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Abstract

Local adaptation occurs when a population evolves a

phenotype that confers a selective advantage in its local

environment, but which may not be advantageous in

other habitats. Restricted gene flow and strong selection

pressures are prerequisites for local adaptation. Fishes in

the family Salmonidae are predicted to provide numer-

ous examples of local adaptation because of the high

fidelity of returning to spawn in their natal streams,

which results in highly structured populations, and the

wide diversity of environments that salmonids have col-

onized. These conditions are ideally suited for produc-

ing a set of specialist phenotypes, whose fitness is

maximized for one specific habitat, rather than a general-

ist phenotype similarly viable in several environments.

Understanding patterns and processes leading to local

adaptations has long been a goal of evolutionary biol-

ogy, but it is only recently that identifying the molecular

basis for local adaptation has become feasible because

of advances in genomic technologies. The study of

shared adaptive phenotypes in populations that are both

geographically distant and genetically distinct should

reveal some of the fundamental molecular mechanisms

associated with local adaptation. In this issue of Molecu-

lar Ecology, Miller et al. (2012) make a significant contri-

bution to the development of adaptation genomics. This

study suggests that salmonids use standing genetic vari-

ation to select beneficial alleles for local adaptations

rather than de novo mutations in the same gene or alter-

native physiological pathways. Identifying the genetic

basis for local adaptation has major implications for the

management, conservation and potential restoration of

salmonid populations.
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Adaptation genomics

Adaptation and natural selection are at the very heart of

evolutionary biology. Williams (1966) suggested that to

explain adaptation, ‘one should assume the simplest form

of natural selection, namely that of alternative alleles in

Mendelian populations, unless the evidence clearly shows

that this theory does not suffice’. The traditional view was

that an adaptation would arise in a particular environment

via a de novo mutation, and this novel allele would then be

selected in that population. However, observations of par-

allel phenotypes in populations within a species and

among closely related species demand a more complex

explanation to account for the phenomenon of similar local

adaptations. Many of the conceptual issues of local adapta-

tion, such as the importance of natural selection, gene

flow and other evolutionary forces, have been reviewed

(Kawecki & Ebert 2004), and a strong case has been made

for studying parallel local adaptations. Elmer & Meyer

(2011) recognized that parallel phenotypes, or replicative

adaptive radiations, may have three genetic bases: (i) the

same mutation (allele) in a gene; (ii) a different mutation

(allele) in the same gene; and (iii) mutations in different

genes. There is evidence to support each of these schemes.

For example, in threespine sticklebacks, the reduction in

armour plating seen in different freshwater populations

relative to their marine counterparts appears to be predom-

inantly the result of repeated selection of pre-existing

alleles in the Ectodysplasin-A gene (Eda), which occur at

low levels in marine populations (Colosimo et al. 2005). In

contrast, albinism in cavefish populations has been shown

to be owing to independent loss of function mutations (i.e.

different alleles) in the ocular and cutaneous albinism-2

gene (Oca2) (Protas et al. 2006). Moreover, the apparent

parallel phenotypes of light and dark pigmentation in wild

populations of Peromyscus sp. exhibit homologous and non-

homologous genetic origins, resulting from independent

mutations in the McR1 and Agouti genes (Manceau et al.

2010). The development of genomic technologies, such as

next generation sequencing, is enabling a better under-

standing of how organisms adapt to different environmen-

tal niches (Stapley et al. 2010). In particular, adaptation

genomics allows us to ask how many genes are involved

in an adaptation, what types of genetic variation are associ-

ated with an adaptation, and to what extent does adapta-

tion rely on standing genetic variation as opposed to new

mutations.

Local adaptation occurs when a population evolves a

phenotype that confers a selective advantage in its local

environment, but which may not be advantageous in other

habitats (Williams 1966). Ideal conditions for local adapta-

tion to occur include restricted gene flow between demes,
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Fig. 1 Salmonid populations vary in rates of early development to optimize conditions for fry emergence. In some locations, early

hatching rainbow trout (i.e. those with a fast development rate) are more likely to survive. This trait has been selected for in geo-

graphically and genetically distant populations of rainbow trout from standing genetic variation rather than by de novo mutations or

alternative physiological pathways. (A) Shows hatched yolk sac fry (red arrow) and unhatched eggs (blue arrow). (B) and (C) Show

fingerlings and wild rainbow trout, respectively.
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genetic loci that contribute strong effects on fitness and

strong selection pressures (Kawecki & Ebert 2004). The Sal-

monidae, (i.e. salmon, trout, charr, freshwater whitefish

and grayling; Nelson 2006) are predicted to provide

numerous examples of local adaptation because of their

high fidelity of returning to spawn in their natal streams,

which results in highly structured populations (Quinn

2005), and the wide diversity of environments the salmo-

nids have colonized (Primmer 2011). These conditions are

ideally suited for producing a set of specialist phenotypes,

whose fitness is maximized for one specific habitat, rather

than a generalist phenotype similarly viable in all environ-

ments (Taylor 1991; Fraser et al. 2011). It is quite common

for sympatric ‘ecomorphs’ (e.g. dwarf and normal size lake

whitefish (Bernatchez et al. 2010); resident and anadro-

mous forms of Atlantic salmon (Birt et al. 1991); benthic

and pelagic Arctic charr (Kapralova et al. 2011)) to coexist

in the same watershed. But it has also been documented

that salmonid populations, which are genetically distinct

based on neutral markers, appear to share the same or sim-

ilar local adaptations (Bernatchez et al. 1996; Taylor et al.

1996; Waples et al. 2004). Understanding the mechanisms

by which these parallel local adaptations arise and dissect-

ing their molecular basis are not only of central interest to

evolutionary biologists, but also have practical implications

for conservation biologists.
Parallel local adaptation for rapid early development

The period immediately after emergence from their gravel

nests is a particularly challenging time for salmonids, and
this is when the greatest mortality occurs (Elliott 1989). The

time from fertilization to hatch, which is a measure of

developmental rate, is associated with length of fry in pink

salmon (Beacham et al. 1988) and larger size and earlier

sexual maturity in some strains of rainbow trout (Allendorf

et al. 1983). It has also been observed that there is selection

against late emergence and small offspring in Atlantic sal-

mon (Einum & Fleming 2000). It is not surprising then that

variation in developmental rate has been observed in pop-

ulations of rainbow trout (Robison et al. 1999) (Fig. 1).

What is surprising is that two of the populations, Clearwa-

ter and Swanson, in which rapid rates of early develop-

ment have been described, come from distant geographical

locations and belong to distinct subspecies of Oncorhynchus

mykiss. The Clearwater strain is from North Central Idaho

and represents the inland subspecies, whereas the Swanson

originated in Southcentral Alaska and is part of the coastal

subspecies (Allendorf & Utter 1979). Clonal homozygous

lines, produced by androgenesis or gynogenesis, are avail-

able for Clearwater and Swanson rainbow trout as well as

other populations, and it has been shown that the variation

in developmental rates in the clonal lines reflects what is

observed in the wild populations from which they were

derived (Robison et al. 1999). Quantitative trait loci (QTL)

mapping identified a region of the genome that accounts

for up to 30% of the observed developmental rate variation

(Robison et al. 2001; Sundin et al. 2005; Nichols et al. 2007).

Moreover, the QTL maps to the same location in the Clear-

water and Swanson strains. However, it was not clear if

the Clearwater and Swanson populations have evolved an

increased rate of development from the same allele in the
� 2012 Blackwell Publishing Ltd
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same gene, a different allele in the same gene or from dif-

ferent genes that by chance are located in the same part of

the genome. Another possibility was that the OSU strain

used in the QTL mapping studies actually imparted a

slower developmental rate (Nichols et al. 2007). In this

issue of Molecular Ecology, Miller et al. (2012) make a signif-

icant contribution to the development of salmonid adapta-

tion genomics. They used a combination of laboratory

crosses of homozygous lines of rainbow trout derived from

natural populations, chromosome set manipulation, next

generation sequencing and QTL mapping using RAD Tag

SNPs (Miller et al. 2007; Baird et al. 2008) to identify a con-

served haplotype that is associated with rapid early devel-

opment in the Clearwater and Swanson strains of rainbow

trout. This study suggests that these populations of rain-

bow trout used standing genetic variation in the species as

a whole (Barrett & Schluter 2007) to select beneficial alleles

for the local adaptation of rapid early development rate

rather than de novo mutations in the same gene or alterna-

tive physiological pathways.
Looking forward

Identifying the genetic basis for local adaptation has major

implications for the management, conservation and poten-

tial restoration of salmonid populations, many of which

are threatened. For example, many attempts to transplant

salmonids for restoration and enhancement purposes have

failed (Waples 1991). Indeed, the use of hatcheries to sup-

plement salmonid populations that have decreased because

of overfishing, habitat destruction and the blockage of

migratory routes may not be having the desired effect

because of direct genetic effects caused by hybridization

and introgression of hatchery stocks with local fish or more

indirect effects, which result from changes in the gene pool

of the stocked fish by selection for hatchery conditions.

With the completion of a salmonid reference genome antic-

ipated in 2012 (Davidson et al. 2010), studies such as the

one reported by Miller et al. (2012) provide hope that

genomics can make a positive contribution to the future of

conservation genetics of salmonids (Allendorf et al. 2010).
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