How should we go about modeling this?

gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

Model parameters?
Time
Substitution rate
Can we observe time or subst. rate?
What can we observe?

Maximum likelihood estimation

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla and orangutan: gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

- Why does the curve drop as you move left of the MLE?
- Why does the curve drop as you move right of the MLE?

JC69 rate matrix

What does this mean?
Why is this number negative?
To

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.

Equilibrium Frequencies

A sequence consisting only of A...

AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAA AAAAAAAAAAAAAA AAAAAAAAAAAAAA AAAAAAAAAAAAAAA

Perfume bottle broken, and perfume quickly fills the room

Equilibrium Frequencies

If all doors are suddenly opened, perfume will spread by diffusion to the other rooms...

The instant the doors open, the rate away from A is 3α
(i.e. rate $=-3 \alpha$)

AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA

Equilibrium Frequencies

Sequence now contains a few Cs, Gs, and Ts...

AATAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAACAAAAAATAAA
AAAAAAAAAAAAAAA
AAAAAAACGAAGAAA
AAAAAAAAAAAAAAA
AAATAAAAAAAAAAA

As perfume spreads by diffusion, the difference in concentration among rooms decreases...

Equilibrium Frequencies

Sequence contains a mixture of about equal quantities $\mathrm{A}, \mathrm{C}, \mathrm{G}$ and T

CAGAATCGAGCAGCT TGACTACGTCATGTG GTTGCGCCGCAACGC CATATACCGCCGACT AGTTTGAGGGCGGTT AGGGCTCGGTTCGTA CATCGTATAAACATT

After a long time, equilibrium (=stationarity) is achieved.

Stationarity Assumed

K80 (or K2P) rate matrix

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

K80 rate matrix

 (looks different, but actually the same)2 parameters: κ
β

Note: the K80 model is identical to the JC69 model if $\kappa=1(\alpha=\beta)$

Likelihood Surface when K80 true

Likelihood Surface when JC true

Based on simulated data:

sequence length	$=500$ sites
true branch length	$=0.15$
true kappa	$=1.0$

F81 rate matrix

4 parameters:

	A	C	G
A			
C			
G			
T			
T			
$\left.\begin{array}{cccc}-\mu\left(1-\pi_{A}\right) & \pi_{C} \mu & \pi_{G} \mu & \pi_{T} \mu \\ \pi_{A} \mu & -\mu\left(1-\pi_{C}\right) & \pi_{G} \mu & \pi_{T} \mu \\ \pi_{A} \mu & \pi_{C} \mu & -\mu\left(1-\pi_{G}\right) & \pi_{T} \mu \\ & \pi_{C} \mu & \pi_{G} \mu & -\mu\left(1-\pi_{T}\right) \\ \hline\end{array}\right]$			

Note: the F81 model is identical to the JC69 model if all base frequencies are equal

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368-376.

HKY85 rate matrix

5 parameters:

$$
\begin{aligned}
& \kappa \\
& \beta \\
& \pi_{\mathrm{A}} \\
& \pi_{\mathrm{c}} \\
& \pi_{\mathrm{G}}
\end{aligned}
$$

A dash means equal to negative sum of other elements on the same row

Note: the HKY85 model is identical to the F81 model if $\kappa=1$. If, in addition, all base frequencies are equal, it is identical to JC69.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21:160-174.

GTR rate matrix

A	C	G	T
A			
C			
G			
T	$\pi_{C} a \mu$	$\pi_{G} b \mu$	$\pi_{T} c \mu$
$\pi_{A} a \mu$	-	$\pi_{G} d \mu$	$\pi_{T} e \mu$
$\pi_{A} b \mu$	$\pi_{C} d \mu$	-	$\pi_{T} f \mu$
$\pi_{A} c \mu$	$\pi_{C} e \mu$	$\pi_{G} f \mu$	-

Identical to the F81 model if $a=b=c=d=e=f=1$. If, in addition, all the base frequencies are equal, GTR is identical to JC69. If $a=c=d=f=\beta$ and $b=e=\kappa \beta$, GTR becomes the HKY85 model.

So, how do you turn likelihoods into probabilities?

\longleftarrow this is the likelihood surface: $\operatorname{Pr}($ data|к,v) want probability surface: $\operatorname{Pr}(\mathrm{k}, \mathrm{v} \mid$ data $)$

Kinds of probabilities

$$
\begin{array}{ll}
\mathbf{B}=\text { Black } & \mathbf{S}=\text { Solid } \\
\mathbf{W}=\text { White } & \mathbf{D}=\text { Dotted }
\end{array}
$$

Marginal probabilities:

$$
\begin{array}{ll}
\operatorname{Pr}(B)=0.6 & \operatorname{Pr}(S)=0.5 \\
\operatorname{Pr}(W)=0.4 & \operatorname{Pr}(D)=0.5
\end{array}
$$

Joint probabilities:

$$
\begin{aligned}
& \operatorname{Pr}(\bigcirc)=\operatorname{Pr}(B, D)=0.2 \\
& \operatorname{Pr}(\bigcirc)=\operatorname{Pr}(B, S)=0.4 \\
& \operatorname{Pr}(\bigcirc)=\operatorname{Pr}(W, D)=0.3 \\
& \operatorname{Pr}(\bigcirc)=\operatorname{Pr}(W, S)=0.1
\end{aligned}
$$

Kinds of probabilities (continued)

Conditional probability

Hide all solid marbles (leaving 5 with dot)
Of those left, 2 are black

Bayes' rule provides a way to calculate conditional probabilities

Bayes' rule shows how to turn $\operatorname{Pr}(\mathrm{D} \mid \mathrm{B})$ into $\operatorname{Pr}(\mathrm{B} \mid \mathrm{D})$

$$
\operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(D)}
$$

The marginal probability of D is the sum of all joint probabilities involving D

Bayes' rule in statistics

Moving through treespace

The Larget-Simon move Step 1:
Pick 3 contiguous edges randomly, defining two subtrees, X and Y
*Larget, B., and D. L. Simon. 1999. Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54:

Moving through treespace

The Larget-Simon move Step 1:
Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

Moving through treespace

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

Moving through treespace

The Larget-Simon move

Step 1:
Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount
Step 3:
Choose X or Y randomly, then reposition randomly

Moving through treespace

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount
Step 3:
Choose X or Y randomly, then reposition randomly

Moving through treespace

Current tree
log-posterior $=-34256$

Proposed tree
log-posterior $=-32519$ (better, so accept)

