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THESIS ABSTRACT

Why saltmarsh sparroware found in somealt marsh areas of Connectibuit not in others
is a question of both ecological and conservation concern. Because the sparrows are restricted to salt
marshes for their existence, they are vulnerable to changes in conditions. Therefore, conservation
planning would require an assessment of the current extdrdamdition of habitat for sparrows.

Multiple studies have documented various componentalofrarshes that show strong associations
with the sparrows, but predictive models using remote sensing have not yet been constructed that are
specifically calibrated for this species.

To develop anapthat would predict where the sparrows live and repreda Connecticut, |
compared models to test a) whether field data or reserising data most effectively characterized
within-marsh conditionghat relate to sparrow occurrenead b) whether including landscdpeel
variables improved model fit. Mobethat best fit the data for sparrow presence and sparrow nesting
used different variablesThe best sparrow presence model used a variable derived from raw spectral
reflectance values associated with plots where sparrows did not wbdlerthe best r& presence
model used a combination of vegetation structure descriptions. A second nest model, built using
high resolution remote sensing data that organized marsh characteristics into high and low marsh
categories, had enough support for steitte apgication.

When the models were tested using new data, model performance, assessed by determining
the area under a receiver operating curve and the model deviance, was significantly better than
expected by chance alone.

I then used model results to buildps of habitat conditions for saltmarsh sparrow presence
and nesting across the statelarge proportiorof the saltmarsh area in Connecticut was predicted to
have a high probability of being occupied by sparrows, yetiehsmaller proportion of marshas
predicted to have a high probability of having nests. While detailed delineation of plant communities

in the marsh provided good predictions of sparrow nesting, they poorly predicted presence. On the



other hand, écause areas of nesting activity ane well-identified by species presence modals,
distribution model that describes only species presencdéd provide misleading information about
where the most impontd areas for reproduction lie. Additional researcheisded to establigiow

sparrowpersistencenay be influenced by the areas that are likely to have sparrows but not nests.
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Chapter 1. Comparing saltmarsh sparrow habitat models using groundbased and

remote sensing data

ABSTRACT

Remote sensing data can represent various habitat téréstcs,and can thuseplae detailed

ground sampling ithe constructdn of habitat modelsRemote sensing data may also distinguish
additional variationn conditionsthat can beuseful in discriminating presence and abseasfapecies

To predict slimarsh sparrow distribution and nesting activity in Connecticut salt marshes, |

compared a set of Bayesian hierarchical models in which variables were generated from field or
remote sensing data, at a scale-biplotsand at the landscape scale. Fiddla consisted of plant
structure and plant compositiwariables Dataderived from emote sensinmcludedhigh and low

marsh classifications, LIDAR elevation data, and a classification derived from spectral characteristics
specifically associated witkaltmarsh sparrow presence or absence. The best sparrow presence
model used a variable derived from raw spectral reflectance values associated with plots where
sparrows did not occur, indicating that the rensatesing data included additional informatibout

marsh conditions associated with saltmarsh sparrow presence and absence than was detected using
plant composition, structure, or commuritgsses.Nest presence, in contrast, was modeled best

using vegetation structure variables that required dallection on the groundsaltmarsh sparrow
presencetherefore will not necessarily indicate that an area provides all conditions suitable for

reproduction and persistence.

Keywords: Ammodramus caudacutiBayesian hierarchical modelsabitat usepccupancy

modeling,remote sensing, salt margaltmarsh sparrow



I. INTRODUCTION

Habitat loss and fragmentation contribute to the decline of many species (Andren 1994,
Fahrig 1997, Jenkinst al.2003, IUCN 2009). Describing the link between an oiga and its
environment is therefore necessary to conservation efforts for at least two reasons. First, this
information provides the basis for identifying F
amount and type of land cover present (Garriand Lupo 2002, Underwoed al.2004). Second,
understanding this relationship should guide land protection and management to improve a target
organi smbés st at us et@R298, KRmobeetralr2§06)1 98 1, Scott

Habitat models quantifythefact s associ ated with an organi s m
understandbetter why the organism is found in some areas and not in ofhieese models can then
be used to predict where the organism occurs. When the organism uses different featufessfar dif
purposes, such as nesting or foraging, habitat modeling should be associated with specific activities.
As more information is collected about the organism, the more detailed the model can become
(Guisan and Thuiller 2005), ultimately allowing owddentify potentially limiting factors or
processes (Van Horne 2002, Kristan 2007, (ted. 2008).

In addition to conditions within a patch that affect patterns of occupfaatyres othe
landscape around a patch can affect whether or not itispmet Several factors may contribute to
this contexddependence. First, processes operating on a scale larger than a patch may alter conditions
across a large region (Diez and Pulliam 2007). For example, proximity to urban development may be
associatedvith increased pollution levels. Second, distribution of the organism may be constrained
by a spatial factor such as dispersal limitation (Pulliam 2002, Beah2008). Predictions of patch
occupancy may be improved by including variables that destandscaptevel conditions in
addition to those that describe local habitat characteristics (Wiegah®003, Diez and Pulliam

2007, Mcintire and Fajardo 2009).



Geographic Information Systems (GIS) are often used to quantify the spatial relgagonshi
and context associated with pagsbf habitat. Increasinghavailable high resolution data from
satellites and aerial images offer a great deal of detail about land cover features that may be relevant
to the organism of interest (Van Horne 2002).haligh regional analyses frequently use aerial
images to classify areas into land cover or plant composition categories, this approach assumes that
all of the variables of interest are present at the resolution of the aerial image (Seda2@04).
Processing remotsengdimages involves organizing data into categoesia priori decisionsare
madethat guide how the computer handles the array of informafibiese decisions may divide the
data into too many categories to detect differences ipatserns, or the resolution of the information
may be too coarse to distinguish differences (Gottsatadk 2005). Comparing models that use
groundbased vegetation data to those using rematsing data can determine whether important
information ismissing from either set of data, and identify whigiproachesost effectively
discriminate between suitable and unsuitable areas for the organism under studgt(BMzk$97,
Wiegandet al.2000, Gottschalkt al.2007).

In New England, salt marsheave been subjected to considerable development pressure and
alterations in tidal flow (Rozsa 1995, Gedsral.2009). These landscape changes have reduced the
total amount of salt marsh, and in some cases changed their plant composition 8iVair2002).

In particular, nonnativ®hragmites australisa tall reed, has spread into many marshes, greatly

altering their vegetation structure (Rongtral. 1984, Chamberst al. 1999). Changes in sea level

may further modify how much and what type of massbecur along the New England coast (Warren
and Niering 1993, Hoover 2009). Saltmarsh sparréwsnjodramus caudacujusre found only in

salt marshes along the eastern seaboard of the USA (Greenlaw and Rising 1994). Female sparrows
place their nests cledo the ground (Humphregs al.2007), and flooding is a major cause of nest
failure (Greenbergt al.2006, Gjerdrunet al.2008a,Bayard and Elphick 2031 Consequently,

changes in saltmarsh conditions are likely to have a large impact on saltnaarstwgmpulations.
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In Connecticut, a relatively large population of saltmarsh sparrows occurs along with a wide
range of marsh conditions, offering an opportunity to investigate the relationship between marsh
conditions and sparrow presence. Previesgarch has identified vegetation composition and
structural characteristics within marshes that are associated with saltmarsh sparrow presence and
reproductive effort (Benoit and Askins 2002, DiQuingtaal. 2002, Shriveet al.2004, Gjedrunet
al. 2005 2008b). However, aeas of marsh with the most sparrows are not always those where the
most females nest (Elphi@k al, unpublished data), suggesting that different marsh features may be
important for different activities. Additionally, previousstedd have i ndicated that
and proximity to other marsh areas may influence whether or not saltmarsh sparrows occur in a given
marsh (Benoit and Askins 2002, Shriwtral.2004), suggesting that landscegmale factors may
affect sparrow preses.

My research was designed to test a) whether field data or reemging data most
effectively characterized withimarsh conditions for saltmarsh sparrows, b) which reisenising
data and data processing approach produced the best predictataifussey and c) whether

attributes of the landscape at the masgéstem level improved model fit.

Il. METHODS

A. Candidate Models

| developed am priori series of alternative models for the presence of saltmarsh sparrows or
for saltmarsh sparrow niss based on information in the literature on saltmarsh sparrows.
Models were subdivided into those that used only mienagtl characteristice(g isolation), those
that used only withirmarsh characteristice.g elevation), and those that combinediomarsHevel
attributes and withimarsh information (Table 1). Withimarsh models were further subdivided
into those that used fielobased measurements of vegetation composition and structure to characterize

conditions, and those in which conditiomsre characterized by remotedgnsed elevation data or by
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vegetation community classifications derived from digital aerial imagery. Additional models that
were considered included factors related to location within the marsh and whether restorateon effor
had taken place. Withimarsh characteristics were described frehalplots, while landscagevel

factors were measured at the scale of the marsh system in which plots were located.

1. Within-marsh characteristics

Gjerdrumet al. (2008b) have prewusly found that models that included structural
characteristics of the vegetation fit sparrow abundance data better than models based on vegetation
composition alone. The means of stem density, thatch height, and the maximum vegetation height
were identiied as the best predictor variables. Consequently, for my analysis, | included models that
assessed each of these structural characteristics individually and in combination to determine whether
all components were needed to represent conditions suibaldaltmarsh sparrow presence or
nesting (Models 4, Table 1).

Although measurements of structural characteristics produced better model fit than plant
composition variables (Gjerdruet al.2008b), my study included marshes across a wider salinity
gradient and thus a wider range of vegetation assemblages. | therefore also included models based on
vegetation composition to assess whether the earlier results persisted across this broader range of
conditions. | examined singlpecies composition modalsing the percent cover 8partina
patensS. alterniflora,andJuncus gerardi{Models 57). S. patenandS. alterniflorafrequently are
the dominant species in Connecticut salt marshes (Tiner 198 patenss common in high marsh
areas, whilehetall form of S. alterniflorais frequently found in lower areas of marsig( 1; Niering
and Warren 1980, Bertness and Ellison 1987 )gerardiiis a species that occurs in the higher zones
of high marsh (Bertness and Ellison 1987), and has beenfieér@s a good indicator of sparrow
nest locations (Gjerdruet al. 2005, 2008). Singlespecies composition models usidgpatensnd

tall S. alterniflorg therefore could be considered to distinguish generally between zones of high and
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low marsh, whie J. gerardiicould be considered to identify a subset of the high marsh zone of
specific interest tmestingsaltmarsh sparrows. | also combiriallil S. alterniflorg J. gerardii andP.
australis(Model 8) for a model that provides a maamprehensiveescription othe plants
occurring in a plot by including low marshspeciesa high marskspeciesand an introduced species
of great management interest. Because the amodtpzaitengan be negatively correlated with the
amount oftall S. alternifora present in salt marshes (Wigagtdal. 2003), these two species were not
included in the same model.

To characterize withimarsh conditions using remote sensing data, | first included models
that tested whether marsh community classes defipeiri predicted suitable conditions for
saltmarsh sparrow presence and nesting. Using a plant community classification that subdivided salt
mar sh areas into Al owd and Ahighd marsh based
elevation dataHoover 2009, | included models in which habitat was represented by the proportion
of a plotés area that was high marsh (Model 9)
Multispectral images integrate information from a range of environmentaldaatmt thus might
provide more information than variables based on individual species or structural features (Gottschalk
et al.2005). Hence, | created a third remote sensing model using a classification based solely on
spectral characteristics of plotssaciated with known sparrow presence or abskemdbe sparrow
presence modéModel 11), and on spectral characteristics of plots associated with known nest
presence or absence for the nest moBekause plant communities in salt marshes are greatly
influenced by elevation relative to tidal inundation (Niering and Warren 1980), | also included a
model that tested whether elevation data alone could be used to discriminate between areas of
saltmarsh sparrow presence and absence (Model 12). For thik highteDetection and Ranging
(LiDAR) data were used to represent the height of the vegetation canopy relative to mean high tide.

Two other withinmarsh features were considered in my model set. Previous studies have

found that the distance to the eddge¢he marsh influences where saltmarsh sparrows occur and where
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they place their nests (Gjerdrwghal. 2008b, Hill 2008). Thus, I included a model that estimated
sparrow or nest presence as a function of the distance from the sampled area to thexigpland

(Model 13), as well as models in which this distance was combined with vegetation structure (Model
14) or with vegetation composition (Model 15).

The secon@dditionalfactor | considered that might affect whether saltmarsh sparrows were
present imn area of marsh was whether there had been any restoration efforts aimed at reducing the
impacts of invasiv®. australis. Two types of restoration have been conducted along the Connecticut
coast: a) restoration of tidal flow and b) direct contrdPofustralisthrough mowing or herbicide
application. Subsequent changes in saltmarsh vegetation composition have varied depending on the
type of restoration undertaken and the time since the restoration work (Rosza 1995 ei\rren
2001, 2002). |therefe included models that tested whether restoration affected sparrow presence or
nesting, whether the method of restoration mattered, and whether the time since restoration mattered
(Models 1618). Sites with direct control &. australiswere all restagd 410 years before my field
work, while the tidal restorations all took place33years previously (P. Capotosto and R. Wolfe,
personal communication). As a result, the temporal effect could only be examined within each

restoration type.

2. Marshlevel characteristics

The effects of three margével characteristics were examined in our candidate model set,
both individually and in combination: marsh size, isolation, and the degree of development in the
surrounding uplands. Size (Model 19) waduded because larger marshes are likely to be less
subject to edge effects if upland factors influence sparrows. Marsh size may also affect the likelihood
that sparrows encounter a marsh during dispersal or migration (Andren 1994). Most importantly,
mard size has been previously identified as a predictor of occupancy and density in saltmarsh

sparrows, suggesti mgntshati vtelbe (Bpepeawii d etaind Masrke an s
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2004). Similarly, marsh isolation (Model 20) has previously beand to influence sparrow
presence (Shrivest al.2004). Finally, the amount of development in the vicinity of a marsh (Model
21) may be important because marshes in highly developed areas are subject to more pollution,
restricted sediment deposition divevater management structures, and increased runoff from
impermeable surfaces of roads and rooftops, with consequences for saltmarsh function and plant
community composition (Wiganet al.2003, Gedamt al.2009). For example, plant growth and
competiton in marshes are affected by increased nitrogen levels (Beetn@s2002). The marsh

level variables were also assessed in combination with each other (Mo@&ls 28d all marstevel
models were compared to a model that included only a randent ffr each marsh system (Model

26).

3. Combined marshevel and withinrmarsh characteristics

| created a series of models that combined mienat characteristics with withimarsh
variables. Marsh size and distance from the plot center to updigledneere combined (Model 27) to
test whether relative fit was improved by including factors at both spatial scales. To explore further
the fit of marsh size models relative to distafroen-edge models, | also compared models that
combined marsh size witregetatiorstructure(Model 28) or vegetationomposition(Model 29) to
those that combined distanfrem-edge with vegetation structure (Model 14) or vegetation
composition (Model 15), respectively. |alested whether the addition of maiskel information
improved withirmarsh models, by comparing the fit of two other model pairs: a) area of high marsh
with and without marsh size (Models 30 vs. 9), and b) spectral characteristics associated with sparrow
or nest presence, with and without marsh @izedels 31 vs. 11).

To test whether sparrow presence or nesting in a plot that had suitablenatisin
characteristics was influenced by isolation, | compared the relative fit of models of vegetation

structure with and without isolation (Model 32 43, and area of high marsh with and without
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isolation (Model 33 vs. 9). These combinations were selected as representations of highly detailed
groundbased data and high resolution genelassification remotsensing data.

Finally, whether a site haéceived restoration and the amount of surrounding development
were combined (Model 34) to compare to the restoradidp model (Model 18andtest whether
development influenced the probability that sparrows were present in marshes that had undergone
resoration. Previous studies have linked development with differences in plant structure and
composition (Bertnesst al. 2002, Wiganckt al.2003), which may have greater impatsites where

restoration took place, affecting subsequent use by saltmasisp.

B. Data Collection

Field data were collected between 2006 and 2008 fromi@0glots that were distributed
across 27 marshes from Westport to Stonington, Connediigu®]. In 2006, 20 plots were
sampled and site selection was designeddaden sampling to a wider range of sites than had been
included in our gr oup Gtal2005e00Bb) ansl specdicly toiinclude ( Gj er ¢
smaller marshes. Two plots were located in areas that had undergone tidal restior2087. aal
2008, sampling was conducted to examine the effects of restoration efforts, with another 14 plots in
marshes that had undergone titlalv restoration, and eight plots with direct controFofaustralis
For the 20072008 data, restoration plots weguaired with 18 plots in nearby reference areas of marsh
that were unaffected . australisinvasion and had no history of tidal restriction. In all years,
placement of each plot was randomized within the relevant marsh or marsh section. Minor
adjustmats in plot locations were sometimes required due to the proximity of ospmadipn
haliaetug nests (due to state permit constraints), private property boundaries, or inaccessibility due to
marsh features such as major channels; in these cases twapluticed as close to the randomly

selected point as possible.



Saltmarsh sparrow presence was determined usmigiéte point counts and3our mist
netting sessions. Point counts were conducted between sunrise and 09:30 Eastern Daylight Time.
Threesurveys per plot were conducted in 2006, and five in 2007 and 2008; different plots were
sampled each year. During each year, surveys were timed to occur at least two weeks apart between
late May and midAugust. Immediately after each point count, Amstting was conducted in the plot
between 06:00 and 13:00 hours, using an array of sir 2panel mistnets. The location of the
array in the plot was changed for each session to ensure broad plot coverage. Captured saltmarsh
sparrows were banded anded based on the presence of a brood patch or cloacal protuberance.
Nests were detected by walking through the plots and carefully noting origin points of flushing birds,
or by watching females flying with food in their bills as they returned to nests.

Vegetation composition and structural characteristics were measured betwekmyraiad
mid-August to standardize measurements into a period when new growth was limited. Each plot had
nine sampling points, at the center, corners, andpmiits of the ploedges. Previous work found
this design to produce similar results to randgaacement of points (Gjerdruet al.2005). A Im
guadrat was placed over the center of the sampling point. Within the quadrat, the percent of bare
ground and cover of eachapit species were visually estimated. The height from the ground to the
top of the layer of dead rooted vegetafidine thatch heighit was measured at the center of the
guadrat. The height of the tallest piece of vegetation in each of the four cdrtrergjoadrat was
measured and the mean maximum height calculated. Stem density was estimated as the mean of the
stem counts in five randombelected 10 x 10 cm subunits. For each vegetation variable, the mean
across all nine points was used to proxadengle measure for each plot. Distance from the plot to
the upland edge was quantified from aerial images by measuring the shortest distance from the center
of the plot to the edge of the nearest upland patch greater than 0.5 ha in size.

The first emotesensing GIS data layer was developed for other purposes and used a

combination of digital aeriamages, elevation data, extensive grotnuthing, and objeebriented
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classification to create a higlsolution (1 m) map of Connecticut salt marsbeganized by plant
species into high and low marsh communitidedver 2009. Using this data layer, | calculated the
proportion of high and low marsh for each pleig( 3A).

To create an alternative supervised classification of plot characteristcglbaso n 't he bi r d:
actual distribution patterns, | usedrared aerial images taken September 20 and 22, 2004, with 0.5
m resolution, along the entire Connecticut coblsttipnal Oceanic and Atmospheric Administration
Coastal Services Center and the Uniitates Geological Survép04). | created a mosaic from all
the images with salt marshes, resampling to a final resolution of 1 m in order to keep the file from
becoming unmanageably larg€he 60 study plots were used as training areas for the spectral
reflectance properties of marsh conditions within Connecticut. After examining the spectral
characteristics of each plot, | delineated homogeneous areas within plots to provide spectral
signatures. |then used a maximiikelihood algorithm in ERDAS Imdge to classify each salt
marsh pixel in the state according to its resemblance to a signature derived from the original study
plots Fig. 3B). Based on whether at least one sparrow had been detected in the parent training plot
during the 2006008 survey, the pixel classes were then coded according to whether one would
expect sparrows to be present or abgseigt 8C). After subtracting all pixels classified as water, the
proportions of pixels classified as having sparrows either present or alesenglculated for each
plot. For the nest presence analysis, this recoding step was repeated based on whether or not nests
had been observed in the parent training pta.(3D). Because the presence and absence pixel
classes were highly correlated, ortte tclasses that denoted sparrow or nest absence were used in the
models.

A third remotesensing data product was used in the elevation model (Model 12). In addition
to generating theligital images used to create a supervised classificatierNOAA 2004 flight
generated aurfacereturn elevation modéNational Oceanic and Atmospheric Administration

Coastal Services Center and the United States Geological 1094y The resulting Digital Surface
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Model (DSM), which indicates thaeight of the vegation canopyelative to sea level, had vertical
resolution of 0.33 m, and horizontal resolution of 2 m. | calculated the mean elevation for each plot.
At this resolution, the data for all emergent land showed a gradient of increasing elevation from east
to west associated with the increasing tidal amplitude in Long Island Sound. This likely arises
because the elevations at which salt marshes develop are determined by the mean high tide level
(Bertness and Ellison 89) rather than the average sea leaghinst which DSM is measured.
Because sparrows are affectednigan hightides both directly through nest flooding and indirectly
through the tidebs ef f ectealtobemndjusthdeao gweagnedasard af o n D¢
elevation relative toigh tide levels. To do this, | determined the deviation between observed
elevation and that predicted for a given longitude based on a different digital elevation model (ground
return elevationfHoover 2009) | then subtracted the estimated elevatiamfthe mean DSM
elevation for an estimate of canemturn elevation relative to general marsh surface height specific
to that longitude (see Appendixfor adjustment analysis).

Marshlevel variables were measured using the Connecticut Coastal Envirahmen
Sensitivity Index Mapping PolygonBIQAA 2004), which delineateshlt and brackistwater marsh
along the Connecticut coast in 1999. | defined a marsh unit as the group of all tidal marsh polygons
separated by less than 100 m. Size was then caltlgteumming the areas of all saltmarsh
polygons within a marsh unit. Isolation was measured as the shortest distance from the edge of the
marsh unit to the nearest point on the edge of another marsh unit. To determine the amount of
development in the ginity of each marsh unit, | used the Connecticut Changing Landscape GIS 30
m resolution land cover for 2002 (Hurd 2006 generated a 500 m buffer around each marsh unit,
and calculated the proportion of land within the buffer that was classified el®ped. | chose 500
m for the buffer because the major rivers in CT are approximately 300 to 750 mAgideme of

the marshes are islands, a buffer zone much less than 500 m would have consisted primarily of water,
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and buffer size much larger than 580vould have overlapped adjacent marshes, decreasing the
independence of thmeasured variables

Areas of marsh along the Connecticut coast are not all organized into clearly discrete units.
It is not known which arrangements of marsh systems are derdocsparrows moving between
them, although male sparrows have been recorded as siring chicks up to 1.37 km from where the
males were banded (H#t al.2010). As a result, deciding what constitutes a marsh unit that has
biological significance for speows is not straightforward and all of the matshel variables may be
sensitive to usedefined scale decisions. To investigate whether the ri@vehvariables were
sensitive to the definition of marsh unit, | repeated the analyses with the madrdéfinad as the
group of all marsh polygons separated by less than 500 m and compared the relative ranks of the

models from each set of analyses.

C. Model Specification

| used WIinBUGS (Spiegelhaltet al.2000) to fit hierarchical logistic regressiorodels of
sparrow presence and nesting. | used a Bernoulli distribution to model sparrow presence, such that
the logit of the probability of detecting sparrows at the sampled plot was a function of the explanatory
variables and the regression coefficieecause | sampled multiple plots within individual marshes,
and previous work has shown that the marsh in which a surveyed plot was located influenced sparrow
abundance (Gjerdruet al.2008b), | also included a marspecific random effect. The marsh
associated random effect was assumed to be drawn from a global distribution, with thepmeifsh
mean determined by a global intercept and the raxka variables (Diez and Pulliam 2007). The
magnitude of variation in marsh systems could then §esasd by comparing the random effect
estimates of the top models.

Regression coefficients were given normaligtributed prior distributions with means of 0

and precisiosof 0.01, and the random effect estimates and the global intercept estimatgwerre
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normally-distributed prior distributions with means of 0 and precsuadr0.1. More diffuse priors

resulted in model instability and lack of convergence. Each model was ruriwsiktpnte-Carlo

Markov chains, and | examined the time series plotheck that the chains were mixing well. |

further examined the GelmdRubin statistic graph for evidence of lack of convergerdee first

2000 iterations of the Mon#€arlo Markov chain were discarded as the barphase, and each

model subsequenthan for 25,000 iterations. The Deviance Information Criterion (DIC) calculated

for each model was used to compare their relative fit. WinBUGS code is included in Appendix B.
Because logistic regression is robust to-normal data distributions, | digbt transform any

of the variables. Pearson correlation coefficients for allwiie comparisons of variables included

in the same models were < 0.50 (n = 60).

lll. RESULTS

Saltmarsh sparrows were detected in 52 of 60 plots and in 26 of 27 madX&sts were
found in 22 plots and 14 marshes. Marshes in which sampling took place had a mean size of 86 ha, a
mean distance of 306 m to the nearest marsh, and an average of 36% developed land within the 500 m
buffer around the marsh (Table 2). Of thehivitmarsh variables measured on the ground, the mean
coverage ob. patengndJ. gerardiiwere higher at plots where sparrows and sparrow nests were
present than at plots where sparrows and sparrow nests were not found (Table 8l\ghile
alterniflora was more extensive at plots where sparrows and nests were not found. Higher stem
density was associated with plots where sparrows and sparrow nests were found, while thatch height
and mean maximum vegetation height were similar for sites with and whbtusparrows and
nests. On average, there were also greater proportions of high marsh and lower proportions of low
marsh in plots with sparrow nests.

When pixels in the marshes were classified into spaaiosent or sparroywresent

categories, plotknown to contain sparrows were dominated by spapregent pixels (mean =
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78%), while those where sparrows were not detected generally had similar proportions of-sparrow
present and sparreabsent pixels (Table 3)An average 057% of pixelswereclased as nest
presenin plots known to contain nestwith an average d5% classed as neabsent pixelsOn
average, 58% of pixels in plots where no nests were present were classeehbsamgsixels, and

38% were classed as ngsesent pixels. The elevation adjustment analysis estimated that for every
degree of longitudé83.8 km) marsh surfaces were associated, on average, with a 0.38 m (SE 0.05
m) change in elevationAs measured by LIDARhe mean height of the vegetation canoggtive to
mean high tidén each plot was 0.44 m (minmax:-0.92 mi" 1.8 m) after adjusting for the

longitudinal gradient.Canopy height of lpts with sparrows present averaged 0.45 m above mean
high tide, while plots without sparrows present measured 0.41 m aigavehigh tide. Plots that
contained nests had canopy heights that averaged 0.37 m above mean high tide, while those without
nests average0.49 m above mean high tidSites that had undergone tidal restoration had sparrows
present in 11 of 16 plotsyo of which also had nests. Sparrows were found afirsdP. australis
control sites, and nests were foundiue. Vegetation characteristics at restoration and control sites

were directly compared in a separate analysis (Elptiek unpublishednanuscrip).

A. Presence /Absence Models

Sparrow presence Model P11, in which habitat was represented by the abundance of sparrow
absent pixels derived from the supervised classification, fit substantially better than any other
representation of withimarsh conditions, with a lower probability of sparrow presence associated

with a greater proportion of the sparrasent piels (Table 4). All other withimarsh models had

much | ess support ( DI C-marshimddels, thos®desctibmgrestomtiom i ni n ¢

vari abl es pr oduc e d 13.1), aelthdughshese models wergrdt sGostantialy. 9

betterhan ot hers: vegetai22nl)strwuedatrati(agqabDicomddsist
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19.4); other remotéd2d8edy3ingndadas({ebPL€itd8ubPl anct
21.2).

The models that included only masgvel variables (P126) had model fits toward the
lower end of the range fromwithima r s h  mo d e | § 210)q0simiar DIA r@&nkng was
obtained when the marsh unit was defined by less than 500 m between constituent sections of marsh,
with similar variation between thaodels.

When marsHevel variables were combined with withmarsh variables, models fit at best
only marginally better when directly compared to equivalent models that included only the within
marsh variables (compare Models FB7with Models P413; Table 4). The model with the most
support included both marsh size and the proportion of spaaibgent pixels from the supervised
classification, although the fit and parameter estimates were very similar to those for the single
variable sparrovabsent @ssification model (Table 4). The next closasnpeting model, which
included size in combination with the full composition model, had notably lower support with a
DI C of 9.4, Dbut the parameter est i madteoftieor t he
best model (Table 5).

Across models, marsh size was consistently estimated as being positively associated with the
probability of sparrow presence (parameter estimates ranged from 0.036 to 0.043), while isolation
was consistently estimated lasing negatively associated with the probability of sparrow presence
(minT max:-0.001 to-0.007). Parameter estimates for the effects of development were both positive
and negative, with the standard deviations at least 4 times the coefficient estéugtesting there
is considerable uncertainty associated with estimating the relationship between sparrow presence and
the amount of development at this scale.

Of the model comparisons used to investigate the relative effects of marsh size versus the
distance of a plot from the marsh edge, the siugi@able model that included distance to upland

edge (Model P13) had slightly less support than the siragieble model that included size (Model
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P19). The model that included both size and distance (MR&¥# had similar support to Modd?43

and 9. When marsh size and withinarsh characteristics were combined, model fit of within
marsh characteristic models improved but the change in DIC values were consistently less than 2.
When combined with conggition or structure, size improved the witlrarsh model more than
distance to the upland edge did.

Models that included restoration as a factfiuencingsparrow presence had little support
compared o t he best f it tiildhly burhadsaniles sugpoptRd models &f @eld9
measured vegetation composition and structure. Parameter estimates for an overall restoration effect
were negative (Model P16), although estimates for Model PIgestithat this effect was driven
largely by the tidal restoration sites (Table 6). When time since restoration was included in the
model, credible intervals overlapped zero for the parameter estimates of both restoration types and the
associated time eféés

The random effect estimates from the simplest top model (Model P11) suggest little variation
between marshes, and all 95% credible intervals overlapped eachFaghéj.( The very best model
(P31) showed more variation in the larger marshes,|b@5% credible intervals overlapped each

other as well.

B. Nest models

Of all the withinrmarsh models considered, that based on multiple measures of vegetation
structure, Model N4, provided the best fit (Table 7). Model N1, which included only stesitydén
the data al most as wel |l as Model N4 (DI C = 3.5
structure model, the measurement of stem densit)y
fit, because singlgariable models that includedat ch hei ght and vegetati on
18.1 and 18.9, respectively). Compared to models that included vegetation structure, models that

included vegetation composi tiile/h ThHe daslsome suppert t 0 n ¢
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for the remotesensing model N9, which used the proportion of high marsh to represent habitat
conditions (DI C = 4.6), but -42), medelsthacimlodee sensi r
di stance to the marshdds upl andMadesgNdely) Mesedak | N13),
poorer, but relativeli32equivalent, fits (@Dl C: ]
Models using only marstevel variables (Models N126) all had similar fit and little support
(DI C > 21) . Parameter estima®eB®. Oby, thegge vtairn
effect of these variables. Consistent with this pattern is the observation that whetewelrsh
variables were combined with withmarsh variables, model fit remains largely the same (compare
Models 2734 with their simpler conterparts in Table 7). Adding marsh size to the vegetation
structure model achieved amargindtye t t er fi t (DI C = 0.0 vs. 0.9),
complex landscape model was marginally worse. Estimates of witdish variable parameters in
models that combined landscape and wiimarsh variables were similar to estimates from models
that included withirmarsh variables only (Table 8). As with the presence models, the nest models
had similar DIC rankings when the marsh unit was defineddsyttean 500 m between constituent
sections of marsh.
When random effect estimates from the top models were compared, there was minor
variation between marshes in both the vegetation structure model and tmeangghmodel, with

95% credible intervals fall estimates overlapping each othieig(5).

IV. DISCUSSION

A major conclusion of this study is that the marsh characteristics that are best for modeling
the presence of saltmarsh sparrows are different from those that best distinguish sitesstingre n
actually occurs. This finding has important repercussions for management because the presence of

saltmarsh sparrows will not necessarily indicate that an area provides all conditions suitable for
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reproduction and persistence. Because habitattygistiot necessarily related to abundance or
density (Van Horne 1983, Vickest al. 1992, Johnson 2007), modeling saltmarsh sparrow habitat
based only on presence could be very misleading if one wanted to identify areas important to species
conservation.Because the mating system of this species, in which females are polyandrous and males
provide no parental care (Greenlaw and Rising 1994 gHal.2010), obscures the links between
habitat and reproductive success in areas that are not providimgrieitat, additional research is
needed to determine why birds spend time in those areas.

Plots in which saltmarsh sparrows are found have different spectral characteristics than plots
where sparrows are not found, and this distinction provided a bagesr for representing sparrow
habitat than did the vegetation composition, vegetation structure, or classifications of marsh type.
The difference in model fit suggests that there are features of marshes that have not been accounted
for in groundbased dta collection, but that can be detected using-imdaared aerial images, and
that matter to sparrows. What these variables are has yet to be determined, but possibilities include
duration of tidal inundation, which could result in more water occurririgeé imagend thereby
affecting the spectral reflectance (Keare¢l.2009), or in salinity differences, or combinations of
inundation and salinity, which are associated with different growth responses . ladtiérniflora
andsS. patengNaidooetal. 1992).

Models using saltmarsh restoration history to generate predictions about sparrow presence
would be of limited utility for broagcale predictions, as restoration effort would be a factor in only a
limited set of saltmarsh areas in Connectitttalready included in this study. However, bledter
fit of the restoration models when compared to models that included detailed vegetation composition
and structure suggests that the effects of restoration are not ringmrtantly, the negative
parameter estimates for these effects in some models indicate that restioeggiemtlydoes not
result in suitable habitat for saltmarsh sparroivse parameter estimatkstherindicate that it is

primarily sites with tidal marsh restoration that léaids.
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The best models of actual nesting included characteristics of the vegetation structure that
were collected on the ground. Stem density in particular appeared to be responsible for much of the
fit, matching the results of previous studies (Gjendat al. 2005, 2008b), and reinforcing the idea
that females select nest sites based on vegetation density, rather than by any one species of plant.

Although measuring vegetation structure on the ground provides the best fit for saltmarsh
s p ar r o wxgldtationg sotlecting stem density data over large areas is not practical.
Consequently, this model would be difficult to use for predicting where nesting areas lie over large
scales. The model based on the relative abundance of high marsh hahitN®lp however, is not
substantially worse (DI C = 4.6 vs. ®Basl®gn and car
constructed for all of the marshes along the Connecticut @idaster 2009) Even creating this data
layer, however, involvitconsiderable grounttuthing and separate decision rules for each of the
more than 30 highesolution image/elevation data combinations that spanned the area under study
(M. Hoover, personal communication). Extending predictions using this classificadotaoyer
geographic regions, therefore, is not a trivial matter.

Despite previous indications that the distance from an upland edge could affect sparrow
distributions (Gjerdrunet al. 2008, Hill 2008), | found little evidence to support this hypothebse
wider range of environmental conditions, or broader collection of explanatory variables sampled in
this study may have overwhelmed an effect that may exist in more homogeneous areas.

The marsHevel models considered in this study generally haé Kipport compared to the
best withirmarsh models, although adding marsh size marginally improved each of the best within
marsh models. The models that included méashl variables had similar rankings when the marsh
unit was redefined to include monedely spaced parcels, which suggests these results are not
sensitive to the decision rules used to define marsh units in this study.

In conclusion, | found that saltmarsh sparrow presence appears to be modeled most

effectively using remote sensing dasgher than grountbased data. However, because the best
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model used remotgensing data that were not organized into categories of known ground cover types,
some of the differences may not be apparent on the visible spectrum and are difficult to relate to
specific ecological factors. As a result, directing effort toward developing a detailed map based only
on vegetation composition or vegetation structure maps from remote sensing, or using general
landcover data layers developed for other purposes, vi@iltd incorporate components that appear

to be important for sparrows. In addition, because areas of nesting activity are ademtéled by
species presence models, the best species presence models would provide misleading information
about wherelte most important areas for reproduction lie. Focusing conservation efforts on
improving or maintaining the saltmarsh areas suitable for nesting will be critical for saltmarsh
sparrow persistence, but because sparrows also occur in areas that arethoasi#@ciated with
reproductive activity, further investigations are needed to establish what contrlifgioyn these

other areas make toward sparrow persistence.

Remote sensing data can be rendered into highly detailed representations of emtabnm
features, which can then be used to detect ecologically important variation even in relatively simple
systems such as sattarshegMorris et al. 2005, Gilmoreet al.2008, Tuxeret al.2011). However,
applying remotesensing data to habitat assdimin models requires more than organizing the data
into categories that are familiar from grodoased data collection. Comparing models that use these
different types of data is one way to check assumptions about what features on the ground have strong

links to the organism under study, and where additional investigation may be warranted.
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Table 1 Candidate models used to describe characteristics of salt marshes where ssjtaransis

and their nests occur in coastal Connecticut. Models are grouped according to the type of data used,

and whether the models include witlmrarsh variables, margbvel variables, or a combination of
the two

I. Within -marsh models

A. Vegetationstructure data

1 Stem density
Thatch height
Mean maximum vegetation height
Stem density + Mean maximum height + Thatch height (Full structure model)

S. alterniflora(tall form)
J. gerardii

2
3
4
B. Vegetation composition data
5
6
7

S. patens
8 Tall S. alterniflora+ J. gerardii+ P. australis(Full composition model)

C. Remotesensing data

9
10
11
12

Community classification: % High marsh

Community classification: % Low marsh

Spectral characteristics (Presence: % Spaabgent pixels; Nests: %dstabsent pixels)
Mean elevation: Digital Surface Model

D. Location data

13
14
15

Distance to upland edge
Distance + Structure
Distance + Composition

E. Restoration history

16
17
18

Restoration (absent or present)

Restoration (absent, tidal flowestoration, or dired®?. australiscontrol)

Restoration (absent, tidal flow x time since restoratiof®.@ustraliscontrol x time since
restoration)

Il. Marsh -level models

19
20
21
22
23
24
25
26

Size

Isolation

Development

Size + Development

Size + Istation

Isolation + Development

Size + Isolation + Development (Full ma#givel model)
Random effects only

I1l. Combined marsh-level and within-marsh models

27
28
29
30
31
32
33
34

Size + Distance

Size + Structure

Size + Composition

Size + Communitglassification: % High marsh

Size + Spectral signature (Presence: % Spaalosent pixels; Nests: % Neabsent pixels)
Isolation + Structure

Isolation + Community classification: % High marsh

Development + Restoration (absent, tidal fi@storation, oP. australiscontrol)
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Table 2 Marshlevel characteristics of surveyed marshes, when defined as including all areas of
marsh that were within 100 m of each other, and when redefined as all areas of marsh within 500 m of
each other. Meaures given as means + Sbgdianmini max)

Total marsh  Marsh size (ha) Marsh isolation

% development

system units (m) within 500 m of
marsh
Marsh units defined 27 86 +94 306 + 218 36.5+13.7
as < 100 m between (48.8,1371 417) (255.4,1017 756) (34,157 62)
components
Marsh units defined 22 167 + 163 767+ 340 36.2+12.6
as < 500 m between (87,137 572)  (652,5057 2005) (37,1571 64)

components
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Table 3Within-marshcharacteristics of plots where sparrows were present and alosewhere sparrow nests were present and absent

Ground-collected data Remotesensing data
Community
Vegetation structure Vegetation conposition composition  Elevation Spectral characteristics
Distance
to Mean % % % %
upland  maximum Thatch cover % cover % % cover % % sparrow sparrow  nest % nest
edge height Stem  height S. tall S. coverJ. P. high low Corrected present absent present absent
(m) (cm) density (cm) patens alterniflora gerardii australis marsh marsh DSM (m) pixels pixels pixels  pixels
Sparrows present (n = 52)
mean  132.6 41.3 27.7 7.4 21.9 18.1 4.6 3.9 36.2 53.0 0.45 77.5 16.7 - -
SD 115.4 15.7 16.1 4.2 18.0 19.7 10.7 7.3 274 304 0.35 11.1 11.5 - -
median  83.5 395 27.8 7.4 19.1 11.3 0.0 0.0 31.7 56.1 0.41 79.4 13.1 - -
min 29.9 14.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.09 46.7 11 - -
max 487.7 95.1 63.8 169 68.9 90.6 46.8 37.2 89.2 100.0 1.83 940 52.7 - -
Sparrows absent (n = 8)
mean 60.2 42.6 15.2 7.9 12.5 34.8 1.0 5.4 26.0 63.8 0.41 47.5 47.7 - -
SD 17.0 23.4 13.8 5.4 14.7 24.9 2.7 9.6 35.1 2938 0.17 25.3 26.2 - -
median 54.4 34.2 9.0 7.4 5.3 23.9 0.0 0.3 3.9 69.0 0.42 52.3 355 - -
min 42.7 19.8 2.8 1.3 0.0 10.6 0.0 0.0 0.0 17.6 0.14 11.9 18.5 - -
max 93.3 85.3 37.6 19.6 32.2 81.1 7.8 27.2 82.4 936 0.66 80.5 87.4 - -
Nests present (n = 22)
mean  134.3 37.7 37.2 8.5 295 11.8 7.5 34 535 38.1 0.37 - - 56.7 34.7
SD 131.2 11.8 13.7 3.9 19.5 14.7 13.1 6.3 26.2 25.6 0.22 - - 17.9 16.8
median  69.0 375 39.5 7.5 22.9 8.6 0.0 0.3 64.1 32.0 0.29 - - 58.0 33.6
min 29.9 21.9 14.1 3.1 1.7 0.0 0.0 0.0 0.0 1.7 0.09 - - 25.6 6.5
max 487.7 60.6 63.8 169 68.9 65.0 46.8 222 89.2 91.0 1.09 - - 83.4 69.9
Nests absent (n = 38)
mean 116.4 43.7 19.5 6.8 155 25.3 21 4.5 240 64.0 0.49 - - 384 54.3
SD 97.6 18.8 141 4.5 14.6 22.7 7.2 8.2 24.0 289 0.38 - - 20.3 19.8
median  81.2 39.6 175 6.6 14.2 20.6 0.0 0.0 154 65.8 0.47 - - 42.9 49.7
min 314 14.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.09 - - 3.6 12.2
max 438.9 95.1 62.0 19.6  48.9 90.6 34.7 37.2 82.4 100.0 1.83 - - 79.1 91.8
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Table 4Model comparison results for models examining the presence or absence of saltmarsh
sparrows, organized by the type of data included in the model. All models include a random effect
for the marsh sstem in which a sample plot was located. The Deviance Information Criterion (DIC)
is a measure of the fit of the model to the data, with lower numbers indicating betfeD fitsBows

the fit of each model compared to the best moflall those considezd

I. Within -marsh models DIC @Dl C
A. Vegetation structure data
P1 Stem density 42.1 16.1
P2 Thatch height 48.0 22.1
P3 Mean maximum vegetation height 46.2 20.2
P4 Stem density + Mean maximum height + Thatch hei
(Full structure model) 41.5 15.5
B. Vegetation composition data
P5 S. alterniflora(tall form) 454 19.4
P6 J. gerardii 40.3 14.3
P7 S. patens 43.3 17.3
P8 Tall S. alterniflora + J. gerardii + P. australigFull
composition model) 37.9 11.9
C. Remotesensing data
P9 Community ¢assification: % High marsh 44.4 185
P10 Community classification: % Low marsh 46.4 20.5
P11 Spectral characteristics: Sparrowabsenpixels 27.1 1.1
P12 Mean elevation: Digital Surface Model 47.4 21.4
D. Location data
P13 Distance to uplanddge 47.2 21.2
P14 Distance + Structure 41.4 15.4
P15 Distance + Composition 38.2 12.2
E. Restoration history
P16 Restoration (absent or present) 39.1 13.1
P17 Restoration (absent, tidal flow restoration, or difect
australiscontrol) 39.1 13.1
P18 Restoration (absent, tidal flow restoration x time sinc
restoration, oP. australiscontrol x time since
restoration) 35.9 10.9
[I. Marsh -level models
P19 Size 45.2 19.2
P20 Isolation 45.8 19.8
P21 Development 47.0 21.0
P22 Size + Development 455 19.5
P23 Size + Isolation 43.9 17.9
P24 Isolation + Development 46.0 20.0
P25 Size + Isolation + Development (Full masgvel
model) 441 18.1
P26 Marshsystem random effects only estimated 46.9 20.9

28



Table 4 (continued)

Ill. Combined marsh-level and within -marsh models DIC @Dl C
P27 Size + Distance 47.4 214
P28 Size + Structure 40.0 14.0
P29 Size + Composition 35.3 9.4
P30 Size + Community classification: % High marsh 42.7 16.7
P31 Size + Spectral characteristi®: Sparrowabsent

pixels 26.0 0.0
P32 Isolation + Struatre 41.8 15.8
P33 Isolation + Community classification: % High marsh 43.4 17.4
P34 Development + Restoration (absent, tidal flow

restoration, oP. australiscontrol) 39.2 13.2
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Table 5Parameter estimates, standard deviations, and credible infervis top sparrow presence

models: P11, P31, a9

Presence model P11 (% Sparrovabsent pixels @DI C =
Variable Parameter estimate (SD Credible interval

2.5% 97.%%
Global intercept 7.31(1.5) 4.55 10.43
% Sparrowabsent pixels -0.17 (0.05) -0.27 -0.08
Presence model P31 (Marsh size + % Sparrece b s ent pi xel s, @DI C
Variable Parameter estimate (SD Credible interval

2.5% 97.%%
Global intercept 8.17 (1.72) 5.04 11.80
% Sparrowabsent pixels -0.16 (0.05) -0.26 -0.08
Size of marsh 0.04 (0.02) -0.001 0.09
Presence modeP29( Mar sh si ze + Veg®IKCEFbB4)on compos

Variable Parameter estimate (SD Credible interval
2.5% 97.%%
Global intercept 6.37 (1.67) 3.47 10.05
Size of marsh 0.04 (0.02) 0.006 0.09
% tall S. alterniflora -0.07 (0.04) -0.16 -0.05
% J. gerardii 0.56 (0.38) 0.05 1.46
% P. austalis -0.26 (0.11) -0.50 -0.04
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Table 6 Parameter estimates, standard deviations, and credible intervals for the presence models that
include restoration factors: P16, P17, and P18

Presence model P16 (Restoration absent o
Variable Parameter estimate (SD Credible interval

2.5% 97.%%
Global intercept 5.1(1.2) 29 7.4
Restoration -3.5(1.3) -6.4 -0.9

Presence model P17 (Restoration absent, tiddbv restoration or direct P. australiscontrol,
bl C = 13.1)

Variable Parameter estimate (SD Credible interval
2.5% 97.%%

Global intercept 5.0(1.2) 2.8 7.3

Tidal flow restoration -3.9 (1.5) -7.1 -1.2

P. australiscontrol -1.1(2.8) -6.3 4.5

Presence model P18 (Restoration absent, tidal flow restoration x time since restoratiéh,

australisc ont r ol X time since restoration, D

Variable Parameter estimate (SD Credible interval
2.5% 97.%%

Global intercept 4.9 (1.2) 2.8 7.3

Tidal flow restoration 1.5(3.9) -5.6 9.7

Tidal flow restoration time effec -0.3(0.2) -0.7 0.05

P. australiscontrol -7.5(7.1) -22.3 5.6

P. australiscontrol time effect 1.8 (2.1) -0.8 6.0
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Table 7Model comparison results for presence/absencaloharsh sparrow nests, organized by
type of data included in the model. All models include a random effect for the marsh system in which
a sample plot was located

I. Within -marsh model DIC pDI C
A. Vegetation structure data
N1 Stem density 63.8 3.5
N2 Thatch height 79.3 19.0
N3 Mean maximum vegetation height 80.1 19.8
N4 Stem density + Mean maximum height + Thatch heigh
(Full structure model) 61.2 0.9
B. Vegetation composition data
N5 S. alterniflora(tall form) 77.0 16.7
N6 J. gerardii 69.1 8.8
N7 S. patens 72.6 12.3
N8 Tall S. alterniflora + J. gerardii + P. australigFull
composition model) 67.1 6.8
C. Remotesensing data
N9 Community classification: % High marsh 64.9 4.6
N10 Community classification: % Low marsh 70.5 10.2
N11 Spectral characteristics: % Negisent pixels 74.2 13.9
N12 Mean elevation: Digital Surface Model 81.7 21.4
D. Location data
N13 Distance to upland edge 82.3 22.0
N14 Distance + Structure 62.2 1.9
N15 Distance + Composition 68.1 7.8
E. Restoration history
N16 Restoration (absent or present) 83.5 23.2
N17 Restoration (absent, tidal flow restoration or difect
australiscontrol) 79.4 19.1
N18 Restoration (absent, tidal flow x timensé restoration, or
P. australiscontrol x time since restoration) 82.7 22.4
[I. Marsh -level models
N19 Size 81.9 21.6
N20 Isolation 82.6 22.3
N21 Development 82.0 21.7
N22 Size + Development 81.9 21.6
N23 Size + Isolation 82.2 21.9
N24 Isolation+ Development 82.5 22.2
N25 Size + Isolation + Development (Full madgivel model)  81.8 215
N26 Marshsystem random effects only estimated 82.2 21.9
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Table 7 (continued)

lll. Combined marsh-level andwithin -marsh models DIC pDI C
N27 Size + Distance 824 221
N28 Size + Structure 60.3 0.0
N29 Size + Composition 68.1 7.8
N30 Size + Community classification: % High marsh 64.9 4.6
N31 Size + Spectral characteristics: % Nabsent pixels 74.2 13.9
N32 Isolation + Structure 61.7 14
N33 Isolation +Community classification: % High marsh 65.0 4.7
N34 Development + Restoration (absent, tidal flow restorat

or P. australiscontrol) 79.2 18.9
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Table 8 Parameter estimates, standard deviations, and credible intervals for the top presence models
N4, N29, N9, and N30

Nest model N4 (Vegetation structure, DI

Variable Parameter estimate (SC Credible interval
2.5% 97.%%
Global intercept -2.94 (1.19) -6.71 0.69
Stem density 0.15 (0.04) 0.08 0.24
Thatch height 0.25 (0.15) -0.04 0.056
Meanmaximum vegetation heigfr -0.12 (0.05) -0.22 -0.02
Nest model N29 (Marsh size + Vegetation
Variable Parameter estimate (SC Credible interval
2.5% 97.%%
Global intercept -2.99 (1.9) -6.76 0.68
Marsh size 0.01 (0.008) -0.005 0.03
Stem density 0.16 (0.04) 0.08 0.26
Thatch height 0.25 (0.15) -0.05 0.56
Mean maximum vegetation heigl -0.12 (0.05) -0.24 -0.03
Nest model N9 (% High marsh, @DIC = 4.6)
Variable Parameter estimate (SC Credible interval
2.5% 97.%%
Global intercept -3.86 (1.06) -6.00 -1.81
% High marsh 7.88 (2.11) 3.95 12.19
Nest model N30 (Marsh size + % High mars
Variable Parameter estimate (SC Credible interval
2.5% 97.%%
Global intercept -3.93 (1.08) -3.91 -1.88
Marsh size 0.007 (0.007) -0.008 0.02
% High marsh 7.98 (2.13) 4.04 12.37
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Upland border  High marsh Low marsh

tide

Mud
flat
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Fig. 1 Plant community zonesithin a saltmarsh relative téidal inundationafter Warren and
Niering 1990)
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Fig. 2 Sites surveyed for saltmarsh sparrows and their ne€i6;2808. 1. Sherwood Island State Par
Westport. 2. Pine Creek, Fairfield. 3. Great Meadows NWR, Stratford. 4. Wheeler Marsh WMA
Milford. 5. Long Island, Stratford. 6. Silver Sands State Park, Milford. 7. Indian River, Milford. €
Quinnipiac Rive WMA, New Haven. 9. Hemingway Creek, New Haven. 10. East Haven Land Tr
East Haven. 11. Farm River State Park, East Haven. 12. Upper Farm River, Branford. 13. Ston
and Pine Orchard, Branford. 14. Jarvis Creek, Branford. 15. Great Hatbibord. 16. Long Cove
and Chaffinch Island Park (West River), Guilford. 17. Fence Creek, Madison. 18. Hammock Riv
Clinton. 19. Mud/Hagar Creek, Old Saybrook. 20. Upper Oyster River, Old Saybrook. 21. Lieutt
River, Upper Island, and Greatdsld (Connecticut River), Old Lyme. 22. Mile Creek, Old Lyme. 2!
Wattodos | sl and, East Lyme. 24. Groton Long
Marsh, Stonington. 27. Barn Island WMA, Stonington
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Fig. 3 Two plots at Greatsland in the Connecticut River characterized using remote semsir@jassification of marsh
communities based on plant and elevation data (M. Hoover, unpublishedBlata}ial supervised classification based on libra
of spectral signatures buffiom all plots sampled in 206B008. C. Recoded pixel classification for sparrow presence categori
classification of each pixel according to whether saltmarsh sparrows had been detected in the plot on which the ificaéiocia
was basedD. Remded pixel classification for nest presence categories: recoded classification of each pixel according to \
saltmarsh sparrow nests had been detected in the plot on which the initial classification was based
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APPENDIX A. Correction of Elevation Data

The means of the digital surface model (DSM) and digital elevation model (DEM) for 1
ha plots declined from west to east along the coast of lsdagd SoundKig. 6). To assess how
elevation was associated with sparrow presence without this gradient, | determined the
relationship between mean elevation and longitude, and predicted the mean elevation of marshes
at the longitude of each study pl@ubtracting the predicted mean elevation from the mean
elevation of the DSM gave a relative elevation corrected for the longitudinal gradient.

To accomplish this, | generated 44 cellsize grid over the statgide marsh polygon
data laye(NOAA 2004, and randomly selected 150 samples. Cells of less than 0.5 ha were
discarded, leaving 137 samples. A mean elevation was calculated for each cell from the DEM
(Hoover 2009)and the center of the cell was used as the associated longitydd.( Each
degree of longitude was associated with a 0.38 m change in elevation (95% confidence interval
0.29- 0.47 m).

| used the regression equation generated from the random samples to predict the mean
groundreturn elevation for the longitude of each saltmaysrrow plot location. | then
subtracted the predicted mean elevation from the raw DSM of each plot to calculate an adjusted

mean elevationHig. 8).
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Fig. 6 Mean elevations of 60-ia plots along the Connecticut coast, from west to east. Both the
grownd-return digital elevation model (DEM, gray triangles) and cardwgight digital surface

model (DSM, black squares) data are shown. (The Connecticut River area was not included in
the DEM data, so grounekturn elevation data at those sites are unavailab
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Fig. 7 A fitted regression line for the mean elevation of 137 randeaelgcted 0.5 1.0-ha marsh
samples in Connecticut using the DEM (grouiatlirn) data. Marshes in the Connecticut River
area are not representefi.regression line calculateédrough the sample estimates that each

degree of longitude (83.8 km) along the Connecticut coast was associated with a 0.38 m change
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Fig. 8 Using the regression equation generated from the random samplembt37

determined the mean grouneturn elevation for the longitude of each saltmarsh sparrow plot
location. | then subtracted the predicted mean elevation from the raw mean elevation of each
plot. The adjusted mean elevations using ground retuan(B&M, black squares) are shown

with the adjusted mean elevations using the caaight data (DSM, gray triangles)
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APPENDIX B. GeneralizedWinBUGS Code Used in All Models

model

{

#global intercept prior, included in all models
global.intercept €lnorm(0,0.1)

# for each plot
for (i in 1:60)

presenceli] ~ dbern(p2[ipresence at the site is a Bernoulli distribution

logit(p[i]) <- marsh.intfmarsh[i]]+ slope.plotcharacteristic*plotcharacterigtiéfthe logit
of the probability is a linearelationship that includes a marsdystem random effect plus a
within-marsh characteristic. | addeatiditional plot characteristichere.

p2[i]<-max(0.00001,min(0.99999,p[i]# this line constrains the logit values to improve
stability

}

#priors fa marshsystem and plabased variable coefficients

slope.plotcharacteristic~dnorm(0,0.01)

slope.marshcharacteristic ~dnorm(0,0.01)
#for each of the 27 marsh systems sampled

for (jin 1:27)

{

marsh.int[j] ~ dnorm(marsh.int1[j], 0)#randomeffect ofmarsh system in which plot is
located (intercept) is normally distributed around the marsh factor, which is determined from the
next line,

marsh.intl[j] < global.int + slope.marshcharacteristic*marshcharacteristiofigrsh
factor is determined by thgtobal distribution and a marstevel variable. Additional marsh

level variables were added here.

}
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Chapter 2. An Evaluation of Habitat Association Models of Saltmarsh Sparrow

Occupancy and Nesting

ABSTRACT

Building habitat models that associatgamisms with features of their environment can help
identify areas of high or low priority for planning conservation strategies. These models,
however, need to be tested using new data before their conclusions should be widely accepted.
Saltmarsh sparrosvAmmodramus caudacuduare a species of growing conservation concern
along the Atlantic Coast of North America. In a previous study, | developed models for the
distribution of saltmarsh sparrow presence and nesting habitat. Sparrow occupancy wasipredi
using raw reflective properties of marshes, suggesting that the processes driving the reflective
difference occur throughout the sampling region. Sparrow nesting was predicted using a marsh
plant community classification. To test these models, leswew a stratified random sample of

sites for which the probability of sparrow presence had been predicted, and compared the
observations to the predicted probability of presence and nesting generated from the models.
Model performance, assessed by deteimgj the area under a receiver operating curve and the
model deviance, was significantly better than expected by chance alone. Tests of these models
confirm that the area where sparrows are predicted to occur is much larger than the area where
they are prdicted to nest. Consequently, monitoring sparrow presence will not be sufficient for

indicating the most important nesting areas.

I. INTRODUCTION
Two main reasons for modeling the associations between species presence and habitat
features are to mapeuticted distributions and to understand ecological factors that influence the

way that organisms interact with the environment (Wiens and Rotenberry 1981, Young and Hutto
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2002). Maps generated from habitat association models then can be used to establish
conservation priorities, such as in GAP analysis (Saatt. 1993), and refine the focus of future
research when little is known about the species of concern, as with the America(Mities
pennanij (Carrolletal.1 99 9) or t he Rinoptildsditofsatup(Jegamathaaral. (
2004) Increasingly, features of the environment are being described through the use of remote
sensing image data, which are then used to create habitat models. Although remote sensing can
cover larger areas thaan be completely sampled on the ground, models derived from remote
sensing are rarely tested by examining the extent to which the model accurately reflects the
distribution of the species.

Applying remote sensing data to habitat modeling can take twoages. First,
researchers use remote sensing data to classify features in the environment known to be
associated with the organism of interest. Wi t h
are assumed to be known, and the remote sensiagabrganized to represent these
components as accurately as possible. Many studies over the last few decades have used this
approach; for instance, Gottschalkal. (2005) reviewed 109 studies that used satellite imagery
to model habitat for birds ab@. Frequently, habitat data take the form of land cover types, as in
Klute et al.(2002), who modeled eight forest types to describe American woodsoolopax
minor) habitat, and Debinslkit al.(1999), who used Landsat data to discriminate betweee thr
forest types and six meadow types to delineate habitat for butterflies. Other studies organize data
in ways that describe plant structure and heterogeneity, such as in &iladq2004), who
generated a model of vegetation structural complexitygusiv altitude videographic imagery to
model the habitat of rufous bristlebird3gsyornis broadbeni Yet another strategy is to
classify topographic details that influence microhabitat conditions or abiotic processes. For
example, Shrineet al. (2002 used slope and aspect calculated from digital elevation data to

predict habitat for wood thrushedylocichla musteling Thesea priori classifications can be
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used to dissect how individual features influence species distributions, and allow congparison
between different species of interest and between data sources (Guisan and Zimmerman 2000).

The second approach uses remote sensing data in a more exploratory way to identify
which aspects of the | andscape absequeatasalgsisi at ed wi
then attempts to link the identified areas with biological processes that can explain the pattern.
For example, Hepinstall and Sader (1997) built habitat association maps for 14 species of birds
with raw reflectance data, bypassing tffer¢ and errors associated with first generating a land
cover classification. Bellist al. (2008) found that variables describing image texture modeled
greaterhea Rhea americanghabitat more effectively than did land cover types. In another
study,St-Louis et al.(2009) used satellite image texture as a surrogate for habitat structure and
vegetation variables such as the normalized difference vegetation index (NDVI) derived from raw
spectral reflectance as surrogates for plant productivity to nawibet biodiversity in the
Chihuahua Desert. Because remote sensing data are expected to reflect integration of many
habitat features (Fisher 1997), this second approach can be used to evaluate suites of conditions
under which the organism occurs.

Both gproaches assume that the target organism benefits from the space in which it is
usually found (Rotenberry 1981, Gottschatlal.2005). With increasing reliance on remote
sensing data for conservation planning (Elith and Leathwick 2009), it is espéauiadirtant to
test the assumption that there is predictive power to the associations observed in models built
using remote sensing data. Although habitat models can be evaluated using approaches such as
splitting data sets, jackknifing, or data resangliRearce and Ferrier 2000, Elith and Leathwick
2009), the best test of the extent to which a habitat model can be generalized beyond the data on
which it is based is its ability to predict the presence of the target species at a completely new set
of sites (Fielding and Bell 1997, Henebry and Merchant 2002).

Saltmarsh sparrow#&\(nmodramus caudacujusreed in salt marshes along the mid

Atlantic and New England coast of eastern North America. Because this species is most
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abundant in southern New Englar@réenlaw and Rising 1994), the salt marshes of that area are
considered to be especially important to its conservation (Dettmers and Rosenberg 2000).
Females nest near the ground, which makes the nests vulnerable to tidal flooding (Di€uinzio

al. 2002,Shriveret al.2007, Gjerdrunet al.2008a, Bayard 2010, Bayard and Elphick 2011).

Males are not territorial and provide no parental care (Woolfenden 1956, Greenlaw and Rising
1994), and both male and female sparrows are frequently found in areas veiegedaes not

occur (Chapter 1). Consequently, sparrow presence does not necessarily indicate that conditions
are suitable for nesting, even during the peak breeding season. As a result, conservation
strategies need to account for differences betweeshnagieas where sparrows occur and those
where nesting takes place.

In Chapter 1, | examined a set of alternative models designed to explain variation in the
distribution and nesting activity of saltmarsh sparrows. These models examined a wide range of
variables generated from both field and remote sensing data, and collectively tested the
importance of plant composition, vegetation structure, marsh spectral characteristics, the distance
from the marshdés upl and edge, ccwieckat ehsterandand how me
landscapdevel features of the marsh. The sparrow presence model that best fit the data used a
variable derived from raw spectral reflectance values associated with plots where sparrows did
not occur. Nest presence, in contrasisuwnodeled best using vegetation structure variables that
required data collection on the ground. Collecting this type of ground data over large areas,
however, is not feasible, so the best nest model cannot generate regional predictions of where
nestinghabitat exists. An alternative model, which used a measure of the amount of high marsh
habitat that was derived from remote sensing data, received almost as much support as the best
model, and was proposed as the best option for predicting the distribbitiesting habitat in
new areas.

The objective of the current study was to test predictions of the best model for sparrow

presence, and the best remote sensing model for nest presence, using data from a new set of sites.
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| surveyed a stratified randoraraple of marsh conditions for sparrows, and compared the
observations to the predicted probabilities of presence and nesting generated from each model.
Because the model for presence and the model for nests each used a different approach in linking
the s@rrows with habitat conditions, evaluating both models offers an opportunity to examine the
different inferences and expectations from remote sensing habitat models. In addition, the
predictive maps derived from the two models provide detailed informaliount the current

distribution of saltmarsh sparrows in Connecticut.

Il. METHODS
To generate regional maps of predicted sparrow presence | used a model based on a
supervised classification of saltmarsh pixels, which previous work showed to prodtterdib
than alternative models (Chapter 1). This classification determined whether each pixel of
saltmarsh habitat in the region had spectral characteristics that corresponded to marsh areas in
previously surveyed plots where sparrows were eitherrcoadi to be present (designated
Aspaprewence pixelso) or not foabdedéspi kel esr)er
The model predicted that increasing proportions of spaatosent pixels were associated with a
decreasing probability of saltmarsparrow presence. The full equation describing this

relationship was the following, in which SD refers to the standard deviation for each coefficient:

Logit of predicted probability of sparrow presence within 1 ha = 7.31 (SD 1.5)

0.17 (SD 0.05) x praption of sparrowabsent pixels

Agridoflha cell s was overl aid across all/l of Conr
proportion of sparrovabsent pixels within each grid cell was calculated. To ensure | sampled
areas across a wide spectrum of prealicprobabilities, | organized cells into three groups: cells

with <20% sparrowabsent pixels, cells with 200%, and cells with >40%. These three
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categories approximately correspond to sites

ex pect &dsetanhave a8 % chance of having sparrows

t he

(A me

those that have a <50% chance of having sparr ows

using WinBUGS (Spiegelhaltet al.2000), where the uncertainty about model stmgcts well
as uncertainty around parameter estimates could be propagated throughout tHétmgdel
process to the predictions.

Randomly sampling 24 cells from each of the three categories, | selected 72 cells to visit
during field tests between 25 Mand 25 August 2009. In the field, | placed 0.5 ha plots within
the chosen cells, or as close to the original selection as logistically possible. In two cases, minor
shifts in location caused the classification of the sample site to change, such final gamples
for the high, medium, and low expectation categories were 26, 23, and 23, respectively. The
sampled cells occurred in 29 marsh systems that ranged from Sherwood Island State Park in
Westport, CT to Barn Island Wildlife Management Area im8tgton, CT (Fig. 1A; Appendic
lists the latitude and longitude of all test plots). | conducterhitOpoint counts in each plot to
determine whether sparrows were present. All counts took place before 11:00, and | recorded all
sparrows seen and heavithin the plot. After each point count, | slowly walked back and forth
throughout the entire plot, and recorded any sparrows not detected during the point count. Sites
where no sparrows were detected were repeatedly surveyed, at least two weekithapamtie
I encountered sparrows or until four visits had been completed. | set the number of surveys
required to establish absence after calculating detection probabilities from previous survey efforts
in Connecticut salt marshes (C.S. Elphick and 8in\&n, unpublished data). Using data from 40
sites surveyed in 2007 and 2008, | calculated the probability of detecting at least one sparrow in a
5-min point count using PRESENCE 2.0 (Hines and MacKenzie 2004). From the most
parsimonious model with theebt fit, a constarprobability model, | estimated that four visits to

a site reduced the probability of missing sparrows if they were present to less than 5%. By using
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longer (16min) point counts combined with area searches, the chance of detectiogvsphr
present at my survey points should have been very high.

During 2009, | also surveyed the sampled cells for nests. The best remote sensing model
for nest locations used the proportion of high marsh habitat withinaaplot, which was derived
from a GIS data layer that delineated plant community classifications (Hoover 2009; Chapter 1).
This data layer was not available for the entire state prior to the field test, so | used the same
sampling frame selected for the sparrow presence model taty#he nest presence model.
The full equation describing the relationship between nest density and the amount of high marsh

was:

Logit of probability of nest presence within 1 ha3=86 (SD 1.07) + 7.88 (SD

2.11) x proportion of high marsh.

After thefield season, plant community data became available for all of my study sites
and | was able to determine the percentage of high marsh habitat within each of the test cells.
This allowed me to classify cells into three groups according to their likeliaboontaining
nesting birds based on the model. Cells with <20% high marsh had a <10% predicted probability
of nest presence (Al 658% gh marsh haa & BDSompiedicted c el | s wi t I
probability of nest pr edsdatitaecontisiec ef 350% highenarghe ct at i ¢
had greater than 50% predicted probability of ne
To determine whether birds were nesting in the test cells, | watched for birds flying with
food or fecal sacs duringdhpoint counts and subsequent time spent in the plot. After each point
count survey, | also searched for nests in the plot by slowly walking back and forth throughout
the area in a zigag fashion and located nests by noting the point from where bistiefiu At
sites where sparrows had been found but where nests had not, | conducted additional searches at

approximately 2 week intervals until a minimum of 3 nest searches had been completed. To
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evaluate how well | was able to detect nests using thistseattern, | analyzed nest detection
probabilities after the 2009 survey season using the program PRESENCE 2.0 (Hines and
McKenzie 2004), and estimated that in plots where sparrows occurred, 3 visits were sufficient to
have less than a 5% probabilityrafssing a nest if it was present.

I evaluated each model s6 predictions in thre
receiver operating curve (AUC) for each model as a measure of model performance. Thisis a
single measurement of model performatiwe does not depend on designating a threshold for
prediction of presence (Fielding and Bell 1997), and is relatively robust to differences in
prevalence (Manedt al.2001). Values of AUC can range from 0.5, in which the model decisions
of positive anchegative outcomes are not better than random, to 1.0, in which the model
discriminates perfectly between positive and negative predictions. To compare the model
performances between test data and training data, | also calculated the AUC for the data used
build the models.

Second, | calculated an index of how much the field data deviated from the predictions.
For each cell, | determined the difference between the observation (1 = present, 0 = absent), and
the predicted probability (values ranged froml). | then took the sum of the deviations and
compared it to the distribution of the same deviance indices derived from 1000 dummy datasets,
in which the same number of presences were randomly assigned to the same predicted
probabilities.

Third,toassess each model sé ability to predict at
and presences in the high probability category, | determined how many of the cells that were
predicted to have a <50% chance of containing sparrows actually lacked themwamdrno
cells predicted to have a >95% chance of containing sparrows actually hadriiethe nest
model| | determined how many cells that were predicted to have a <10% chance of having nests
actually lacked them, and how many cells predicted to ha@®o>hance of containing nests

actually had them.
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Finally, | examined the actual distribution of the sparrows and nests. | mapped the
observed presences and absences to determine whether a) they were concentrated in certain areas,
b) prediction errors @re concentrated in certain areas, and c) there were areas where both models

generated errors.

lll. RESULTS

Based on the presence model, saltmarsh sparrows are expected to occur in most of the
saltmarsh habitat in the study region. Of the 3,738 halbfrersh for which probability of
sparrow presence was predicted, 66% had a high expectation of saltmarsh sparrows presence,
28% a medium expectation, and 5% a low expectation. Overall, the mean predicted probability
of presence was greater than 95%fmst of the major marsh systems (Fig. 2, Appemyjix Of
the marshes where mean predicted probabilities were high, some had uniformly high probabilities
across the whole marsh, while others did not. For example, all cells in the Wheeler Marsh at the
mout of the Housatonic River in Milford and in the Hammock River marsh in Clinton were
predicted to have presence probabilities of at least 85%. In contrast, the marshes on the East
River in Guilford and the Quinnipiac River in New Haven included areas wihegrobability of
sparrow presence was predicted to be as low as 15% and 20%, respectively. Yet other sites had
much more variable suitabilities. For example, the marshes on the Upper Farm River in Branford
had a mean predicted probability of sparraesence of 63% with predictions for individual cells
that ranged from 2% to 99%.

| detected saltmarsh sparrows in 50 of the 72 cells sampled. As expected, sparrows were
most often detected in cells predicted to have a high chance of containing theeastmdtén
detected in cells predicted to have a low chance (Fig. 3). The AUC for the presence model was
0.70, indicating that predictions were better than random, but poorer than that obtained for the

training data (0.88). Overall, the deviance betwtedne model 6s predi cti ons
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observations was far lower than expected by chance (43.0 versus a mean of 63.8 for the null
distribution, p < 0.001, Fig. 4).

Finally, I examined the model s ability to c|
at fifty percent of sites classified as havinga <5Q0% | owo) chance of containin
sparrows were present at 85% of sites classifiec
sparrows.

The nest model predicted that 43% of the marshessa€onnecticut had a low
probability of sparrows nesting, 27% had a medium probability, and 29% had a high probability.

Within each of the major marsh systems, cells occurred that had <2% predicted probability of
sparrow nests as well as cells predidtelave >95% probability of nests. The mean predicted
probabilities within marsh systems ranged from 12 to 54% (Fig. 2, AppBEndix

For the test of the nest model, 61 cells met the minimum criterion of at least three visits
and were included in subsegqui@nalyses. | found nests in 19 (31%) of these cells, a majority of
which were classified as having a high chance of containing nesting birds (Fig. 5). Only two of
the 28 cells predicted to have a low chance of containing nesting sparrows did so.0’he AU
calculated for the test data was 0.79, compared to an AUC of 0.78 for the training data. The total
deviance between the predicted probabilities and the nest presence/absence data was significantly
less than expected by chance (28.9 versus a mean deoid@.8 for the null distribution, p <
0.001, Fig. 6). Because only one of the 42 nests | found successfully fledged young (due to high
failure rates associated with repeated tidal flooding in 2009; Bayard and Elphick 2011), no
analysis to examine levebf reproductive success associated with amount of high marsh in a cell
was possible. I found no nests at 92% of the si
having nests preserdnd located nests at 54% of sites classified as having a ¥60% (g h 0 )
chance of containing nests.

The presences, absences, and prediction errors for both models were distributed across

the entire study region (Fig. 7, 8). Combining information from both models showed one cell had
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a high expectation for both sparronepence and nest presence but had no sparrows (Sasco Creek
in Westport). There were conflicting predictions frdm twomodels (low probability of sparrow
presence and high probability of nest presence) for four cells, of which two had sparrows and
nestspresent (Cottrell Marsh in Stonington and Pine Creek in Fairfield), while one had sparrows
but no nests (Bluff Point in Groton), and the other had no sparrows (a second plot in Cottrell

Marsh in Stonington).

IV. DISCUSSION

The predictions generated by tmedels discriminated between areas where sparrows
and nesting did and did not occur fairly well. Cells predicted to have a high likelihood of
containing sparrows or nests had the most presences, while those predicted to have a low
likelihood had the ledas Model deviances and AUC measures indicated that predictions from
both models were bettéran expected by chance alone. The presence model predictions were
worse using test data than when the original training data were used, but the performamnce of th
nest model was remarkably similar for both data sets.

Although the predictions were quite good, they were not perfect. Model errors may be
caused by errors introduced while processing the remote sensing data, leading to habitat
misclassification.While many studies that use remote sensing data have tested processing
accuracy, the focus of this study was to test whether the processing results could be used to
predict an organi smdés occurrence, as ilcreasing
not lead to improved model performanceecBuse the pixel classifications were built using
presence data, the modehy have beeaverfit to the originalplot characteristicsAdditionally,
theplotsused fortraining data may not have included altsnarsh elements that sparrows ayoid
or somemarsh elementthatsparrows avoid malack unique spectral characteristics.

Other errors may be due to factors such as competition or population dynamics, which

can affect whether an organism is adgufdund in areas of suitable habitat. For instance, by
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varying life history parameters of greater glidd?stauroides volansn simulated landscapes,
Tyre et al.(2001) found that habitat elements, which were perfectly delineated in the simulations,
were unable to explain more than half of the variability in species occupancy because of the
confounding effects of demographic stochasticity and dispersal limitation. In a study by
Rotenberry and Wiens (2009), models for shrubsteppe bird species gensiagethta about
habitat associations collected between 1977 and 1983 were used to predict occupancy in 1997, in
the same areas that had originally been studied. Although bird abundance and distributions in the
region remained similar, few of the modetsformed well (Rotenberry and Wiens 2009). These
discrepancies suggest that the inferences that can be drawn from predictive distribution maps that
have been built from remote sensing data depend on how closely the modeled variables relate to
criticalasgect s of the organismbébs biology (Guisan and
Horne 2002).

High marsh, the predictor variable for the nest model, combined elements of elevation
and vegetation composition. Both of these elements previously have been dat@dnsthave
important associations with sparrow nesting. Minor elevation differences affect the risk of
flooding (Gjerdrunmet al. 2005, Gjerdrunet al.2008a, Bayard and Elphick 2011), while several
high marsh plant species contribute to a vegetatrontsre that is associated with nests
(Gjerdrumet al.2008b). UWhtil a sufficiently detailedhabitat classification GIS layevas built
however the extent to which high marsifan be useds a predictor of sparrow nesting could not
be established.In this study, sparrow nests were consistently absent where the amount of high
marshdelineated withh a hectare was less than 20% (low predicted probability)cldssas
with greater proportions of high marsh at thealscale should be considered of higbréority
for conservation planning for saltmarsh sparrows than areas with less high marsh, even if
sparrows occupy the latter areas.

The map generated using the nesting model directly links habitat to reproduction and has

specific implications for saltarsh sparrow conservation and management. In addition, because
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the nest model was built using a predefined high marsh community classification, this model is

likely transferable to other areas where saltmarsh sparrows occur, as long as high marsh is

class fi ed in the same way and the birds6é nest site
habitat could then be used to identify priority sites for sparrow conservation and to track the

availability of suitable habitat over time.

On the other hand, theasons why the main predictor variable in the sparrow presence
model is ecologically important to saltmarsh sparrows are unclear, making interpretation of the
map produced by that model more difficult. The sparrow presence model was built on the
premise hat areas of marsh that sparrows do not occupy have different reflective properties than
the areas they do occupy. Sparrow occupancy was predicted with moderately good accuracy in
new areas using these reflective properties, suggesting that the prociedsgshe reflective
difference occur throughout the sampling region. However, the remote sensing data used to
generate the pixel classifications were collected under specific conditions of season, time, tide,
and resolution Unless data from other arag@ collected under very similar conditions, this
model may not work well elsewhere.

Currently it is not known whether areas that are occupied but not used for nesting are
needed to sustain sparrow populations. This stighlights two elements thagquire
investigation The first isto determinavhat the sparrows do in these areas,wanétherit is
likely to affect populationd these areas disappedecond it is important to determinbow the
reflective properties of occupied sites relateaitnsarsh sparrow biology. Reflective
characteristics may differ due to divergent growth responses of plants that have been subjected to
different durations of tidal inundation. Inundation pattern could be associated with sparrow
occurrence simply becaugaffects the amount of suitable foraging habitat, or it could directly
affect prey resourceslargeting areas predicted to have high versus low chances of containing
sparrows to test specific hypotheses about environmental conditions that cauderiet dif

reflectance properties might clarify the underlying biological relationships.
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Of the saltmarsh area in Connecticut, #tivds was classified as having at least a 95%
chance of having sparrows present. In contrast, 29% of the saltmarsh areadicisgto have
a high (>50%) chance abntainingnestingsparrows Because the total area where reproduction
is likely to occur is much smaller than the total area where sparrows are likely to be found,
monitoring saltmarsh sparrow populations shoaltlg primarily on the areas where there is a
high chance of nesting. Methods that simply record whether the species is present will not be
adequate for inferring whether there is any associated reproductive behaaddition, the
wide disparity betwaethe predictions for sparrow presence and sparrow nesting at several marsh
systems (Fig. 2) warrants a closer examination of the reasons for sparrow activity in some of
these areas.

One reservation that has been expressed in the application of remotg dates to
habitat model building is that the form used in the model can be several steps removed from a
proximal causes of presence or absence (Henebry and Merchant 2002, Van Horne 2002).
However, directly linking elements identified in remote sensinigow an organism interacts
with its environment requires prior knowledge about the organism. This study used the
association of remote sensing data with saltmarsh sparrow presence because previous work had
shown that prior knowledge was insufficient tgpkain and predict distribution patterns
(Gjerdrum et al. 2008b). By generating a map that details the distribution of a useful predictor
variable, the differences between areas with and without the species care closely
examined. This strategy hiasen adopted for regional assessment of habitats associated with the
occurrence of a variety of species (evghjte-throated sparrowZonotrichia albicollis Tuttle et
al. 2006;redtail monkeyCercopithecus ascaniuStickler and Southworth 2008laotran gentle
lemurHapalemur alaotrensitahozMonfort et al. 2010).These studies all used remote sensing
to detect withirclass variability not easily detected using general land cover classes. Because
remotesensing can be used to detect both daedtndirect mechanisms that affect presence and

reproduction, it is a useful tool for conservation planning.
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& Low expectation of sparrow presence (<50%)
O Medium expectation of sparrow presence (50-97%)
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Fig. 1A Locations and predicted probability categoonéshe 72 cells used to evaluate the saltmarsh sparrow habitat model in Connecticut in 2009.
Cells were randomly sampled from the three categories of predicted presence prol&alfigdicted prolality of saltmarsh sparrow nest
presence at 61 of the 2009 survey locations for which sampling was sufficient to establish presence or absence dgws.oCaxpected

nest presence were assigned after the field surveys had been conducted
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Fig. 2Predicted probabilities of sparrow presence (black squares indicatewwidesimean, lines
represent the range from min to max) and nest presence (open circles) in the largest (>90 ha)
marsh systems studied. Nest presence prediction probabilitialé fiwairshes ranged from 0 to 1
and so ranges were not illustrated
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Fig. 3 Observed saltmarsh sparrow presence rates in cells predicted to have high (>95%),
medium (5895%), and low (<50%) predicted chances of containing sparrows. Dark gray
indicates sparrow presence, and pale gray indicate sparrow absence
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Dummy dataset deviations for presence model

Fig. 4 Deviance of observed data (indicated by arrow) relative to deviations from 1000 dummy
datasets that had the same number of sparrow presences randomly distributed across sampled
sites. Rviances were calculated as the sum of the differences between the observed data
(sparrow presence = 1, sparrow absence = 0) and the predicted probability of presence at each site
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Fig. 5 Proportion of sampledells with nesting saltmarsh sparrows foiwith high (>50%),
medium (1650%),and low (<10%) predicted chances of supporting nestidayk grey indicates
nest presence, and pale gray indicate no nests were found
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Dummy dataset deviations for nest model

Fig. 6 Deviance of observed data (indicated by arrow) relative to devidtimms1000 dummy

datasets that had the same number of nest presences randomly distributed across sampled sites.
Deviances were calculated as the sum of the differences between the observed data (nest presence
=1, nest absence = 0) and the predicted pilityatf presence at each site
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Fig. 7Maps showing magnitude of sparrow presence prediction errors for each sampled cell. Darker colors indicate greatebelsveamcie
model pedictions for each site and the observations. Panels show accuracy of predictions for (A) the presence of sparr@bsefiRetioé
sparrows
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