than previous occupa-
tions, so that local population densities were increas-
ing, and may have led to concomitant increase in local
anthropogenic effects on the countryside. All of these
changes are most plausibly accounted for by an in-
crease in insecurity, and the virtual absence of trading
or slaving along the southern coastal area (Kent, 1992),
would have meant that population distributions and
local environmental effects likely followed divergent
paths.
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decades, but maps of large forest tracts today are sur-
prisingly similar to those of 1969, 1934, 1921 and
1902.

The maps provided byHumbert et al. (1964–1965)
have figured prominently in depicting current for-
est cover for our region (Du Puy and Moat, 1999)
and in estimating deforestation rates (Green and
Sussman, 1990). Original forest cover was taken from
the thumbnail “Types de V́eǵetation” maps, which pur-
port to show potential vegetation in the absence of
man (Humbert and Cours Darne, 1965; pp. 152–154).
These are conjectured maps with little supporting in-
formation, and are primarily constructed from the main
“V éǵetation Naturelle” maps of the east coast. These
are used as the baseline “original extent” of forest cover
byGreen and Sussman (1990), but these provide a mis-
leading benchmark at best. The main “Véǵetation Na-
turelle” maps of Humbert and Cours Darne are used
to portray current forest cover in the most recent maps
of forest cover (Faramalala, 1995; Du Puy and Moat,
1999), as well as forest cover in 1950 (Green and
Sussman, 1990). The Humbert and Cours Darne maps
were assembled by committee and the forest classi-
fication was based on surrogate elevation, bioclimate
and edaphic variables with uncertain use of aerial pho-
tography, and little or no ground truthing. From our
own experiences with aerial photography of the region,
vegetation classification without accompanied ground
truthing is difficult and misleading. Based on all avail-
able information it is apparent that the forest cover
m vide
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Over that time, population densities have simply in-
creased across the region.

10.4. Interpretation

How does this information integrate with the results
of our spatial analysis of land-use patterns? Population
levels are negatively associated with elevation and
forested landscape are positively associated with ele-
vation in both the North and the South. This obviously
reflects the current and historical location of settlement
area at low to moderate elevation and the fact that most
of the remaining forest blocks are spatially restricted
to the highest mountain slope or locally on hill tops.
The effect of elevation is much higher in the North
than South. This reflects undoubtedly that fact that
large blocks of forest are associated with the higher
mountains of this section of the province. Slope is neg-
atively associated with populated blocks in the South
but positively associated in the North. This may reflect
the fact that settlements were shifted to fortified hill
tops (but not at great elevation) in the North beginning
in the 17th century (cf.Flacourt, 1658: Map of Isle Ste.
Marie and adjacent Madagascar mainland—the center
of our North region; no comparable maps are extant
for the South). Pixels with hill tops would tend to
reflect higher slopes. However, this trend slope was not
observed in the South. Rather settlements tend to be
spread out more evenly across the landscape over time
in areas of convenience, likely avoiding areas of slope
a atial
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0.3. Demographic trends

One can gain some insight on past populations
erns across the landscape from the available d
raphic maps (de Martonne, 1911; Gourou, 1945;
ourdiec et al., 1969). All show a trend North to Sou

hat is reflected in the population densities observe
993 (cf.Fig. 8). In the South the populations over
ast 90 years have tended to be more evenly sp
cross the landscape. In the North the population

ers tend to be more restricted to areas nearer the
 .
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lope. This may reflect the trend of finding some
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ome by forests. An alternative explanation is
he North may represent a rougher topography
reater elevational change but also with greater s
hange within and among pixels. The net result ma
ittle effective signal of slope on most of the landsc
ccupied by forest. We explore this possibility ne
hile there is no generally accepted measure of sp

oughness for an areal unit, a measure of local varia
roposed byPhilip and Watson (1986)is widely used
his measure is computed through automatic tria

ation at locations within the areal unit. Larger val
f this index indicate greater roughness. InTable 5, we
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Table 5
Roughness comparison between North and South regions

Quantiles
Region .025 .25 .5 .75 .975
North (21466) 0 .0002 .0033 .0072 .0403
South (22950) 0 0 .0018 .0061 .0369

summarize the distribution of this index over 21,466
pixels in the North region and 22,950 pixels in the
South region. The table offers descriptive comparison
since there is no stochastic modeling of this index.
However, the quantiles for the distribution of rough-
ness are somewhat larger in the North than the South
providing quantitative support for a somewhat rougher
topography.

11. Conclusions

To summarize, we have provided a new framework
to explain deforestation patterns in the presence of mis-
alignment of data layers, missing data arising from
cloud cover, and incorporating spatially explicit struc-
ture through the use of a bayesian hierarchical model.
Although illustrated in the context of Madagascar, the
methods are more generally applicable to other eco-
logical processes as we have noted at the end of Sec-
tions 1 and 2. Returning to an examination of pop-
ulation block effects, these are negatively associated
spatially with forested blocks, although the effect is
fairly weak. This weak signal may reflect the perva-
sive influence of slash-and-burn agriculture practiced
throughout the landscape even areas with low popula-
tion densities. This agricultural practice may be more
determined by accessibility than proximity to popula-
tion centers (Oxby, 1985). Elevation obviously plays
into this, as do roads of any sort, or indeed even foot-
p ly as-
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lation centers and forested patches observed today in
the landscape and appear to account for the differences
seen between the northern and southern sections of the
province.

Generalizing from our specific results, it is evident
that the structural hierarchical modeling style we have
employed is applicable to the modeling of land-use pat-
terns in many other contexts. Similarity in land use be-
tween neighboring areal units would be expected, and
spatial random effects could be used to capture such as-
sociation. Misalignment problems among data layers,
hence, between response and explanatory variables are
also likely to be common themes.

Our present application has led to a model for land
use, which is static, since we lack temporal informa-
tion. However, were data available across time, we
could extend the modeling in(1)–(4). Formally, we
need only add a subscriptt to those measurements
which change over time. Mechanistically, we might
think of the land-use process as evolving in both space
and time. Spatio-temporal random effects,δit could be
introduced to capture association across both space and
time.

Lastly, while the present setting has an ordinal cate-
gorical response variable, in other applications the re-
sponse could be binary, e.g., presence or absence of a
species, or a count, e.g., abundance of a species. The
first stage model for the response would change to re-
flect this but hierarchical modeling with spatial struc-
ture could still be employed and would provide the
s vail-
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Detail on prior specifications

To complete the specification of the hierarchical
model we require priors forα, γ, β, γ2, γ3 andτ2. To
obtain a well-behaved chain, we use priors forα and
β that are “data-centered” with large variances. Infer-
ence is not sensitive to this centering (we could use say
mean 0 centering) but our Markov chain Monte-Carlo
algorithm burns in more rapidly with such centering. In
particular, we assumeβ∼N(β̂, kDβ) whereβ̂ is a point
estimate obtained from an expectation maximization
algorithm (Dempster et al., 1977), which imputes pop-
ulation at the pixel level andDβ is the corresponding
dispersion matrix. Forα, we adoptN(α̂, kDα) obtain-
ing the estimates by fitting a multinomial ordinal re-
sponse model (using standard statistical packages like
SAS) that areally allocates the town population to each
pixel within the town. We experimented with several
values ofk and found little sensitivity fork> 10. For
the two unknown cut-pointsγ2 andγ3, we assume a
uniform prior subject to the constraint 0 <γ2 <γ3 <∞.
For τ2 we adopt an inverse gamma prior. In particular
τ2 ∼ IG(2, .23). This specification has infinite variance
with mean roughly the sample variability in the logλ̂i
(whereλ̂i = Pi.). As is customary, to ensure identifi-
ability, i.e., a well-behaved posterior distribution, we
impose the constraints

∑
iδi = 0. (Besag et al., 1995).

Brief detail on model fitting

of
e d) in
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(5). Sampling from a multivariate distribution is
standard.

• Pi∼ multinomial(Pi ,λij /λi))
∏

j exp(−.5(eij −α4Pij )2)
where eij =Wij −α0 −α1Eij −α2Sij −α3Rij , i = 1,
. . ., T where T is the number of townships. We
updatePi using a Metropolis step with proposal
density which is multinomial (Pi , λ∗

ij/λ
∗
i.) where

λ∗
ij = λij exp(α4eij). We have found this to work

very well with acceptance rate of around 50%.
• δi ∝ exp(−λi)λ

Pi

i N(
∑

jωijδj/
∑

jωij, τ
2/
∑

jωij),
i = 1, . . . , T . This is log concave and updated
using adaptive rejection sampling (Gilks and Wild,
1992). Code is available fromhttp://www.mrc-
bsu.cam.ac.uk/BSUsite/Research/ars.shtml

• βl ∝ (
∏

i

∏
j exp(−λij)λ

Pij

ij )N(β̂, kDβ), l = 0, 1, 2, 3.
This is also log concave and up dated using adaptive
rejection sampling. Take care with regard to under-
flows when evaluating the log density.

τ2 ∼ Inverse gamma (shape =T/2+2, scale = . 23 +∑
i–j(δi −δj)2/2) where the relationi–j meansi andj

are neighbors. This is easily sampled using standard
routines for simulating from the gamma distribution
(seeDevroye, 1986).

Psuedo code to fit model HI

• Initialize θ to θ0. We setPij0 =Pi /ni and takingα0,
γ20, �30 estimates obtained from fitting a multino-
mial ordinal response model andβ0 estimates ob-
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We briefly describe the conditional distributions
ach variable and how they get updated (simulate

he gibbs sampler. At timetwe denote this operation b
ibbsup-date(θt, θt+1) whereθ is a vector of all mode
nknowns that are to be updated.

We assume theW’s have a normal distributio
with mean given by(5) and variance 1. The
Wij∼N(E(Wij),1)1(γLij−1 < Wij ≤ γLij ) and gets
updated using draws from univariate truncated
mals.
γ l ∼ Uniform(a, b); a= max(�l−1, max(Wij s.t.
Lij = l)); b= min(γ l+1, min(Wij s.t.Lij = l + 1)), l = 2,
3, . . .
α∼N((X′X + D−1

α /k)
−1

(X′W + D−1
α α̂/k),

(X′X + D−1
α /k)

−1
) where X is the design ma

trix that results from the linear regression
tained by fitting Poisson regression assumingP=P0.
The other parameters would be automatically ini
ized by the operationgibbsupdate(θ0,θ1).
for i in 1:(B+ Th× Nsamp)gibbsupdate(θi−1, θi)
Discard the first B iterates, store every Thth ite
thereafter and use the Nsamp iterates to make i
ence

For the current application,B= 20000, Th = 50
and Nsamp = 1000 were appropriate.

etails on the multiple imputation

The imputation for all of the pixels with missin
and-use classification is carried out in an iterative fa
on using a joint spatial Potts distribution. Recall t
ij denotes the classification for thejth pixel in theith

own andL denotes the set of allLij . The joint density

http://www.mrc-bsu.cam.ac.uk/bsusite/research/ars.shtml
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of L under the Potts model is

f (L) ∝ exp(φ > U(L)) (C.1)

whereU(L) =&1(Lij =Li′j′ ) and the summation is over
pairs of neighboring contiguous pixels andφ is an as-
sociation parameter. That is,φ = 0 indicates no spatial
association whileφ > 0 encourages classification agree-
ment between adjacent pixels. Hence the conditional
distribution ofLij given all of the other pixels

f (Lij|remainingL′s) ∝ exp(φ
∑

1(Lij = Li′j′ )

(C.2)

where the summation is over the neighbors ofLij . In
other words,Lij takes one of the values 1, 2, 3 or 4.
From(C.2), the conditional probabilities of these val-
ues reflect the relative agreement each one has with the
values of the neighbors ofLij .

The iterative updating proceeds as follows: Givenφ,
let L(0) denote all of the observed land-use classifica-
tions with a random assignment of initial values for all
of the unobserved pixels. We then update in any con-
venient sequence, each missingLij to L

(1)
ij using(C.2)

where the remainingL’s are fixed at current levels. An
iteration is completed after each missingLij is updated.
We ran 10,000 iterations keeping the final set of iter-
ated values as one imputation for the missingLij ’s. To
obtain a new imputation, we can either restart the it-
eration at a new randomL(0) or else continue iterating
for another 10,000 iterations retaining the values at that
s
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