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Summary. Understanding spatial patterns of species diversity and the distributions of individ-
ual species is a consuming problem in biogeography and conservation. The Cape floristic
region of South Africa is a global hot spot of diversity and endemism, and the Protea atlas
project, with about 60000 site records across the region, provides an extraordinarily rich data
set to model patterns of biodiversity. Model development is focused spatially at the scale of 10
grid cells (about 37000 cells total for the region). We report on results for 23 species of a flow-
ering plant family known as Proteaceae (of about 330 in the Cape floristic region) for a defined
subregion. Using a Bayesian framework, we developed a two-stage, spatially explicit, hierar-
chical logistic regression. Stage 1 models the potential probability of presence or absence for
each species at each cell, given species attributes, grid cell (site level) environmental data with
species level coefficients, and a spatial random effect.The second level of the hierarchy models
the probability of observing each species in each cell given that it is present. Because the atlas
data are not evenly distributed across the landscape, grid cells contain variable numbers of
sampling localities. Thus this model takes the sampling intensity at each site into account by
assuming that the total number of times that a particular species was observed within a site
follows a binomial distribution. After assigning prior distributions to all quantities in the model,
samples from the posterior distribution were obtained via Markov chain Monte Carlo methods.
Results are mapped as the model-estimated probability of presence for each species across
the domain. This provides an alternative to customary empirical ‘range-of-occupancy’ displays.
Summing yields the predicted richness of species over the region. Summaries of the poster-
ior for each environmental coefficient show which variables are most important in explaining
the presence of species. Our initial results describe biogeographical patterns over the mod-
elled region remarkably well. In particular, species local population size and mode of dispersal
contribute significantly to predicting patterns, along with annual precipitation, the coefficient of
variation in rainfall and elevation.
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1. Introduction

Why are there so many species in some areas and so few in others? A universal explanation for
this has been the grail of biogeographers since Darwin and other explorer–naturalists of the
19th century began cataloguing global patterns in plant and animal distributions:

‘if we compare this moderate number [of plant species in New Zealand or England] with the species that
swarm over equal areas . . . at the Cape of Good Hope, we must admit that some cause, independent
of different conditions, has given rise to so great a difference in number’

(Darwin, 1872).
To read the purported answers to this ancient challenge, we are left with the impression that

there are many different universal explanations, each explicitly or implicitly claiming suprem-
acy. Palmer (1996) listed 120 named hypotheses to explain patterns in biodiversity, and Rohde
(1992) listed 28 that claim to explain just latitudinal patterns. This points up the difficulties that
are encountered in developing explanatory models, and the utility of a richer flexible modelling.
The past couple of years have seen at least three universal (ecological) explanations of species
richness patterns championed:

(a) geometric constraints (Colwell and Lees, 2000),
(b) scaling of constrained resource acquisition (Ritchie and Olff, 1999) and
(c) neutrality of species in saturated systems (Hubbell, 2001).

Before this we have seen area proposed as the universal explanation for patterns of biodiversity
(e.g. Rosenzweig (1995)), as well as productivity (e.g. Currie (1991)), environmental heterogene-
ity (Huston, 1994), historical factors (e.g. Latham and Ricklefs (1993)) and indeed many others.
The arguments that are marshalled are often compelling, but it is also disconcerting to see the
same data used to illustrate different claims.

The advent of inexpensive high speed computation including widely available geographic
information system (GIS) software has revised the way that many ecologists think about data
on distributions of species. In particular, a variety of statistical and algorithmic methods have
been proposed, in conjunction with GISs, to enable spatial prediction of the distribution of
species. The survey paper of Guisan and Zimmerman (2000) has provided an extensive review
of these developments and an enormous list of references. Here, we just note a few of the key
themes (with selected references) in this work.

What we can envisage is a region which has been surveyed at a number of sites. At each site,
the presence (hence, implicitly, the absence) of a collection of species has been recorded resulting
in a site- (rows) by-species (columns) presence–absence matrix. A classification-then-modelling
strategy gathers either the sites into groups containing similar species (‘communities’) or the
species into groups at similar sites (‘assemblages’). Regression modelling follows, using environ-
mental factors for the communities or species attributes for the assemblages. See, for example,
Ferrier et al. (2002) and references therein. Marginalizing across rows yields richness at a site,
possibly standardized by the area of the site. Marginalizing down columns produces prevalences
of species. Again these can be explained by using regression models as in, for instance, Owen
(1989) or Heikkinen (1996).

Rather than aggregating we might model directly at the species–site level. Regressions in this
case and, in fact, in the above cases implemented through the use of generalized linear and gener-
alized additive models are receiving considerable attention in the ecology literature. See Guisan
et al. (2002) for a review. In particular, the recently proposed generalized regression analysis
and spatial prediction methodology as in Lehmann et al. (2002) appends a spatial prediction
technique onto a generalized additive model.
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Our intent is also to work at the species–site level. However, in our application, as described
in the ensuing paragraphs, we face very irregular sampling intensity, ecological factors mea-
sured at much lower resolution than our sampling sites and human intervention to transform
land use. To accommodate these aspects, we adopt an explicitly spatial hierarchical modelling
approach and fit the model to the data within a Bayesian framework. More elementary Bayesian
approaches develop prior probabilities of observing species (e.g. Aspinall (1992) and Aspinall
and Veitch (1993)) or communities (e.g. Brzeziecki et al. (1993)). Linkage between occurrence
and discretized environmental predictions is made, enabling a posterior predicted probability
for the modelled entity at a site with specified environmental features. Also, for us, spatial struc-
ture is introduced through random effects in the modelling of the probability of presence rather
than at the data stage. This contrasts with, for example, Hoeting et al. (2000) as well as the
generalized regression analysis and spatial prediction approach.

Hence the objective of this paper is to develop a fully model-based multilevel approach to illu-
minate concepts of biodiversity such as the range of species, richness and turnover. The novelty
in our contribution is to work at the species level, modelling presence or absence across the region
for each species under study. As we clarify below, possibly confounded insight arises when imple-
menting standard regression modelling for the observed richness; it is preferable to build regres-
sion models at the species level. In addition, we introduce spatial association in presence or
absence across the domain of investigation. Causal ecological explanations such as dispersal as
well as omitted (unobserved) variables with spatial pattern such as local smoothness of geologi-
cal features suggest that at sufficiently high resolution we expect that the presence or absence
of species at one location will be associated with their presence or absence at neighbouring
locations.

The domain that we study here is a portion (Kogelberg–Hawequas subregion) of the Cape
floristic region (CFR) in South Africa. Arguably, the data set that we use is the largest and
highest quality of its kind in the world for studying biodiversity. Still, whereas in some parts
of this domain sampling is fairly intensive, in others it is sparse or non-existent. Also, in many
places the region has been transformed because of human involvement. The ‘natural’ state has
been replaced by an alternative land use, e.g. an agricultural, residential or commercial use.
This implies that there is a notion of potential presence or absence as well as transformed (or
adjusted) presence or absence. These notions will be defined at an areal unit (1′-by-1′ pixel) level.
However, relative to this scale of resolution, the observed presence or absence for a sampling
location is at the point level.

Therefore, we envision a multilevel model, i.e. we model potential presence or absence, trans-
formed presence or absence given potential absence and observed presence or absence given
transformed presence or absence. With regard to the biodiversity questions above, potential
presence or absence is of primary interest. We set this multilevel model within a Bayesian frame-
work. The output of the Bayesian model fitting enables model measures to convey the range
of species, to capture the richness of species, to explain the richness of species and to study the
turnover of species across the domain.

The format of the paper is as follows. Sections 2 and 3 provide the ecological motivation for
the problem and description of the data set that is used to address it. Section 4 develops the
species level modelling. Section 5 presents the novel biodiversity measures which arise under
this modelling. Section 6 presents the analysis of the data under this modelling. Finally, Section
7 offer some discussion and extension.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss
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2. Motivation: the Cape floristic kingdom

The focal area for this study of patterns of distributions of species and biodiversity is the CFR,
the smallest of the world’s six floral kingdoms (Takhtajan, 1986). This encompasses a very
small region of south-western South Africa, about 90000 km2, centred on the Cape of Good
Hope. It has long been recognized for high levels of plant species diversity and endemism
across all spatial scales. The region includes about 9000 plant species, 69% of which are found
nowhere else. This is globally one of the highest concentrations of endemic plant species in
the world (Meyers et al., 2000)—as diverse as many of the world’s tropical rain-forests. The
CFR also apparently has the highest density of globally endangered plant species (Rebelo,
2002a).

The plant diversity in the CFR is concentrated in relatively few groups, like the icon flow-
ering plant family of South Africa, the Proteaceae. We have chosen to focus on modelling
the biogeography and biodiversity patterns of this family because the data on species distri-
bution patterns are sufficiently rich and detailed to allow complex modelling. The Protea-
ceae have also shown a remarkable level of speciation with about 400 species across Africa,
of which 330 species are 99% restricted to the CFR. Of those 330 species at least 152 are
listed as ‘threatened’ with extinction by the International Union for the Conservation of
Nature.

3. Description of the data

To model species distribution patterns and biodiversity, we have relied on the Protea atlas data
set (Rebelo, 2002b). These data were collected beginning in 1991 as part of a 10-year project
to document the distribution of Proteaceae, the flagship family in Southern Africa (Rebelo,
2001). The original purpose of the project was to provide adequate data to determine the bio-
geographical and vegetation patterns within the CFR, to determine the optimal areas, reserve
location and strategies to conserve the flora and to obtain data at a scale that is suitable for
modelling biogeographic patterns. Data were collected at ‘record localities’: relatively uniform
georeferenced areas typically of 50 m in diameter. In addition to the presence (or absence) at the
locality of protea species, the abundance of each species along with selected environmental and
species level information were also tallied (Rebelo, 1991). To date about 60000 localities have
been recorded (including null sites), with a total of about 250000 species counts from among
about 375 proteas. The CFR and the Proteaceae together provide an extraordinarily detailed
and rich data set to model patterns of biogeography and biodiversity. This is one of the hottest
hot spots of plant diversity and the protea data may be the closest that there is to a complete
presence–absence inventory of species for any biogeographic region.

The explanatory data that we employ here were obtained from the South African Atlas of
Hydrology and Climatology (Schultze, 1997) and downloaded from the Computing Centre for
Water Research, University of Natal. A large number of climatological traits are available as
GIS raster layers with a minimum pixel resolution of 1′ latitude by 1′ longitude. We used the
following geographical data as explanatory variables: the elevation, mean annual precipitation,
interannual coefficient of variation in precipitation, July (winter) minimum temperature and
January (summer) maximum temperature. In this analysis we restricted the areal extent of our
analysis to a small subregion of the full CFR: a roughly rectangular region with its upper left
corner at 33◦ 23.5′ S, 18◦ 50.5′ E, and its lower right at 34◦ 20.5′ S, 19◦ 16.5′ E, with a total area
of 4456 km2. It comprises a rectangular area including the Kogelberg Biosphere Reserve and
beyond, extending 41 km east and 107 km north from Cape Hangklip. We further restricted the
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analysis to 23 species of Proteaceae out of roughly 150 that are found within this rectangular
area. For each species we scored the following traits: height (continuous), local population size
(ordinal), dispersal mode (categorical) and ability to resprout after fire (categorical).

Transformed areas (by agriculture, afforestation, alien plants and urbanization) were obtained
as a GIS data layer from R. Cowling (private communication). 25% of the Cape has been trans-
formed, mainly in the lowlands on more fertile soils where rainfall is adequate. Most of the
transformation outside these areas, on the infertile mountains, is due to dense alien invader
species, which are a major threat to Fynbos vegetation and, in particular, to the Proteaceae.
There is no sampling in transformed areas since no protea are currently found there.

4. Modelling and implementation

We begin by proposing a model to infer about the distribution of individual species over a
region of interest. It is assumed that this distribution depends on the locally varying nature of
the region. But also it depends on attributes of the species. Since many of the variables which
define the local features are observed at pixel level (at some scale of resolution) we suppose a
regular lattice of cells over the region. The model must address several important issues, such as
the fact that a pixel is never explored extensively for presence or absence, that only a subset of the
pixels is actually ever observed, resulting in ‘holes’ in the region, and that for many pixels at least
a portion has been transformed by human activity (as described above). After introducing the
model and obtaining the likelihood we discuss the computational implementation and describe
how to obtain inference of interest under the model specification.

4.1. The model proposed
To model potential presence or absence for a species we must clarify the meaning of this binary
outcome. Ecologists customarily view the range of species as an areal construct, e.g. the range
of occupancy interpreted as the convex hull of the locations of occurrence. This suggests that we
adopt an areal unit conceptualization for presence–absence. In fact we view presence–absence
with regard to a regular grid of cells. Moreover, the data layers providing local features have
been prepared in minute-by-minute grid cells. So, we assume this scale for presence–absence as
well, resulting in roughly 37000 units for the entire CFR and 1554 areal units (pixels) in our
study region. In this subregion the pixels are rectangular, approximately 1.85 km × 1.55 km. If
we were to formalize potential presence–absence as a binary spatial process over this region, the
value of the process on a grid cell becomes a block average (see, for example, Cressie (1993)).
With probability 1 the value will belong to (0,1); a binary response for an areal unit cannot
be modelled by using a binary process. However, it can be modelled by using a latent binary
process.

Suppose that we let X
.k/
i denote the potential presence or absence state for the kth species in

the ith site with presence 1 and absence 0. Then we set P.X
.k/
i =1/=p

.k/
i , and we conceptualize

p
.k/
i , the probability that species k is potentially found in areal unit i, by using a binary process,

i.e. let λ.k/.s/ be a binary process over the region and let p
.k/
i be the block average of this process

over unit i. That is,

p
.k/
i = 1

|Ai|
∫

cell i

λ.k/.s/ ds = 1
|Ai|

∫
cell i

1{λ.k/.s/=1} ds .1/

where |Ai| denotes the area of unit i. The interpretation that is associated with equation (1) is
that λ.k/.s/ indicates the suitability of species k at location s. The more λ.k/.s/ in Ai which equal
1, the more suitable cell Ai is for species k; hence the greater the chance for potential presence.
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Next, let V
.k/
i denote the transformed presence or absence state for the kth species in the ith

unit. Let T.s/ be an indicator process indicating whether location s is transformed (T.s/=1) or
not (T.s/=0). Then at s we need both T.s/=0 and λ.k/.s/=1 so that location s is suitable under
transformation, i.e. we need both suitability and availability. Therefore,

P.V
.k/
i =1/= 1

|Ai|
∫

cell i

1{T.s/=0} 1{λ.k/.s/=1} ds: .2/

If we make the simplifying (and hopefully plausible) assumption that, for each species, avail-
ability is uncorrelated with suitability, then equation (2) reduces to

P.V
.k/
i =1/= .1−Ui/p

.k/
i .3/

where Ui denotes the proportion of area in the ith cell which is transformed, 0 � Ui � 1. We
adopt equation (3) in what follows.

Next, assume that unit i has been visited ni times in untransformed areas within the unit. Fur-
ther, let Y

.k/
ij be the presence–absence status of the kth species in the ith unit at the jth sampling

location within that unit. We need to model P.Y
.k/
ij |V .k/

i =1/. Given V
.k/
i =1, we view the Y

.k/
ij as

independent and identically distributed Bernoulli trials with success probability q
.k/
i . Of course,

given V
.k/
i = 0, Y

.k/
ij = 0 with probability 1. On the basis of its interpretation as a conditional

probability, q
.k/
i is thought of as a ratio of integrals, i.e.

q
.k/
i =

∫
cell i

1{T.s/=0} 1{λ̃.k/.s/=1} ds∫
cell i

1{T.s/=0} 1{λ.k/.s/=1} ds
: .4/

In equation (4), λ̃.k/.s/ is another binary process which indicates the actual presence or absence
of species k at location s. Note that λ̃.k/.s/=1 implies that λ.k/.s/=1, i.e. presence implies suit-
ability so 0�q

.k/
i �1. But, also, λ̃.k/.s/=1 implies that T.s/=0, i.e. presence implies availability.

So the numerator simplifies to ∫
pixel i

1{λ̃.k/.s/=1} ds

which, divided by |Ai|, is the expected probability of presence or absence at a randomly selected
location in Ai. As a result, using equation (3), P.Y

.k/
ij =1/=q

.k/
i .1−Ui/p

.k/
i .

Note that the probabilities that are associated with X
.k/
i = 1, V

.k/
i = 1 and Y

.k/
ij = 1 all have

interpretations through the extent of ‘switches turned on’, i.e., in modelling for the p
.k/
i and q

.k/
i ,

we look for ecological variables or species attributes which are expected to affect the ‘number’
of λ.k/.s/ or λ̃.k/.s/ that is turned on in cell i. Also, note that, given V

.k/
i =1, by sufficiency, we

can work with Y
.k/
i+ =Σni

j=1Y
.k/
ij ∼ Bi.ni, q

.k/
i /. For an unsampled pixel .ni = 0/ there will be no

contribution to the likelihood. For a sampled pixel .ni � 1/ there will be a contribution to the
likelihood and, in fact, we can marginalize over V

.k/
i to give, for y> 0,

P.Y
.k/
i+ =y/=

(
ni

y

)
.q

.k/
i /y.1−q

.k/
i /ni−y.1−Ui/p

.k/
i

and, for y = 0, .1 − q
.k/
i /ni .1 − Ui/p

.k/
i + {1 − .1 − Ui/p

.k/
i }. The two components of this latter

expression have immediate interpretation. The first provides the probability that the species
exists in pixel i but has not been observed whereas the second provides the probability that it is
not present in the pixel.
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We next turn to modelling p
.k/
i and q

.k/
i . For p

.k/
i we use a logistic regression conditional on

unit level characteristics, unit level spatial random effects, species level attributes and species
level random effects. Logistic regression for presence–absence modelling has been widely used
in the ecological literature. Guisan and Zimmerman (2000) provides discussion and extensive
referencing.

Let

log

(
p

.k/
i

1−p
.k/
i

)
= w′

iβk +Ψk +ρi, .5/

where wi is a vector of pixel level characteristics and the βks are species level coefficients
associated with the pixel level covariates. Therefore, the model allows the flexibility of each
species having a different coefficient for each pixel level covariate, i.e. that each species can
react differently to the local environment. The assumption that βk is constant across spe-
cies converts equation (5) to an additive form in i and k which need not be appropriate.
(See Section 6.) The Ψks are defined below (Section 4.2) using species level attributes and
an overall intercept. They are viewed as an intercept specification for each of the species.
Hence, there is no intercept in βk. The ρis denote spatially associated random effects. In
other words we believe that the potential probability of presence or absence of species k at
pixel i is also affected by its direct neighbours. We expect pixels which are close together to
behave in a similar fashion in terms of their distribution of species. We employ an intrinsic
conditional autoregressive model (Besag, 1974) to capture the spatial association in the ρi.
In this regard, Hoeting et al. (2000) employed a single-stage autologistic model to describe
spatial association between the X

.k/
i across i directly. To accommodate the untractable calcula-

tion of the normalizing constant arising under this model, they employed a pseudolikelihood
approximation.

We model q
.k/
i on the logit scale setting

log

(
q

.k/
i

1−q
.k/
i

)
= w̃′

iβ̃k + z̃kγ̃: .6/

In equation (6), w̃i are location characteristics and z̃k are species attributes which are expected
to affect q

.k/
i .

From the equations above and defining θ as the vector containing all the parameters that
are involved in the model, we can thus immediately write the logarithm of the likelihood for
Y ={Y

.k/
i+ } as

l.θ; Y/=
N∑

i=1

K∑
k=1

min.1, Y
.k/
i+ /[Y.k/

i+ .w̃′
iβ̃k + z̃kγ̃/−ni log{1+ exp.w̃′

iβ̃k + z̃kγ̃/}

+ log{.1−Ui/p
.k/
i }]+{1−min.1, Y

.k/
i+ /}[log{.1−q

.k/
i /ni .1−Ui/p

.k/
i

+1− .1−Ui/p
.k/
i }]: .7/

With priors on βk, Ψk, β̃k, γ̃ and ρi, we have a fully specified Bayesian model.
As noted above, we can still use equation (7) in a formal way for the likelihood even if

ni = 0. There will just be no contribution from the ith pixel. However, from equation (5),
we can learn about p

.k/
i , i.e. wi is known, we learn about βk and Ψk from other pixels and,

owing to the spatial modelling for ρi, we can still learn about it from its neighbours through
ρi |ρj, j �= i. The special case where Ui =1 implies that ni =0. Hence our modelling can accom-
modate holes in the region resulting from totally transformed regions or unsampled regions.
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4.2. Details of the prior specification and sampling the posterior distribution
We must assign prior distributions to the coefficients of the area level characteristics βk, the
species effects Ψk, the spatial random effects ρi and also the coefficients of the second level of
hierarchy β̃k and γ̃k. For each of the parameters βk, β̃k and γ̃k we assign independent normal
prior distributions centred at 0 and with large variance.

As previously noted, the Ψks are species random effects. A priori, we assume that,
conditioned on µ, γ and σ2

ψ, the Ψks are independent and identically distributed following
a normal distribution with mean µ+ z′

kγ and common variance σ2
ψ. In other words, anal-

ogous to equation (6), each species effect Ψk can be explained by an overall intercept plus,
say, L species level attributes. We then assign a normal prior distribution to µ centred at 0
with a large variance, and also a normal prior distribution to γ = .γ1, . . . ,γL/′ centred at
0 with a large variance. For the variance of Ψk, σ2

ψ, we assign an inverse gamma prior
with infinite variance. We could introduce the mean structure of Ψk into the first level of
hierarchy, together with the area level covariates and the spatial random effects plus a
species random effect. However, centring the parameterization as above provides more
stable computation. (See, for example, Gelfand et al. (1996) and Papaspiliopoulos et al.
(1996).)

The prior distribution of the spatial random effects is described through a nearest neighbour
Markov random-field model (Besag, 1974). In particular, with a Gaussian Markov random
field, the distribution of the spatial random effect at pixel i, conditioned on all the other pixels,
has the distribution

ρi|ρj ∼N

(∑
j∈δi

wijρj

wi+
,
σ2
ρ

wi+

)
, j �= i, .8/

where δi denotes the neighbours of cell i and wi+ denotes the total number of cells which are
neighbours of i, wij = 1 if sites i and j share the same boundary and wij = 0 otherwise. For
the conditional variance of the Gaussian Markov random field, σ2

ρ, we also assign an inverse
gamma prior with infinite variance.

Inference for the resulting posterior is done through simulation-based model fitting using
Gibbs sampling (Gelfand and Smith, 1990) to obtain samples from the posterior distribution.
In implementing the Gibbs sampling we need to specify all the posterior full conditional distri-
butions of all unknown quantities in the model. The parameter µ, the intercept of the species
random effect, has a normal full conditional, which can be sampled from directly. The variance
of the species random effects and of the spatial random effects both have inverse gamma full
conditionals which are also immediate to sample from. For all the remaining parameters we can
use the adaptive rejection Metropolis sampling within Gibbs sampling that was introduced by
Gilks et al. (1995).

5. Inference with regard to biodiversity

The model that is developed in Section 4 evidently enables information about the importance
of particular environmental factors as well as species attributes in explaining the presence or
absence of species. However, it also enables us to introduce several model summaries which shed
light on key issues in the study of biodiversity.

We begin with the range of species. The common presentation of the range of species
is based on the extent of occupancy and range of occupancy. For the observed {Y

.k/
ij }, the
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convex hull of the set {Y
.k/
ij = 1} provides the ‘observed’ range. This estimate is purely

descriptive, allowing no inference. It fails to recognize holes in the hull where the species al-
most surely cannot be present. It also fails to recognize edge effects in that presence or absence
need not have a hard edge but perhaps a soft edge characterized by a diminishing chance of
presence. This is precisely what p

.k/
i can capture. Moreover, since p

.k/
i is a parametric func-

tion of θ, given samples from p.θ|Y/ we obtain a posterior distribution for p
.k/
i at each k

and i.
Using, for example, E.p

.k/
i |Y/ we can create a posterior surface for the presence of species

k. In fact, the display could take the form of a chloropleth or grey scale map or a smoothed
contour plot. We can also obtain lower and upper surfaces to capture individual (1−α)-inter-
vals estimates for the p

.k/
i . We suggest using the posterior mean surface as a species range

(see Heikkinen and Högmander (1994) and Högmander and Møller (1995) in this regard). It
is obviously more informative than the above observed range and it allows quantification of
uncertainty. The range can be hardened by replacing expected probabilities below a specified
threshold by 0. The surface plot of the E.p

.k/
i |Y/ provides a picture of the potential range for

species k, i.e. in the absence of human intervention, where in the region it is likely that the species
would be found. A surface plot of .1−Ui/ E.p

.k/
i |Y/ provides an adjusted or transformed range

reflecting where the species is likely to be found, adjusting for human intervention. We note
that the ranges that we have proposed can only be interpreted with respect to the domain of
study.

Another important feature is the richness of species. The observed richness of species in pixel i

is ΣK
k=11.Y

.k/
i+ > 0/ for pixels where ni > 0 and 1 − Ui > 0. Again, this is a purely descriptive

summary. Regression models can be used to explain these observed richness values by us-
ing environmental features and enable interpolation to unobserved sites. Work of this sort
has been mentioned in Section 1 and enables refined prediction of the richness of species.
See Guisan and Zimmerman (2000) in this regard. Under our model, the analogue for pixel
i is the posterior distribution of ΣK

k=1X
.k/
i |Y. This posterior speaks to potential richness, i.e.

in the absence of human intervention, it is the number of species that we would expect to
find in pixel i. Converting to the distribution of .1 − Ui/ ΣK

k=1X
.k/
i |Y modifies to transformed

richness, i.e. the number of species that we expect to find in the pixel, adjusting for human
intervention. Each is of ecological interest but the latter will better align with observed
richness.

Using the posterior mean across i we can create a posterior potential richness surface by
plotting E.Σ X

.k/
i |Y/=Σ E.p

.k/
i |Y/ versus i; similarly a posterior transformed richness surface

can be obtained. These can be displayed in a fashion that is similar to that proposed above for
the range of species. It is important to note that, under our modelling, the richness of species
can only be inferred within the domain of study and is only relative to the set of species which
have been modelled.

Since traditional modelling of richness of species attempts an explanation in terms of local
environmental characteristics, what does our model, implemented at the species level, offer in
this regard? We note that a regression model to explain richness can be misleading. For a partic-
ular ecological feature such as altitude or rainfall, one species may prefer high levels for both,
another species high for one and low for the other. Indeed, this is why we work with species
level coefficients. Expressed in different terms, when similar richness of species is observed at
two different locations, the set of species at one location need not be the same as those at the
second. Are those at the second ‘replacements’ for those at the first, i.e. ones which respond to
the ecology in a similar way to those at the first? Or do we have a much different ecology with
quite a different set of species?
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In our setting we can offer the same clarification. Since log{p
.k/
i =.1−p

.k/
i /} strictly increases

in p
.k/
i , suppose that we look at

K∑
k=1

E log

(
p

.k/
i

1−p
.k/
i

)∣∣∣∣∣Y
rather than Σ E.p

.k/
i |Y/. With regard to environmental characteristics, the former involves

w′
i E.ΣK

k=1 β.k/|Y/. We see that Σ β.k/ plays the role of the coefficient vector when modelling
richness of species directly. Thus we can see that for say the lth component of Σ β.k/ it can
be that, for some k, Σ β

.k/
l is significantly positive whereas for other k it may be significantly

negative. In aggregate, we need not find significance. (To work on the same scale as the β
.k/
l s

we might use the posterior of K−1 ΣK
k=1 β.k/|Y). We explore the issues of explaining richness in

detail in the data analysis of Section 6.
A related comment is to note that an inappropriate alternative is to treat Σ E.p

.k/
i |Y/ as the

‘data’ and to fit a regression with spatial effects to these data. Apart from the possible con-
founding problems above, viewing Σ E.p

.k/
i |Y/ as the data, i.e. conditioning on them as fixed,

will result in an underestimation of variability in the regression.
Finally, related to the foregoing discussion, we consider the issue of the turnover of species,

i.e. not only do we expect similar richness in neighbouring pixels but also that it arises from

Fig. 1. Kogelberg–Hawequas subregion overlaid with the sampling locations
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Fig. 2. Data layers of July minimum temperature, January maximum temperature, PPTCV, elevation and
mean annual precipitation
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essentially common species. With increasing distance between pixels, not only do we expect less
similarity in richness but also less overlap in species. We propose, as well, to use the E.p

.k/
i |Y/ to

investigate this. Defining E.pi|Y/ to be the .K ×1/-vector whose entries are E.p
.k/
i |Y/, overlap

(turnover) is reflected by the similarity (difference) between these vectors. Using a neighbour-
hood structure (first or second order), for each pixel i we propose to compute

di = exp

{
− ∑

j∈δi
||E.pi|Y/−E.pj|Y/||

number of neighbours of i

}
: .9/

For cell i, di yields an average similarity (first or second order) of cell i with its neighbours. When
di is large, high overlap is indicated; when di is small, high turnover is indicated. A chloropleth
map of the di will reveal where in the region overlap is high and where it is low.

6. Analysing a subsample of the Cape floristic region

The study region (referred to as the Kogelberg–Hawequas subregion) lies in the western por-
tion of the CFR, occupying 1554 grid cells. Fig. 1 shows the region with the transformed areas
indicated and the sampling locations overlaid. There are a total of 6957 sampling locations
within the region including null sites (sites where nothing was observed). Cell level characteris-
tics (the wi) include the July minimum temperature, January maximum temperature, intracell
coefficient of variation in annual precipitation (PPTCV), altitude and mean annual precipi-
tation. Grey scale maps of these data layers are supplied in Fig. 2. As can be observed, the

Table 1. List of species (in alphabetical order) with their attributes

Species Dispersal Response Height Location
mechanism to fire (m) population size

Aulax pallasia Stapf Wind (1) Bole (1) 2.0 <1000
Aulax umbellata (Thunb.) R.Br. Wind (1) Killed (0) 2.0 >1000
Leucadendron corymbosum P.J. Bergius Wind (1) Killed (0) 1.5 <1000
Leucadendron daphnoides (Thunb.) Meisn. Mammal (0) Killed (0) 1.00 >1000
Leucadendron microcephalum (Grand.) Gand. Wind (1) Killed (0) 1.25 >1000

& Schinz
Leucadendron salicifolium (Salisb.) I. Williams Wind (1) Killed (0) 2.00 <1000
Leucadendron salignum P.J. Bergius Wind (1) Bole (1) 0.50 >1000
Leucadendron sessile R.Br. Mammal (0) Killed (0) 1.0 >1000
Leucadendron spissifolium (Salisb. ex Knight) Wind (1) Bole (1) 1.00 <1000

I. Williams
Leucadendron tinctum I. Williams Mammal (0) Killed (0) 0.75 <1000
Leucospermum bolusii Grand. Ant (0) Killed (0) 1.00 >1000
Leucospermum grandiflorum (Salisb.) R.Br. Ant (0) Killed (0) 1.5 <1000
Leucospermum oleifolium (P.J. Bergius) R. Br. Ant (0) Killed (0) 0.75 <1000
Mimetes arboreus Rourke Ant (0) Killed (0) 3.00 <1000
Mimetes cucullatus (L.) R.Br. Ant (0) Bole (1) 1.0 <1000
Orothamnus zeyheri Pappe ex Hook.f. Ant (0) Killed (0) 2.90 <1000
Protea acuminata Sims Wind (1) Killed (0) 1.50 <1000
Protea nana (P.J. Bergius) Thunb. Wind (1) Killed (0) 1.00 <1000
Protea neriifolia R.Br. Wind (1) Killed (0) 2.50 >1000
Serruria elongata (P.J. Bergius) R.Br. Ant (0) Killed (0) 1.00 >1000
Serruria fasciflora Salisb. ex Knight Ant (0) Killed (0) 0.5 >1000
Sorocephalus imbricatus (Thunb.) R.Br. Ant (0) Killed (0) 1.2 <1000
Spatalla curvifolia Salisb. ex Knight Ant (0) Killed (0) 0.65 <1000
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July minimum temperature presents some high values in the south-west portion of the re-
gion, whereas the January maximum temperature presents higher values in the north-west.
The range of the January maximum temperature is higher than the July minimum tempera-
ture. PPTCV tends to be lower in the centre portion of the subregion. This region presents
some variability with respect to elevation, presenting higher elevation in its mid-east. Finally,
the mean annual precipitation presents higher values towards the central portion of the sub-
region.

23 species were selected somewhat arbitrarily. They are listed alphabetically with their full
Latin names in Table 1. The most frequently occurring, Leucadendron salignum, was found at
622 of the sampling locations (42.09%). The least frequently occurring, Sorocephalus imbrica-
tus, was found at three locations (0.06%). Species level attributes (the Zk) include a dispersal

Fig. 3. Posterior summary of the coefficients of (a) January maximum temperature and (b) July minimum
temperature for each of the 23 species (in alphabetical order as in Table 1)
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mechanism, which has classifications ‘ant and mammal’ (0) or ‘wind’ (1), response to fire, which
has classifications ‘killed by fire’ (0) or ‘resprouting after fire from the bole’ (1), local population
size, which has classifications ‘less than 1000 plants’ and ‘greater than 1000 plants’, and average
height of the species. The species attribute classifications are given in Table 1.

Illustratively, Fig. 3 shows posterior box plots for the β
.k/
l associated with the January

maximum temperature and July minimum temperature. It is clear that an increase in January
maximum temperature decreases the probability of presence for most of the species. The July

Table 2. Posterior summary of the coefficients of the species level attributes
(γs)

Covariate Mean Values for the following percentiles:

2.5% 50.0% 97.5%

Dispersal mechanism 1.40 −0.21 1.39 2.95
Response to fire 2.72 0.41 2.73 4.78
Height −1.31 −2.47 −1.30 −0.11
Local population size 1.14 −0.69 1.16 2.87

Fig. 4. Posterior mean of the spatial effects (ρi s)
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Fig. 5. Observed and adjusted ranges for (a) Leucadendron salicifolium, (b) Sorocephalus imbricatus and
(c) Mimetes arboreus

minimum temperature reveals the importance of considering different coefficients for each of
the species, as different species present considerably different behaviour in terms of July mini-
mum temperature. For some species, an increase in the July minimum results in an increase in
the chance of presence whereas, for others, the probability of presence decreases with higher
July minimum temperature.

Table 2 provides a summary of the inference for the coefficients of the species level attributes
(γs) implicitly within equation (5). Potential presence is encouraged more through wind than
ant or mammal dispersal. It is also somewhat encouraged by a bole response to fire and by a
tendency towards larger local population size. It appears to be discouraged by increasing average
plant height. Fig. 4 shows the spatial adjustment to the p

.k/
i in equation (5) using the posterior

means of the ρis. Spatial pattern, smoothed through the conditional autoregressive model, is
evident. For instance, spatial effects are small in the north and west portion, and larger in the
central east and south-east portion.

Next, we turn to the patterns of distributions and ranges of species described in the previous
section. For the range of species we illustrate with three species, which are quite different from



16 A. E. Gelfand, A. M. Schmidt, S. Wu, J. A. Silander, A. Latimer and A. G. Rebelo

Fig. 6. Potential range for (a) Leucadendron salicifolium, (b) Sorocephalus imbricatus and (c) Mimetes
arboreus

each other with regard to abundance and range, Leucadendron salicifolium, Sorocephalus im-
bricatus and Mimetes arboreus. In each case we present the observed range, i.e. the locations
where the species was observed as well as the transformed ranges. These maps are shown in Fig. 5.
Fig. 6 shows the potential ranges for these three species. They are larger than the corresponding
ranges in Fig. 5 but a comparison across panels shows that this occurs in a species-specific
fashion. Informally, we see that the model predicts quite well in terms of the probability of
presence for each of the species in Figs 5(a) and 5(b). Note that for the species in Fig. 5(c) the
model is assigning some high probabilities to sites where it was not observed. Actually, what is
happening is that the model is predicting the presence of another species, Mimetes argenteus,
which is similar to, or a ‘sister species’ of, Mimetes arboreus, but was not included in the present
analysis.

Turning to richness of species, in Fig. 7 we present observed richness (in the form of a grey
scale map attaching an observed richness to each cell) as well as potential and transformed
richness. When we compare the transformed richness with the observed richness, it is clear that
the model can predict the richness quite well. Following the discussion in Section 5, with regard
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Fig. 7. Observed, potential and adjusted richness

to explaining richness, Table 3 summarizes the posterior distribution for the Σ23
k=1 β

.k/
l . Altitude

is suggestively significant whereas January maximum temperature is not in explaining richness.
An increase in July minimum temperature represents an increase in richness, whereas mean
annual precipitation, PPTCV and elevation have a behaviour in the opposite direction.

Finally, to examine turnover, Fig. 8 summarizes the similarity of the E.pi|Y/ by using first-
and second-order neighbours. In both maps, the north-west portion of the region tends to pres-
ent high values for the di, meaning that the probabilities for each of the species tend to be very
similar among the cells there. Again this is all in accordance with the data, as we know that this
is a transformed area and the probabilities of finding any of the species there tend to be quite
low. However, the mid-south portion has some of the lowest values of di; the probabilities for
each of the species in this area tend to be quite different across cells. Therefore we tend to find
a greater number of different species in this area.

7. Discussion and extensions

In several respects the model proposed marks a significant advance over previous efforts to
model biogeographic patterns in distributions of species. The model form enables quantification
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patterns in the turnover of species. In place of the conventional species range concepts„typi-
cally either the set of observed point locations, the convex hull for these points or some more
arbitrary encompassing polygon„our implementation speci“es species range as a probability
surface for an areal grid, with point estimates and con“dence intervals available for each grid
cell. This range speci“cation is useful and intuitive, as it incorporates gaps in the distribution of
species as well as any declining probabilities of presence near distributional limits. Clearly this
is a more realistic and practical means of specifying ranges of species than conventional solid
polygons. This approach also provides testable predictions about the potential range of a species.

As with individual species range, the model proposed provides a rigorous way to predict the
richness of species in a particular grid cell. Since our measure of richness is the sum of the
probabilities of presence of individual species, it includes both an estimate and a quanti“cation
of uncertainty. The predicted turnover of species is similarly a summation of the differences of
probability of presence for each species between a grid cell and its neighbourhood. This measure
of turnover is novel and avoids the problems in conventional ecological concepts of turnover,
which cannot provide any estimate of uncertainty, cannot differentiate between turnover caused
by the edges of the range and patchiness within distributions and cannot directly suggest how
individual species and site level characteristics may in”uence the rate of turnover.

Future work with this modelling approach would include more species and would incorporate
other explanatory data layers. For example, geological information capturing fertility, texture
and acidity of the soil would be very important in explaining the presence or absence of spe-
cies. Another possibility would be to introduce phylogenetic information into the modelling to
replace species attributes. The approach enables an assessment of the scale of resolution effects
by “tting a given model at different resolutions. It also enables comparisons across regions with
regard to biodiversity issues. Finally, the Bayesian approach for “tting such hierarchical models
is clearly advantageous in enabling full inference. Moreover, there may not be another feasible
approach for actually “tting the models that are proposed here.

The entire proposed hierarchical modelling and inference strategy can serve as a prototype
for other biodiversity data analysis. For instance, in principle, the abundance of species could
be studied replacing the binaryY.k/

ij with counts. However, the modelling will require some
modi“cation since we would want to associate abundance with an area rather than a point.
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