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THESIS ABSTRACT 

Why saltmarsh sparrows are found in some salt marsh areas of Connecticut but not in others 

is a question of both ecological and conservation concern.  Because the sparrows are restricted to salt 

marshes for their existence, they are vulnerable to changes in conditions.  Therefore, conservation 

planning would require an assessment of the current extent and condition of habitat for sparrows.  

Multiple studies have documented various components of salt marshes that show strong associations 

with the sparrows, but predictive models using remote sensing have not yet been constructed that are 

specifically calibrated for this species. 

To develop a map that would predict where the sparrows live and reproduce in Connecticut, I 

compared models to test a) whether field data or remote-sensing data most effectively characterized 

within-marsh conditions that relate to sparrow occurrence, and b) whether including landscape-level 

variables improved model fit.  Models that best fit the data for sparrow presence and sparrow nesting 

used different variables.  The best sparrow presence model used a variable derived from raw spectral 

reflectance values associated with plots where sparrows did not occur, while the best nest presence 

model used a combination of vegetation structure descriptions.   A second nest model, built using 

high resolution remote sensing data that organized marsh characteristics into high and low marsh 

categories, had enough support for state-wide application. 

When the models were tested using new data, model performance, assessed by determining 

the area under a receiver operating curve and the model deviance, was significantly better than 

expected by chance alone.  

I then used model results to build maps of habitat conditions for saltmarsh sparrow presence 

and nesting across the state.  A large proportion of the saltmarsh area in Connecticut was predicted to 

have a high probability of being occupied by sparrows, yet a much smaller proportion of marsh was 

predicted to have a high probability of having nests.  While detailed delineation of plant communities 

in the marsh provided good predictions of sparrow nesting, they poorly predicted presence.  On the 
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other hand, because areas of nesting activity are not well-identified by species presence models, a 

distribution model that describes only species presence would provide misleading information about 

where the most important areas for reproduction lie.  Additional research is needed to establish how 

sparrow persistence may be influenced by the areas that are likely to have sparrows but not nests.
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Chapter 1.  Comparing saltmarsh sparrow habitat models using ground-based and 

remote sensing data 

 

ABSTRACT 

Remote sensing data can represent various habitat characteristics, and can thus replace detailed 

ground sampling in the construction of habitat models.  Remote sensing data may also distinguish 

additional variation in conditions that can be useful in discriminating presence and absence of species. 

To predict saltmarsh sparrow distribution and nesting activity in Connecticut salt marshes, I 

compared a set of Bayesian hierarchical models in which variables were generated from field or 

remote sensing data, at a scale of 1-ha plots and at the landscape scale.  Field data consisted of plant 

structure and plant composition variables.  Data derived from remote sensing included high and low 

marsh classifications, LiDAR elevation data, and a classification derived from spectral characteristics 

specifically associated with saltmarsh sparrow presence or absence.  The best sparrow presence 

model used a variable derived from raw spectral reflectance values associated with plots where 

sparrows did not occur, indicating that the remote sensing data included additional information about 

marsh conditions associated with saltmarsh sparrow presence and absence than was detected using 

plant composition, structure, or community classes.  Nest presence, in contrast, was modeled best 

using vegetation structure variables that required data collection on the ground.  Saltmarsh sparrow 

presence, therefore, will not necessarily indicate that an area provides all conditions suitable for 

reproduction and persistence.  

 

Keywords:  Ammodramus caudacutus, Bayesian hierarchical models, habitat use, occupancy 

modeling, remote sensing, salt marsh, saltmarsh sparrow 
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I. INTRODUCTION   

 Habitat loss and fragmentation contribute to the decline of many species (Andren 1994, 

Fahrig 1997, Jenkins et al. 2003, IUCN 2009).  Describing the link between an organism and its 

environment is therefore necessary to conservation efforts for at least two reasons.  First, this 

information provides the basis for identifying how the population’s size and dynamics relate to the 

amount and type of land cover present (Garrison and Lupo 2002, Underwood et al. 2004).  Second, 

understanding this relationship should guide land protection and management to improve a target 

organism’s status (Rotenberry 1981, Scott et al. 1993, Rhodes et al. 2006). 

 Habitat models quantify the factors associated with an organism’s presence in an attempt to 

understand better why the organism is found in some areas and not in others.  These models can then 

be used to predict where the organism occurs.  When the organism uses different features for different 

purposes, such as nesting or foraging, habitat modeling should be associated with specific activities.  

As more information is collected about the organism, the more detailed the model can become 

(Guisan and Thuiller 2005), ultimately allowing one to identify potentially limiting factors or 

processes (Van Horne 2002, Kristan 2007, Okes et al. 2008).  

In addition to conditions within a patch that affect patterns of occupancy, features of the 

landscape around a patch can affect whether or not it is occupied.  Several factors may contribute to 

this context-dependence.  First, processes operating on a scale larger than a patch may alter conditions 

across a large region (Diez and Pulliam 2007).  For example, proximity to urban development may be 

associated with increased pollution levels.  Second, distribution of the organism may be constrained 

by a spatial factor such as dispersal limitation (Pulliam 2002, Bahn et al. 2008).  Predictions of patch 

occupancy may be improved by including variables that describe landscape-level conditions in 

addition to those that describe local habitat characteristics (Wiegand et al. 2003, Diez and Pulliam 

2007, McIntire and Fajardo 2009).  
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Geographic Information Systems (GIS) are often used to quantify the spatial relationships 

and context associated with patches of habitat.  Increasingly-available high resolution data from 

satellites and aerial images offer a great deal of detail about land cover features that may be relevant 

to the organism of interest (Van Horne 2002).  Although regional analyses frequently use aerial 

images to classify areas into land cover or plant composition categories, this approach assumes that 

all of the variables of interest are present at the resolution of the aerial image (Seoane et al. 2004).  

Processing remote sensed images involves organizing data into categories, and a priori decisions are 

made that guide how the computer handles the array of information.  These decisions may divide the 

data into too many categories to detect differences in use patterns, or the resolution of the information 

may be too coarse to distinguish differences (Gottschalk et al. 2005).  Comparing models that use 

ground-based vegetation data to those using remote sensing data can determine whether important 

information is missing from either set of data, and identify which approaches most effectively 

discriminate between suitable and unsuitable areas for the organism under study (Mack et al. 1997, 

Wiegand et al. 2000, Gottschalk et al. 2007). 

 In New England, salt marshes have been subjected to considerable development pressure and 

alterations in tidal flow (Rozsa 1995, Gedan et al. 2009).  These landscape changes have reduced the 

total amount of salt marsh, and in some cases changed their plant composition (Warren et al. 2002).  

In particular, nonnative Phragmites australis, a tall reed, has spread into many marshes, greatly 

altering their vegetation structure (Roman et al. 1984, Chambers et al. 1999).  Changes in sea level 

may further modify how much and what type of marshes occur along the New England coast (Warren 

and Niering 1993, Hoover 2009).  Saltmarsh sparrows (Ammodramus caudacutus) are found only in 

salt marshes along the eastern seaboard of the USA (Greenlaw and Rising 1994).  Female sparrows 

place their nests close to the ground (Humphreys et al. 2007), and flooding is a major cause of nest 

failure (Greenberg et al. 2006, Gjerdrum et al. 2008a, Bayard and Elphick 2011).  Consequently, 

changes in saltmarsh conditions are likely to have a large impact on saltmarsh sparrow populations. 
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   In Connecticut, a relatively large population of saltmarsh sparrows occurs along with a wide 

range of marsh conditions, offering an opportunity to investigate the relationship between marsh 

conditions and sparrow presence.  Previous research has identified vegetation composition and 

structural characteristics within marshes that are associated with saltmarsh sparrow presence and 

reproductive effort (Benoit and Askins 2002, DiQuinzio et al. 2002, Shriver et al. 2004, Gjedrum et 

al. 2005, 2008b).  However, areas of marsh with the most sparrows are not always those where the 

most females nest (Elphick et al., unpublished data), suggesting that different marsh features may be 

important for different activities.  Additionally, previous studies have indicated that a marsh’s size 

and proximity to other marsh areas may influence whether or not saltmarsh sparrows occur in a given 

marsh (Benoit and Askins 2002, Shriver et al. 2004), suggesting that landscape-scale factors may 

affect sparrow presence.   

 My research was designed to test a) whether field data or remote sensing data most 

effectively characterized within-marsh conditions for saltmarsh sparrows, b) which remote sensing 

data and data processing approach produced the best predictor of habitat use, and c) whether 

attributes of the landscape at the marsh-system level improved model fit.   

 

II. METHODS 

 A. Candidate Models 

 I developed an a priori series of alternative models for the presence of saltmarsh sparrows or 

for saltmarsh sparrow nests, based on information in the literature on saltmarsh sparrows.   

Models were subdivided into those that used only marsh-level characteristics (e.g. isolation), those 

that used only within-marsh characteristics (e.g. elevation), and those that combined both marsh-level 

attributes and within-marsh information (Table 1).  Within-marsh models were further subdivided 

into those that used field-based measurements of vegetation composition and structure to characterize 

conditions, and those in which conditions were characterized by remotely-sensed elevation data or by 
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vegetation community classifications derived from digital aerial imagery.  Additional models that 

were considered included factors related to location within the marsh and whether restoration efforts 

had taken place.  Within-marsh characteristics were described from 1-ha plots, while landscape-level 

factors were measured at the scale of the marsh system in which plots were located. 

 

1. Within-marsh characteristics 

 Gjerdrum et al. (2008b) have previously found that models that included structural 

characteristics of the vegetation fit sparrow abundance data better than models based on vegetation 

composition alone.  The means of stem density, thatch height, and the maximum vegetation height 

were identified as the best predictor variables.  Consequently, for my analysis, I included models that 

assessed each of these structural characteristics individually and in combination to determine whether 

all components were needed to represent conditions suitable for saltmarsh sparrow presence or 

nesting (Models 1-4, Table 1).  

 Although measurements of structural characteristics produced better model fit than plant 

composition variables (Gjerdrum et al. 2008b), my study included marshes across a wider salinity 

gradient and thus a wider range of vegetation assemblages.  I therefore also included models based on 

vegetation composition to assess whether the earlier results persisted across this broader range of 

conditions.  I examined single-species composition models using the percent cover of Spartina 

patens, S. alterniflora, and Juncus gerardii (Models 5-7).  S. patens and S. alterniflora frequently are 

the dominant species in Connecticut salt marshes (Tiner 1987).  S. patens is common in high marsh 

areas, while the tall form of S. alterniflora is frequently found in lower areas of marsh (Fig. 1; Niering 

and Warren 1980, Bertness and Ellison 1987).  J. gerardii is a species that occurs in the higher zones 

of high marsh (Bertness and Ellison 1987), and has been identified as a good indicator of sparrow 

nest locations (Gjerdrum et al. 2005, 2008b).   Single-species composition models using S. patens and 

tall S. alterniflora, therefore, could be considered to distinguish generally between zones of high and 
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low marsh, while J. gerardii could be considered to identify a subset of the high marsh zone of 

specific interest to nesting saltmarsh sparrows.  I also combined tall S. alterniflora, J. gerardii, and P. 

australis (Model 8) for a model that provides a more comprehensive description of the plants 

occurring in a plot by including a low marsh species, a high marsh species, and an introduced species 

of great management interest.  Because the amount of S. patens can be negatively correlated with the 

amount of tall S. alterniflora present in salt marshes (Wigand et al. 2003), these two species were not 

included in the same model.     

 To characterize within-marsh conditions using remote sensing data, I first included models 

that tested whether marsh community classes defined a priori predicted suitable conditions for 

saltmarsh sparrow presence and nesting.  Using a plant community classification that subdivided salt 

marsh areas into “low” and “high” marsh based on spectral characteristics of plant species and 

elevation data (Hoover 2009), I included models in which habitat was represented by the proportion 

of a plot’s area that was high marsh (Model 9) or the proportion that was low marsh (Model 10).  

Multispectral images integrate information from a range of environmental factors, and thus might 

provide more information than variables based on individual species or structural features (Gottschalk 

et al. 2005).  Hence, I created a third remote sensing model using a classification based solely on 

spectral characteristics of plots associated with known sparrow presence or absence for the sparrow 

presence model (Model 11), and on spectral characteristics of plots associated with known nest 

presence or absence for the nest model.  Because plant communities in salt marshes are greatly 

influenced by elevation relative to tidal inundation (Niering and Warren 1980), I also included a 

model that tested whether elevation data alone could be used to discriminate between areas of 

saltmarsh sparrow presence and absence (Model 12).  For this model, Light Detection and Ranging 

(LiDAR) data were used to represent the height of the vegetation canopy relative to mean high tide. 

 Two other within-marsh features were considered in my model set.  Previous studies have 

found that the distance to the edge of the marsh influences where saltmarsh sparrows occur and where 
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they place their nests (Gjerdrum et al. 2008b, Hill 2008).  Thus, I included a model that estimated 

sparrow or nest presence as a function of the distance from the sampled area to the upland edge 

(Model 13), as well as models in which this distance was combined with vegetation structure (Model 

14) or with vegetation composition (Model 15).  

 The second additional factor I considered that might affect whether saltmarsh sparrows were 

present in an area of marsh was whether there had been any restoration efforts aimed at reducing the 

impacts of invasive P. australis.  Two types of restoration have been conducted along the Connecticut 

coast: a) restoration of tidal flow and b) direct control of P. australis through mowing or herbicide 

application.  Subsequent changes in saltmarsh vegetation composition have varied depending on the 

type of restoration undertaken and the time since the restoration work (Rosza 1995, Warren et al. 

2001, 2002).  I therefore included models that tested whether restoration affected sparrow presence or 

nesting, whether the method of restoration mattered, and whether the time since restoration mattered 

(Models 16-18).  Sites with direct control of P. australis were all restored 4-10 years before my field 

work, while the tidal restorations all took place 13-55 years previously (P. Capotosto and R. Wolfe, 

personal communication).  As a result, the temporal effect could only be examined within each 

restoration type.   

 

2. Marsh-level characteristics 

 The effects of three marsh-level characteristics were examined in our candidate model set, 

both individually and in combination: marsh size, isolation, and the degree of development in the 

surrounding uplands.  Size (Model 19) was included because larger marshes are likely to be less 

subject to edge effects if upland factors influence sparrows.  Marsh size may also affect the likelihood 

that sparrows encounter a marsh during dispersal or migration (Andren 1994).  Most importantly, 

marsh size has been previously identified as a predictor of occupancy and density in saltmarsh 

sparrows, suggesting that the species is “area-sensitive” (Benoit and Askins 2002, Shriver et al. 
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2004).  Similarly, marsh isolation (Model 20) has previously been found to influence sparrow 

presence (Shriver et al. 2004).  Finally, the amount of development in the vicinity of a marsh (Model 

21) may be important because marshes in highly developed areas are subject to more pollution, 

restricted sediment deposition due to water management structures, and increased runoff from 

impermeable surfaces of roads and rooftops, with consequences for saltmarsh function and plant 

community composition (Wigand et al. 2003, Gedan et al. 2009).  For example, plant growth and 

competition in marshes are affected by increased nitrogen levels (Bertness et al. 2002).  The marsh-

level variables were also assessed in combination with each other (Models 22-25), and all marsh-level 

models were compared to a model that included only a random effect for each marsh system (Model 

26).  

 

3. Combined marsh-level and within-marsh characteristics 

 I created a series of models that combined marsh-level characteristics with within-marsh 

variables.  Marsh size and distance from the plot center to upland edge were combined (Model 27) to 

test whether relative fit was improved by including factors at both spatial scales.  To explore further 

the fit of marsh size models relative to distance-from-edge models, I also compared models that 

combined marsh size with vegetation structure (Model 28) or vegetation composition (Model 29) to 

those that combined distance-from-edge with vegetation structure (Model 14) or vegetation 

composition (Model 15), respectively.  I also tested whether the addition of marsh-level information 

improved within-marsh models, by comparing the fit of two other model pairs: a) area of high marsh 

with and without marsh size (Models 30 vs. 9), and b) spectral characteristics associated with sparrow 

or nest presence, with and without marsh size (Models 31 vs. 11).   

 To test whether sparrow presence or nesting in a plot that had suitable within-marsh 

characteristics was influenced by isolation, I compared the relative fit of models of vegetation 

structure with and without isolation (Model 32 vs. 4), and area of high marsh with and without 
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isolation (Model 33 vs. 9).  These combinations were selected as representations of highly detailed 

ground-based data and high resolution general-classification remote sensing data.  

Finally, whether a site had received restoration and the amount of surrounding development 

were combined (Model 34) to compare to the restoration-only model (Model 18) and test whether 

development influenced the probability that sparrows were present in marshes that had undergone 

restoration.  Previous studies have linked development with differences in plant structure and 

composition (Bertness et al. 2002, Wigand et al. 2003), which may have greater impact at sites where 

restoration took place, affecting subsequent use by saltmarsh sparrows. 

 

 B. Data Collection 

 Field data were collected between 2006 and 2008 from 60 1-ha plots that were distributed 

across 27 marshes from Westport to Stonington, Connecticut (Fig. 2).  In 2006, 20 plots were 

sampled and site selection was designed to broaden sampling to a wider range of sites than had been 

included in our group’s previous research (Gjerdrum et al. 2005, 2008b), and specifically to include 

smaller marshes.  Two plots were located in areas that had undergone tidal restoration.  In 2007 and 

2008, sampling was conducted to examine the effects of restoration efforts, with another 14 plots in 

marshes that had undergone tidal-flow restoration, and eight plots with direct control of P. australis.     

For the 2007-2008 data, restoration plots were paired with 18 plots in nearby reference areas of marsh 

that were unaffected by P. australis invasion and had no history of tidal restriction. In all years, 

placement of each plot was randomized within the relevant marsh or marsh section.  Minor 

adjustments in plot locations were sometimes required due to the proximity of osprey (Pandion 

haliaetus) nests (due to state permit constraints), private property boundaries, or inaccessibility due to 

marsh features such as major channels; in these cases the plot was placed as close to the randomly 

selected point as possible.   
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 Saltmarsh sparrow presence was determined using 5-minute point counts and 3-hour mist-

netting sessions.  Point counts were conducted between sunrise and 09:30 Eastern Daylight Time.  

Three surveys per plot were conducted in 2006, and five in 2007 and 2008; different plots were 

sampled each year.  During each year, surveys were timed to occur at least two weeks apart between 

late May and mid-August.  Immediately after each point count, mist-netting was conducted in the plot 

between 06:00 and 13:00 hours, using an array of six 12-m 2-panel mist-nets.  The location of the 

array in the plot was changed for each session to ensure broad plot coverage.  Captured saltmarsh 

sparrows were banded and sexed based on the presence of a brood patch or cloacal protuberance.  

Nests were detected by walking through the plots and carefully noting origin points of flushing birds, 

or by watching females flying with food in their bills as they returned to nests. 

 Vegetation composition and structural characteristics were measured between mid-July and 

mid-August to standardize measurements into a period when new growth was limited.  Each plot had 

nine sampling points, at the center, corners, and mid-points of the plot edges.  Previous work found 

this design to produce similar results to random-placement of points (Gjerdrum et al. 2005).  A 1-m 

quadrat was placed over the center of the sampling point.  Within the quadrat, the percent of bare 

ground and cover of each plant species were visually estimated.  The height from the ground to the 

top of the layer of dead rooted vegetation – the thatch height – was measured at the center of the 

quadrat.  The height of the tallest piece of vegetation in each of the four corners of the quadrat was 

measured and the mean maximum height calculated.  Stem density was estimated as the mean of the 

stem counts in five randomly-selected 10 x 10 cm subunits.  For each vegetation variable, the mean 

across all nine points was used to provide a single measure for each plot.  Distance from the plot to 

the upland edge was quantified from aerial images by measuring the shortest distance from the center 

of the plot to the edge of the nearest upland patch greater than 0.5 ha in size.    

 The first remote sensing GIS data layer was developed for other purposes and used a 

combination of digital aerial images, elevation data, extensive ground-truthing, and object-oriented 
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classification to create a high-resolution (1 m) map of Connecticut salt marshes, organized by plant 

species into high and low marsh communities (Hoover 2009).  Using this data layer, I calculated the 

proportion of high and low marsh for each plot (Fig. 3A). 

 To create an alternative supervised classification of plot characteristics based on the birds’ 

actual distribution patterns, I used infrared aerial images taken September 20 and 22, 2004, with 0.5-

m resolution, along the entire Connecticut coast (National Oceanic and Atmospheric Administration 

Coastal Services Center and the United States Geological Survey 2004).  I created a mosaic from all 

the images with salt marshes, resampling to a final resolution of 1 m in order to keep the file from 

becoming unmanageably large.  The 60 study plots were used as training areas for the spectral 

reflectance properties of marsh conditions within Connecticut.  After examining the spectral 

characteristics of each plot, I delineated homogeneous areas within plots to provide spectral 

signatures.  I then used a maximum-likelihood algorithm in ERDAS Imagine to classify each salt 

marsh pixel in the state according to its resemblance to a signature derived from the original study 

plots (Fig. 3B).  Based on whether at least one sparrow had been detected in the parent training plot 

during the 2006-2008 surveys, the pixel classes were then coded according to whether one would 

expect sparrows to be present or absent (Fig. 3C).  After subtracting all pixels classified as water, the 

proportions of pixels classified as having sparrows either present or absent were calculated for each 

plot.  For the nest presence analysis, this recoding step was repeated based on whether or not nests 

had been observed in the parent training plot (Fig. 3D).  Because the presence and absence pixel 

classes were highly correlated, only the classes that denoted sparrow or nest absence were used in the 

models.   

 A third remote sensing data product was used in the elevation model (Model 12).  In addition 

to generating the digital images used to create a supervised classification, the NOAA 2004 flight 

generated a surface-return elevation model (National Oceanic and Atmospheric Administration 

Coastal Services Center and the United States Geological Survey 2004). The resulting Digital Surface 
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Model (DSM), which indicates the height of the vegetation canopy relative to sea level, had vertical 

resolution of 0.33 m, and horizontal resolution of 2 m.  I calculated the mean elevation for each plot.  

At this resolution, the data for all emergent land showed a gradient of increasing elevation from east 

to west associated with the increasing tidal amplitude in Long Island Sound.  This likely arises 

because the elevations at which salt marshes develop are determined by the mean high tide level 

(Bertness and Ellison 1987) rather than the average sea level, against which DSM is measured.  

Because sparrows are affected by mean high tides both directly through nest flooding and indirectly 

through the tide’s effects on the vegetation, DSM values needed to be adjusted to give a measure of 

elevation relative to high tide levels.  To do this, I determined the deviation between observed 

elevation and that predicted for a given longitude based on a different digital elevation model (ground 

return elevation) (Hoover 2009).  I then subtracted the estimated elevation from the mean DSM 

elevation for an estimate of canopy-return elevation relative to general marsh surface height specific 

to that longitude (see Appendix A for adjustment analysis). 

 Marsh-level variables were measured using the Connecticut Coastal Environmental 

Sensitivity Index Mapping Polygons (NOAA 2004), which delineated salt- and brackish-water marsh 

along the Connecticut coast in 1999.  I defined a marsh unit as the group of all tidal marsh polygons 

separated by less than 100 m.  Size was then calculated by summing the areas of all saltmarsh 

polygons within a marsh unit.  Isolation was measured as the shortest distance from the edge of the 

marsh unit to the nearest point on the edge of another marsh unit.  To determine the amount of 

development in the vicinity of each marsh unit, I used the Connecticut Changing Landscape GIS 30-

m resolution land cover for 2002 (Hurd 2006).  I generated a 500 m buffer around each marsh unit, 

and calculated the proportion of land within the buffer that was classified as developed.  I chose 500 

m for the buffer because the major rivers in CT are approximately 300 to 750 m wide.  As some of 

the marshes are islands, a buffer zone much less than 500 m would have consisted primarily of water, 
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and buffer size much larger than 500 m would have overlapped adjacent marshes, decreasing the 

independence of the measured variables. 

 Areas of marsh along the Connecticut coast are not all organized into clearly discrete units.   

It is not known which arrangements of marsh systems are conducive to sparrows moving between 

them, although male sparrows have been recorded as siring chicks up to 1.37 km from where the 

males were banded (Hill et al. 2010).  As a result, deciding what constitutes a marsh unit that has 

biological significance for sparrows is not straightforward and all of the marsh-level variables may be 

sensitive to user-defined scale decisions.  To investigate whether the marsh-level variables were 

sensitive to the definition of marsh unit, I repeated the analyses with the marsh unit defined as the 

group of all marsh polygons separated by less than 500 m and compared the relative ranks of the 

models from each set of analyses.  

 

 C. Model Specification 

 I used WinBUGS (Spiegelhalter et al. 2000) to fit hierarchical logistic regression models of 

sparrow presence and nesting.  I used a Bernoulli distribution to model sparrow presence, such that 

the logit of the probability of detecting sparrows at the sampled plot was a function of the explanatory 

variables and the regression coefficients.  Because I sampled multiple plots within individual marshes, 

and previous work has shown that the marsh in which a surveyed plot was located influenced sparrow 

abundance (Gjerdrum et al. 2008b), I also included a marsh-specific random effect.  The marsh-

associated random effect was assumed to be drawn from a global distribution, with the marsh-specific 

mean determined by a global intercept and the marsh-level variables (Diez and Pulliam 2007).  The 

magnitude of variation in marsh systems could then be assessed by comparing the random effect 

estimates of the top models.   

Regression coefficients were given normally-distributed prior distributions with means of 0 

and precisions of 0.01, and the random effect estimates and the global intercept estimate were given 



 

14 

 

normally-distributed prior distributions with means of 0 and precisions of 0.1.  More diffuse priors 

resulted in model instability and lack of convergence.  Each model was run using two Monte-Carlo 

Markov chains, and I examined the time series plots to check that the chains were mixing well.  I 

further examined the Gelman-Rubin statistic graph for evidence of lack of convergence.  The first 

2000 iterations of the Monte-Carlo Markov chain were discarded as the burn-in phase, and each 

model subsequently ran for 25,000 iterations.  The Deviance Information Criterion (DIC) calculated 

for each model was used to compare their relative fit.  WinBUGS code is included in Appendix B. 

 Because logistic regression is robust to non-normal data distributions, I did not transform any 

of the variables.  Pearson correlation coefficients for all pair-wise comparisons of variables included 

in the same models were < 0.50 (n = 60).  

 

III. RESULTS 

 Saltmarsh sparrows were detected in 52 of 60 plots and in 26 of 27 marshes.  Nests were 

found in 22 plots and 14 marshes.  Marshes in which sampling took place had a mean size of 86 ha, a 

mean distance of 306 m to the nearest marsh, and an average of 36% developed land within the 500 m 

buffer around the marsh (Table 2).  Of the within-marsh variables measured on the ground, the mean 

coverage of S. patens and J. gerardii were higher at plots where sparrows and sparrow nests were 

present than at plots where sparrows and sparrow nests were not found (Table 3), while tall S. 

alterniflora was more extensive at plots where sparrows and nests were not found.  Higher stem 

density was associated with plots where sparrows and sparrow nests were found, while thatch height 

and mean maximum vegetation height were similar for sites with and without both sparrows and 

nests.  On average, there were also greater proportions of high marsh and lower proportions of low 

marsh in plots with sparrow nests.   

 When pixels in the marshes were classified into sparrow-absent or sparrow-present 

categories, plots known to contain sparrows were dominated by sparrow-present pixels (mean = 
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78%), while those where sparrows were not detected generally had similar proportions of sparrow-

present and sparrow-absent pixels (Table 3).   An average of 57% of pixels were classed as nest-

present in plots known to contain nests, with an average of 35% classed as nest-absent pixels.  On 

average, 58% of pixels in plots where no nests were present were classed as nest-absent pixels, and 

38% were classed as nest-present pixels.   The elevation adjustment analysis estimated that for every 

degree of longitude (83.8 km), marsh surfaces were associated, on average, with a 0.38 m (SE 0.05 

m) change in elevation.  As measured by LiDAR, the mean height of the vegetation canopy relative to 

mean high tide in each plot was 0.44 m (min – max: -0.92 m – 1.8 m) after adjusting for the 

longitudinal gradient.  Canopy height of plots with sparrows present averaged 0.45 m above mean 

high tide, while plots without sparrows present measured 0.41 m above mean high tide.  Plots that 

contained nests had canopy heights that averaged 0.37 m above mean high tide, while those without 

nests averaged 0.49 m above mean high tide.  Sites that had undergone tidal restoration had sparrows 

present in 11 of 16 plots, two of which also had nests.  Sparrows were found at all nine P. australis 

control sites, and nests were found in five.  Vegetation characteristics at restoration and control sites 

were directly compared in a separate analysis (Elphick et al. unpublished manuscript). 

 

A. Presence /Absence Models 

 Sparrow presence Model P11, in which habitat was represented by the abundance of sparrow-

absent pixels derived from the supervised classification, fit substantially better than any other 

representation of within-marsh conditions, with a lower probability of sparrow presence associated 

with a greater proportion of the sparrow-absent pixels (Table 4).  All other within-marsh models had 

much less support (ΔDIC > 10).  Of the remaining within-marsh models, those describing restoration 

variables produced the best fit (ΔDIC: 10.9 – 13.1), although these models were not substantially 

better than others: vegetation structure (ΔDIC: 15.5 – 22.1); vegetation composition (ΔDIC: 11.9 – 
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19.4); other remote sensing data (ΔDIC: 18.5 – 21.4); and distance to upland edge (ΔDIC: 15.4 – 

21.2).   

The models that included only marsh-level variables (P19-26) had model fits toward the 

lower end of the range from within-marsh models (ΔDIC: 17.9 – 21.0).  A similar DIC ranking was 

obtained when the marsh unit was defined by less than 500 m between constituent sections of marsh, 

with similar variation between the models.   

When marsh-level variables were combined with within-marsh variables, models fit at best 

only marginally better when directly compared to equivalent models that included only the within-

marsh variables (compare Models P27-34 with Models P1-13; Table 4).  The model with the most 

support included both marsh size and the proportion of sparrow-absent pixels from the supervised 

classification, although the fit and parameter estimates were very similar to those for the single-

variable sparrow-absent classification model (Table 4).  The next closest-competing model, which 

included size in combination with the full composition model, had notably lower support with a 

ΔDIC of 9.4, but the parameter estimate for the effect of marsh size was similar to the estimate of the 

best model (Table 5). 

Across models, marsh size was consistently estimated as being positively associated with the 

probability of sparrow presence (parameter estimates ranged from 0.036 to 0.043), while isolation 

was consistently estimated as being negatively associated with the probability of sparrow presence 

(min – max: -0.001 to -0.007).  Parameter estimates for the effects of development were both positive 

and negative, with the standard deviations at least 4 times the coefficient estimates, suggesting there 

is considerable uncertainty associated with estimating the relationship between sparrow presence and 

the amount of development at this scale.  

Of the model comparisons used to investigate the relative effects of marsh size versus the 

distance of a plot from the marsh edge, the single-variable model that included distance to upland 

edge (Model P13) had slightly less support than the single-variable model that included size (Model 
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P19).  The model that included both size and distance (Model P27) had similar support to Models P13 

and P19.  When marsh size and within-marsh characteristics were combined, model fit of within-

marsh characteristic models improved but the change in DIC values were consistently less than 2.  

When combined with composition or structure, size improved the within-marsh model more than 

distance to the upland edge did. 

Models that included restoration as a factor influencing sparrow presence had little support 

compared to the best fitting models (ΔDIC: 10.9 – 13.1), but had similar support to models of field-

measured vegetation composition and structure.  Parameter estimates for an overall restoration effect 

were negative (Model P16), although estimates for Model P17 suggest that this effect was driven 

largely by the tidal restoration sites (Table 6).  When time since restoration was included in the 

model, credible intervals overlapped zero for the parameter estimates of both restoration types and the 

associated time effects.  

The random effect estimates from the simplest top model (Model P11) suggest little variation 

between marshes, and all 95% credible intervals overlapped each other (Fig. 4).  The very best model 

(P31) showed more variation in the larger marshes, but all 95% credible intervals overlapped each 

other as well. 

 

B. Nest models 

 Of all the within-marsh models considered, that based on multiple measures of vegetation 

structure, Model N4, provided the best fit (Table 7).  Model N1, which included only stem density, fit 

the data almost as well as Model N4 (ΔDIC = 3.5 vs. 0.9).  Of the variables included in the vegetation 

structure model, the measurement of stem density appeared to be responsible for much of the model’s 

fit, because single-variable models that included thatch height and vegetation height fit poorly (ΔDIC: 

18.1 and 18.9, respectively).  Compared to models that included vegetation structure, models that 

included vegetation composition had little to no support (ΔDIC: 6.8 – 16.7).  There was some support 
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for the remote sensing model N9, which used the proportion of high marsh to represent habitat 

conditions (ΔDIC = 4.6), but other remote sensing models (Models N10-12), models that included 

distance to the marsh’s upland edge (Model N13), and restoration models (Models N16-18) were all 

poorer, but relatively equivalent, fits (ΔDIC: 10.2 – 23.2).  

Models using only marsh-level variables (Models N19-26) all had similar fit and little support 

(ΔDIC > 21).  Parameter estimates for these variables also were very low (≤ 0.01), suggesting little 

effect of these variables.  Consistent with this pattern is the observation that when marsh-level 

variables were combined with within-marsh variables, model fit remains largely the same (compare 

Models 27-34 with their simpler counterparts in Table 7).  Adding marsh size to the vegetation 

structure model achieved a marginally-better fit (ΔDIC = 0.0 vs. 0.9), but in most cases the more 

complex landscape model was marginally worse.  Estimates of within-marsh variable parameters in 

models that combined landscape and within-marsh variables were similar to estimates from models 

that included within-marsh variables only (Table 8).  As with the presence models, the nest models 

had similar DIC rankings when the marsh unit was defined by less than 500 m between constituent 

sections of marsh. 

 When random effect estimates from the top models were compared, there was minor 

variation between marshes in both the vegetation structure model and the high-marsh model, with 

95% credible intervals for all estimates overlapping each other (Fig. 5). 

  

IV. DISCUSSION 

 

 A major conclusion of this study is that the marsh characteristics that are best for modeling 

the presence of saltmarsh sparrows are different from those that best distinguish sites where nesting 

actually occurs.  This finding has important repercussions for management because the presence of 

saltmarsh sparrows will not necessarily indicate that an area provides all conditions suitable for 
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reproduction and persistence.  Because habitat quality is not necessarily related to abundance or 

density (Van Horne 1983, Vickery et al. 1992, Johnson 2007), modeling saltmarsh sparrow habitat 

based only on presence could be very misleading if one wanted to identify areas important to species 

conservation.  Because the mating system of this species, in which females are polyandrous and males 

provide no parental care (Greenlaw and Rising 1994, Hill et al. 2010), obscures the links between 

habitat and reproductive success in areas that are not providing nesting habitat, additional research is 

needed to determine why birds spend time in those areas. 

 Plots in which saltmarsh sparrows are found have different spectral characteristics than plots 

where sparrows are not found, and this distinction provided a better basis for representing sparrow 

habitat than did the vegetation composition, vegetation structure, or classifications of marsh type.  

The difference in model fit suggests that there are features of marshes that have not been accounted 

for in ground-based data collection, but that can be detected using near-infrared aerial images, and 

that matter to sparrows. What these variables are has yet to be determined, but possibilities include 

duration of tidal inundation, which could result in more water occurring in the image and thereby 

affecting the spectral reflectance (Kearney et al. 2009), or in salinity differences, or combinations of 

inundation and salinity, which are associated with different growth responses in both S. alterniflora 

and S. patens (Naidoo et al. 1992).  

 Models using saltmarsh restoration history to generate predictions about sparrow presence 

would be of limited utility for broad-scale predictions, as restoration effort would be a factor in only a 

limited set of saltmarsh areas in Connecticut not already included in this study.  However, the better 

fit of the restoration models when compared to models that included detailed vegetation composition 

and structure suggests that the effects of restoration are not minor.  Importantly, the negative 

parameter estimates for these effects in some models indicate that restoration frequently does not 

result in suitable habitat for saltmarsh sparrows.  The parameter estimates further indicate that it is 

primarily sites with tidal marsh restoration that lack birds.  
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 The best models of actual nesting included characteristics of the vegetation structure that 

were collected on the ground.  Stem density in particular appeared to be responsible for much of the 

fit, matching the results of previous studies (Gjerdrum et al. 2005, 2008b), and reinforcing the idea 

that females select nest sites based on vegetation density, rather than by any one species of plant.  

 Although measuring vegetation structure on the ground provides the best fit for saltmarsh 

sparrows’ nesting locations, collecting stem density data over large areas is not practical.  

Consequently, this model would be difficult to use for predicting where nesting areas lie over large 

scales.  The model based on the relative abundance of high marsh habitat (Model N9), however, is not 

substantially worse (ΔDIC = 4.6 vs. 0.9) and can be used for prediction, as this data layer has been 

constructed for all of the marshes along the Connecticut coast (Hoover 2009).  Even creating this data 

layer, however, involved considerable ground-truthing and separate decision rules for each of the 

more than 30 high-resolution image/elevation data combinations that spanned the area under study 

(M. Hoover, personal communication).  Extending predictions using this classification over larger 

geographic regions, therefore, is not a trivial matter. 

 Despite previous indications that the distance from an upland edge could affect sparrow 

distributions (Gjerdrum et al. 2008, Hill 2008), I found little evidence to support this hypothesis.  The 

wider range of environmental conditions, or broader collection of explanatory variables sampled in 

this study may have overwhelmed an effect that may exist in more homogeneous areas.   

The marsh-level models considered in this study generally had little support compared to the 

best within-marsh models, although adding marsh size marginally improved each of the best within-

marsh models.  The models that included marsh-level variables had similar rankings when the marsh 

unit was redefined to include more widely spaced parcels, which suggests these results are not 

sensitive to the decision rules used to define marsh units in this study. 

 In conclusion, I found that saltmarsh sparrow presence appears to be modeled most 

effectively using remote sensing data rather than ground-based data.  However, because the best 
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model used remote sensing data that were not organized into categories of known ground cover types, 

some of the differences may not be apparent on the visible spectrum and are difficult to relate to 

specific ecological factors.  As a result, directing effort toward developing a detailed map based only 

on vegetation composition or vegetation structure maps from remote sensing, or using general 

landcover data layers developed for other purposes, would fail to incorporate components that appear 

to be important for sparrows.  In addition, because areas of nesting activity are not well-identified by 

species presence models, the best species presence models would provide misleading information 

about where the most important areas for reproduction lie.  Focusing conservation efforts on 

improving or maintaining the saltmarsh areas suitable for nesting will be critical for saltmarsh 

sparrow persistence, but because sparrows also occur in areas that are not directly associated with 

reproductive activity, further investigations are needed to establish what contribution, if any, these 

other areas make toward sparrow persistence.   

 Remote sensing data can be rendered into highly detailed representations of environmental 

features, which can then be used to detect ecologically important variation even in relatively simple 

systems such as salt marshes (Morris et al. 2005, Gilmore et al. 2008, Tuxen et al. 2011).   However, 

applying remote sensing data to habitat association models requires more than organizing the data 

into categories that are familiar from ground-based data collection.  Comparing models that use these 

different types of data is one way to check assumptions about what features on the ground have strong 

links to the organism under study, and where additional investigation may be warranted.   
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Table 1 Candidate models used to describe characteristics of salt marshes where saltmarsh sparrows 

and their nests occur in coastal Connecticut.  Models are grouped according to the type of data used, 

and whether the models include within-marsh variables, marsh-level variables, or a combination of 

the two 

I. Within-marsh models 

A. Vegetation structure data 

1 Stem density 

2 Thatch height 

3 Mean maximum vegetation height 

4 Stem density + Mean maximum height + Thatch height (Full structure model) 

B. Vegetation composition data 

5 S. alterniflora (tall form) 

6 J. gerardii 

7 S. patens 

8 Tall S. alterniflora + J. gerardii + P. australis (Full composition model) 

C. Remote sensing data 

9 Community classification: % High marsh  

10 Community classification: % Low marsh 

11 Spectral characteristics (Presence: % Sparrow-absent pixels; Nests: % Nest-absent pixels) 

12 Mean elevation: Digital Surface Model 

D. Location data 

13 Distance to upland edge 

14 Distance + Structure 

15 Distance + Composition 

E. Restoration history 

16 Restoration (absent or present) 

17 Restoration (absent, tidal flow restoration, or direct P. australis control) 

18 Restoration (absent, tidal flow x time since restoration, or P. australis control x time since 

restoration) 

II. Marsh-level models 

19 Size 

20 Isolation 

21 Development 

22 Size + Development 

23 Size + Isolation 

24 Isolation + Development 

25 Size + Isolation + Development (Full marsh-level model) 

26 Random effects only  

III. Combined marsh-level and within-marsh models 

27 Size + Distance  

28 Size + Structure 

29 Size + Composition 

30 Size + Community classification: % High marsh 

31 Size + Spectral signature (Presence: % Sparrow-absent pixels; Nests: % Nest-absent pixels) 

32 Isolation + Structure 

33 Isolation + Community classification: % High marsh 

34 Development + Restoration (absent, tidal flow restoration, or P. australis control) 

 



 

26 

 

 

 

Table 2  Marsh-level characteristics of surveyed marshes, when defined as including all areas of 

marsh that were within 100 m of each other, and when redefined as all areas of marsh within 500 m of 

each other.  Measures given as means ± SD (median, min – max) 

 

 Total marsh 

system units 

Marsh size (ha)  Marsh isolation 

(m)  

 

% development 

within 500 m of 

marsh  

Marsh units defined 

as < 100 m between 

components 

27 86 ± 94  

(48.8, 13 – 417) 

306 ± 218  

(255.4, 101 – 756) 

36.5 ± 13.7  

(34, 15 – 62) 

Marsh units defined 

as < 500 m between 

components 

22 167 ± 163 

(87, 13 – 572) 

767 ± 340  

(652, 505 – 2005) 

36.2 ± 12.6  

(37, 15 – 64) 
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Table 3 Within-marsh characteristics of plots where sparrows were present and absent and where sparrow nests were present and absent 

  Ground-collected  data Remote sensing data 

  Vegetation structure Vegetation composition 

Community 

composition Elevation Spectral characteristics 

 

Distance 

to 

upland 

edge 

(m) 

Mean 

maximum 

height 

(cm) 

Stem 

density 

Thatch 

height 

(cm) 

% 

cover 

S. 

patens 

% cover 

tall S. 

alterniflora 

% 

cover J. 

gerardii 

% cover 

P. 

australis 

% 

high 

marsh 

% 

low 

marsh 

Corrected 

DSM (m) 

% 

sparrow-

present 

pixels 

%  

sparrow- 

absent 

pixels 

% 

nest-

present 

pixels 

% nest 

absent 

pixels 

Sparrows present (n = 52)              

mean 132.6 41.3 27.7 7.4 21.9 18.1 4.6 3.9 36.2 53.0 0.45 77.5 16.7 - - 

SD 115.4 15.7 16.1 4.2 18.0 19.7 10.7 7.3 27.4 30.4 0.35 11.1 11.5 - - 

median 83.5 39.5 27.8 7.4 19.1 11.3 0.0 0.0 31.7 56.1 0.41 79.4 13.1 - - 

min 29.9 14.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.09 46.7 1.1 - - 

max 487.7 95.1 63.8 16.9 68.9 90.6 46.8 37.2 89.2 100.0 1.83 94.0 52.7 - - 

Sparrows absent (n = 8)              

mean 60.2 42.6 15.2 7.9 12.5 34.8 1.0 5.4 26.0 63.8 0.41 47.5 47.7 - - 

SD 17.0 23.4 13.8 5.4 14.7 24.9 2.7 9.6 35.1 29.8 0.17 25.3 26.2 - - 

median 54.4 34.2 9.0 7.4 5.3 23.9 0.0 0.3 3.9 69.0 0.42 52.3 35.5 - - 

min 42.7 19.8 2.8 1.3 0.0 10.6 0.0 0.0 0.0 17.6 0.14 11.9 18.5 - - 

max 93.3 85.3 37.6 19.6 32.2 81.1 7.8 27.2 82.4 93.6 0.66 80.5 87.4 - - 

Nests present (n = 22)              

mean 134.3 37.7 37.2 8.5 29.5 11.8 7.5 3.4 53.5 38.1 0.37 - - 56.7 34.7 

SD 131.2 11.8 13.7 3.9 19.5 14.7 13.1 6.3 26.2 25.6 0.22 - - 17.9 16.8 

median 69.0 37.5 39.5 7.5 22.9 8.6 0.0 0.3 64.1 32.0 0.29 - - 58.0 33.6 

min 29.9 21.9 14.1 3.1 1.7 0.0 0.0 0.0 0.0 1.7 0.09 - - 25.6 6.5 

max 487.7 60.6 63.8 16.9 68.9 65.0 46.8 22.2 89.2 91.0 1.09 - - 83.4 69.9 

Nests absent (n = 38)              

mean 116.4 43.7 19.5 6.8 15.5 25.3 2.1 4.5 24.0 64.0 0.49 - - 38.4 54.3 

SD 97.6 18.8 14.1 4.5 14.6 22.7 7.2 8.2 24.0 28.9 0.38 - - 20.3 19.8 

median 81.2 39.6 17.5 6.6 14.2 20.6 0.0 0.0 15.4 65.8 0.47 - - 42.9 49.7 

min 31.4 14.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.09 - - 3.6 12.2 

max  438.9 95.1 62.0 19.6 48.9 90.6 34.7 37.2 82.4 100.0 1.83 - - 79.1 91.8 
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Table 4 Model comparison results for models examining the presence or absence of saltmarsh 

sparrows, organized by the type of data included in the model.  All models include a random effect 

for the marsh system in which a sample plot was located.  The Deviance Information Criterion (DIC) 

is a measure of the fit of the model to the data, with lower numbers indicating better fit; ΔDIC shows 

the fit of each model compared to the best model of all those considered 

 

I. Within-marsh models DIC ΔDIC 

A. Vegetation structure data   

P1 Stem density 42.1 16.1 

P2 Thatch height 48.0 22.1 

P3 Mean maximum vegetation height 46.2 20.2 

P4 Stem density + Mean maximum height + Thatch height 

(Full structure model) 41.5 15.5 

B. Vegetation composition data   

P5 S. alterniflora (tall form) 45.4 19.4 

P6 J. gerardii 40.3 14.3 

P7 S. patens 43.3 17.3 

P8 Tall S. alterniflora + J. gerardii + P. australis (Full 

composition model) 37.9 11.9 

C. Remote sensing data   

P9 Community classification:  % High marsh  44.4 18.5 

P10 Community classification:  % Low marsh 46.4 20.5 

P11 Spectral characteristics: % Sparrow-absent pixels 27.1 1.1 

P12 Mean elevation: Digital Surface Model 47.4 21.4 

D. Location data   

P13 Distance to upland edge 47.2 21.2 

P14 Distance + Structure 41.4 15.4 

P15 Distance + Composition 38.2 12.2 

E. Restoration history   

P16 Restoration (absent or present) 39.1 13.1 

P17 Restoration (absent, tidal flow restoration, or direct P. 

australis control) 39.1 13.1 

P18 Restoration (absent, tidal flow restoration x time since 

restoration, or P. australis control x time since 

restoration) 35.9 10.9 

II. Marsh-level models   

P19 Size 45.2 19.2 

P20 Isolation 45.8 19.8 

P21 Development 47.0 21.0 

P22 Size + Development 45.5 19.5 

P23 Size + Isolation 43.9 17.9 

P24 Isolation + Development 46.0 20.0 

P25 Size + Isolation + Development (Full marsh-level 

model) 44.1 18.1 

P26 Marsh-system random effects only estimated 46.9 20.9 
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Table 4 (continued) 
 

III. Combined marsh-level and within-marsh models DIC ΔDIC 

P27 Size + Distance 47.4 21.4 

P28 Size + Structure 40.0 14.0 

P29 Size + Composition 35.3 9.4 

P30 Size + Community classification: % High marsh 42.7 16.7 

P31 Size + Spectral characteristics: % Sparrow-absent 

pixels 26.0 0.0 

P32 Isolation + Structure 41.8 15.8 

P33 Isolation + Community classification: % High marsh 43.4 17.4 

P34 Development + Restoration (absent, tidal flow 

restoration, or P. australis control) 39.2 13.2 
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Table 5 Parameter estimates, standard deviations, and credible intervals for the top sparrow presence 

models: P11, P31, and P29 

 

Presence model P11  (% Sparrow-absent pixels, ΔDIC = 1.1) 
Variable Parameter estimate (SD)   Credible interval 

  2.5%  97.5%  

Global intercept 7.31 (1.5) 4.55 10.43 

% Sparrow-absent pixels -0.17 (0.05) -0.27 -0.08 

    

Presence model P31 (Marsh size + % Sparrow-absent pixels, ΔDIC = 0.0) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept 8.17 (1.72) 5.04 11.80 

% Sparrow-absent pixels -0.16 (0.05) -0.26 -0.08 

Size of marsh 0.04 (0.02) -0.001 0.09 

    

Presence model P29 (Marsh size + Vegetation composition, ΔDIC = 9.4) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept 6.37 (1.67) 3.47 10.05 

Size of marsh 0.04 (0.02)  0.006 0.09 

% tall S. alterniflora -0.07 (0.04) -0.16 -0.05 

% J. gerardii 0.56 (0.38) 0.05 1.46 

% P. australis -0.26 (0.11) -0.50 -0.04 
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Table 6 Parameter estimates, standard deviations, and credible intervals for the presence models that 

include restoration factors: P16, P17, and P18 

 

Presence model P16 (Restoration absent or present, ΔDIC = 13.1) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept 5.1 (1.2) 2.9 7.4 

Restoration  -3.5 (1.3) -6.4 -0.9 

    

Presence model P17 (Restoration absent, tidal flow restoration or direct P. australis control, 

ΔDIC = 13.1) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept 5.0 (1.2) 2.8 7.3 

Tidal flow restoration -3.9 (1.5) -7.1 -1.2 

P. australis control -1.1 (2.8) -6.3 4.5 

    

Presence model P18 (Restoration absent, tidal flow restoration x time since restoration, P. 

australis control x time since restoration, ΔDIC = 10.9) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept 4.9 (1.2) 2.8 7.3 

Tidal flow restoration 1.5 (3.9) -5.6 9.7 

Tidal flow restoration time effect -0.3 (0.2) -0.7 0.05 

P. australis control -7.5 (7.1) -22.3 5.6 

P. australis control time effect 1.8 (2.1) -0.8 6.0 
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Table 7 Model comparison results for presence/absence of saltmarsh sparrow nests, organized by 

type of data included in the model.  All models include a random effect for the marsh system in which 

a sample plot was located 

 

I. Within-marsh model DIC ΔDIC 

A. Vegetation structure data   

N1 Stem density 63.8 3.5 

N2 Thatch height 79.3 19.0 

N3 Mean maximum vegetation height 80.1 19.8 

N4 Stem density + Mean maximum height + Thatch height 

(Full structure model) 61.2 0.9 

 B. Vegetation composition data   

N5 S. alterniflora (tall form) 77.0 16.7 

N6 J. gerardii 69.1 8.8 

N7 S. patens 72.6 12.3 

N8 Tall S. alterniflora + J. gerardii + P. australis (Full 

composition model) 67.1 6.8 

C. Remote sensing data   

N9 Community classification: % High marsh 64.9 4.6 

N10 Community classification: % Low marsh 70.5 10.2 

N11 Spectral characteristics: % Nest-absent pixels 74.2 13.9 

N12 Mean elevation: Digital Surface Model 81.7 21.4 

D. Location data   

N13 Distance to upland edge 82.3 22.0 

N14 Distance + Structure 62.2 1.9 

N15 Distance + Composition 68.1 7.8 

E. Restoration history   

N16 Restoration (absent or present) 83.5 23.2 

N17 Restoration (absent, tidal flow restoration or direct P. 

australis control) 79.4 19.1 

N18 Restoration (absent, tidal flow x time since restoration, or 

P. australis control x time since restoration) 82.7 22.4 

II. Marsh-level models   

N19 Size 81.9 21.6 

N20 Isolation 82.6 22.3 

N21 Development 82.0 21.7 

N22 Size + Development 81.9 21.6 

N23 Size + Isolation 82.2 21.9 

N24 Isolation + Development 82.5 22.2 

N25 Size + Isolation + Development (Full marsh-level model) 81.8 21.5 

N26 Marsh-system random effects only estimated 82.2 21.9 
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Table 7 (continued) 
 

III. Combined marsh-level and within-marsh models  DIC ΔDIC 

N27 Size + Distance 82.4 22.1 

N28 Size + Structure 60.3 0.0 

N29 Size + Composition 68.1 7.8 

N30 Size + Community classification: % High marsh 64.9 4.6 

N31 Size + Spectral characteristics: % Nest-absent pixels 74.2 13.9 

N32 Isolation + Structure 61.7 1.4 

N33 Isolation + Community classification: % High marsh 65.0 4.7 

N34 Development + Restoration (absent, tidal flow restoration, 

or P. australis control) 79.2 18.9 
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Table 8 Parameter estimates, standard deviations, and credible intervals for the top presence models 

N4, N29, N9, and N30 

 

Nest model N4 (Vegetation structure, ΔDIC = 0.9) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept -2.94 (1.19) -6.71 0.69 

Stem density 0.15 (0.04) 0.08 0.24 

Thatch height 0.25 (0.15) -0.04 0.056 

Mean maximum vegetation height -0.12 (0.05) -0.22 -0.02 

    

Nest model N29 (Marsh size + Vegetation structure, ΔDIC = 0.0) 

Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept -2.99 (1.9) -6.76 0.68 

Marsh size 0.01 (0.008) -0.005 0.03 

Stem density 0.16 (0.04) 0.08 0.26 

Thatch height 0.25 (0.15) -0.05 0.56 

Mean maximum vegetation height -0.12 (0.05) -0.24 -0.03 

    

Nest model N9 (% High marsh, ΔDIC = 4.6) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept -3.86 (1.06) -6.00 -1.81 

% High marsh 7.88 (2.11) 3.95 12.19 

    

Nest model N30 (Marsh size + % High marsh, ΔDIC = 4.6) 
Variable Parameter estimate (SD) Credible interval 

  2.5%  97.5%  

Global intercept -3.93 (1.08) -3.91 -1.88 

Marsh size 0.007 (0.007) -0.008 0.02 

% High marsh 7.98 (2.13) 4.04 12.37 
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Fig. 1 Plant community zones within a salt marsh relative to tidal inundation (after Warren and 

Niering 1990) 
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Fig. 2 Sites surveyed for saltmarsh sparrows and their nests, 2006-2008.  1. Sherwood Island State Park, 

Westport.  2. Pine Creek, Fairfield.  3. Great Meadows NWR, Stratford.  4. Wheeler Marsh WMA, 

Milford.  5. Long Island, Stratford.  6. Silver Sands State Park, Milford.  7. Indian River, Milford.  8. 

Quinnipiac River WMA, New Haven.  9. Hemingway Creek, New Haven.  10. East Haven Land Trust, 

East Haven.  11. Farm River State Park, East Haven.  12. Upper Farm River, Branford.  13. Stony Creek 

and Pine Orchard, Branford.  14. Jarvis Creek, Branford.  15. Great Harbor, Guilford.  16. Long Cove 

and Chaffinch Island Park (West River), Guilford.  17. Fence Creek, Madison.  18. Hammock River, 

Clinton.  19. Mud/Hagar Creek, Old Saybrook.  20. Upper Oyster River, Old Saybrook.  21. Lieutenant 

River, Upper Island, and Great Island (Connecticut River), Old Lyme.  22. Mile Creek, Old Lyme.  23. 

Watt’s Island, East Lyme.  24. Groton Long Point, Groton.  25. Cottrell Marsh, Stonington.  26. Paffard 

Marsh, Stonington.  27. Barn Island WMA, Stonington 
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Fig. 3 Two plots at Great Island in the Connecticut River characterized using remote sensing.  A. Classification of marsh 

communities based on plant and elevation data (M. Hoover, unpublished data).  B. Initial supervised classification based on library 

of spectral signatures built from all plots sampled in 2006-2008.  C. Recoded pixel classification for sparrow presence categories: 

classification of each pixel according to whether saltmarsh sparrows had been detected in the plot on which the initial classification 

was based.  D. Recoded pixel classification for nest presence categories: recoded classification of each pixel according to whether 

saltmarsh sparrow nests had been detected in the plot on which the initial classification was based 
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Fig. 4  Mean random effect estimates for marsh units from presence model P11, which included 

sparrow-absent pixels (gray circles), and from presence model P31, which included size + 

sparrow-absent pixels (open squares).  Error bars represent 95% credible intervals around the 

mean 
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Fig. 5  Mean random effect estimates for marsh units from nest model N4, which included vegetation 

structure (gray triangles), and from nest model N9, which included proportion of high marsh (black 

squares).  Error bars represent 95% credible intervals around the mean 
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APPENDIX A.  Correction of Elevation Data. 

 

 The means of the digital surface model (DSM) and digital elevation model (DEM) for 1-

ha plots declined from west to east along the coast of Long Island Sound (Fig. 6).  To assess how 

elevation was associated with sparrow presence without this gradient, I determined the 

relationship between mean elevation and longitude, and predicted the mean elevation of marshes 

at the longitude of each study plot.  Subtracting the predicted mean elevation from the mean 

elevation of the DSM gave a relative elevation corrected for the longitudinal gradient.   

 To accomplish this, I generated a 1-ha cell-size grid over the state-wide marsh polygon 

data layer (NOAA 2004), and randomly selected 150 samples.  Cells of less than 0.5 ha were 

discarded, leaving 137 samples.  A mean elevation was calculated for each cell from the DEM 

(Hoover 2009), and the center of the cell was used as the associated longitude (Fig. 7).  Each 

degree of longitude was associated with a 0.38 m change in elevation (95% confidence interval 

0.29 - 0.47 m). 

 I used the regression equation generated from the random samples to predict the mean 

ground-return elevation for the longitude of each saltmarsh sparrow plot location.  I then 

subtracted the predicted mean elevation from the raw DSM of each plot to calculate an adjusted 

mean elevation (Fig. 8).
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Fig. 6 Mean elevations of 60 1-ha plots along the Connecticut coast, from west to east.  Both the 

ground-return digital elevation model (DEM, gray triangles) and canopy-height digital surface 

model (DSM, black squares) data are shown.  (The Connecticut River area was not included in 

the DEM data, so ground-return elevation data at those sites are unavailable.) 
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Fig. 7 A fitted regression line for the mean elevation of 137 randomly-selected 0.5 - 1.0-ha marsh 

samples in Connecticut using the DEM (ground-return) data.  Marshes in the Connecticut River 

area are not represented.  A regression line calculated through the sample estimates that each 

degree of longitude (83.8 km) along the Connecticut coast was associated with a 0.38 m change 

in elevation (SE 0.05 m, r
2
=0.35, p=0.001)
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Fig. 8 Using the regression equation generated from the random sample of 137 plots, I 

determined the mean ground-return elevation for the longitude of each saltmarsh sparrow plot 

location.  I then subtracted the predicted mean elevation from the raw mean elevation of each 

plot.  The adjusted mean elevations using ground return data (DEM, black squares) are shown 

with the adjusted mean elevations using the canopy-height data (DSM, gray triangles)
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APPENDIX B.  Generalized WinBUGS Code Used in All Models.    

 
model 

{ 

#global intercept prior, included in all models 

 global.intercept ~ dnorm(0,0.1)  

 

# for each plot 

 for (i in 1:60)  

{ 

 presence[i] ~ dbern(p2[i]) #presence at the site is a Bernoulli distribution  

 

 logit(p[i]) <- marsh.int[marsh[i]]+ slope.plotcharacteristic*plotcharacteristic[i] # the logit 

of the probability is a linear relationship that includes a marsh-system random effect plus a 

within-marsh characteristic.  I added additional plot characteristics here. 

 p2[i]<-max(0.00001,min(0.99999,p[i])) # this line constrains the logit values to improve 

stability 

 } 

  

#priors for marsh-system and plot-based variable coefficients 

 slope.plotcharacteristic~dnorm(0,0.01) 

 slope.marshcharacteristic ~dnorm(0,0.01) 

#for each of the 27 marsh systems sampled 

 for (j in 1:27) 

 { 

 marsh.int[j] ~ dnorm(marsh.int1[j], 0.1) #random effect of marsh system in which plot is 

located (intercept) is normally distributed around the marsh factor, which is determined from the 

next line,  

 marsh.int1[j] <- global.int + slope.marshcharacteristic*marshcharacteristic[j] #marsh 

factor  is determined by the global distribution and a marsh-level variable.  Additional marsh-

level variables were added here. 

 } 

} 
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Chapter 2.  An Evaluation of Habitat Association Models of Saltmarsh Sparrow 

Occupancy and Nesting 

 

 

ABSTRACT 

Building habitat models that associate organisms with features of their environment can help 

identify areas of high or low priority for planning conservation strategies.  These models, 

however, need to be tested using new data before their conclusions should be widely accepted.  

Saltmarsh sparrows (Ammodramus caudacutus) are a species of growing conservation concern 

along the Atlantic Coast of North America.  In a previous study, I developed models for the 

distribution of saltmarsh sparrow presence and nesting habitat.  Sparrow occupancy was predicted 

using raw reflective properties of marshes, suggesting that the processes driving the reflective 

difference occur throughout the sampling region.  Sparrow nesting was predicted using a marsh 

plant community classification. To test these models, I surveyed a stratified random sample of 

sites for which the probability of sparrow presence had been predicted, and compared the 

observations to the predicted probability of presence and nesting generated from the models.  

Model performance, assessed by determining the area under a receiver operating curve and the 

model deviance, was significantly better than expected by chance alone. Tests of these models 

confirm that the area where sparrows are predicted to occur is much larger than the area where 

they are predicted to nest.  Consequently, monitoring sparrow presence will not be sufficient for 

indicating the most important nesting areas.  

 

 

I. INTRODUCTION 

Two main reasons for modeling the associations between species presence and habitat 

features are to map predicted distributions and to understand ecological factors that influence the 

way that organisms interact with the environment (Wiens and Rotenberry 1981, Young and Hutto 
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2002).  Maps generated from habitat association models then can be used to establish 

conservation priorities, such as in GAP analysis (Scott et al. 1993), and refine the focus of future 

research when little is known about the species of concern, as with the American fisher (Martes 

pennanti) (Carroll et al. 1999) or the Jerdon’s courser (Rhinoptilus bitorquatus) (Jeganathan et al. 

2004).  Increasingly, features of the environment are being described through the use of remote 

sensing image data, which are then used to create habitat models.  Although remote sensing can 

cover larger areas than can be completely sampled on the ground, models derived from remote 

sensing are rarely tested by examining the extent to which the model accurately reflects the 

distribution of the species. 

Applying remote sensing data to habitat modeling can take two approaches.  First, 

researchers use remote sensing data to classify features in the environment known to be 

associated with the organism of interest.  With this approach, the components of a species’ habitat 

are assumed to be known, and the remote sensing data are organized to represent these 

components as accurately as possible.  Many studies over the last few decades have used this 

approach; for instance, Gottschalk et al. (2005) reviewed 109 studies that used satellite imagery 

to model habitat for birds alone.  Frequently, habitat data take the form of land cover types, as in 

Klute et al. (2002), who modeled eight forest types to describe American woodcock (Scolopax 

minor) habitat, and Debinski et al. (1999), who used Landsat data to discriminate between three 

forest types and six meadow types to delineate habitat for butterflies.  Other studies organize data 

in ways that describe plant structure and heterogeneity, such as in Gibson et al. (2004), who 

generated a model of vegetation structural complexity using low altitude videographic imagery to 

model the habitat of rufous bristlebirds (Dasyornis broadbenti).  Yet another strategy is to 

classify topographic details that influence microhabitat conditions or abiotic processes.  For 

example, Shriner et al. (2002) used slope and aspect calculated from digital elevation data to 

predict habitat for wood thrushes (Hylocichla mustelina).  These a priori classifications can be 
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used to dissect how individual features influence species distributions, and allow comparisons 

between different species of interest and between data sources (Guisan and Zimmerman 2000). 

The second approach uses remote sensing data in a more exploratory way to identify 

which aspects of the landscape are associated with the organism’s presence.  Subsequent analysis 

then attempts to link the identified areas with biological processes that can explain the pattern.  

For example, Hepinstall and Sader (1997) built habitat association maps for 14 species of birds 

with raw reflectance data, bypassing the effort and errors associated with first generating a land 

cover classification.  Bellis et al. (2008) found that variables describing image texture modeled 

greater rhea (Rhea americana) habitat more effectively than did land cover types.  In another 

study, St-Louis et al. (2009) used satellite image texture as a surrogate for habitat structure and 

vegetation variables such as the normalized difference vegetation index (NDVI) derived from raw 

spectral reflectance as surrogates for plant productivity to model avian biodiversity in the 

Chihuahua Desert.  Because remote sensing data are expected to reflect integration of many 

habitat features (Fisher 1997), this second approach can be used to evaluate suites of conditions 

under which the organism occurs.   

Both approaches assume that the target organism benefits from the space in which it is 

usually found (Rotenberry 1981, Gottschalk et al. 2005).  With increasing reliance on remote 

sensing data for conservation planning (Elith and Leathwick 2009), it is especially important to 

test the assumption that there is predictive power to the associations observed in models built 

using remote sensing data.  Although habitat models can be evaluated using approaches such as 

splitting data sets, jackknifing, or data resampling (Pearce and Ferrier 2000, Elith and Leathwick 

2009), the best test of the extent to which a habitat model can be generalized beyond the data on 

which it is based is its ability to predict the presence of the target species at a completely new set 

of sites (Fielding and Bell 1997, Henebry and Merchant 2002).  

Saltmarsh sparrows (Ammodramus caudacutus) breed in salt marshes along the mid-

Atlantic and New England coast of eastern North America.  Because this species is most 
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abundant in southern New England (Greenlaw and Rising 1994), the salt marshes of that area are 

considered to be especially important to its conservation (Dettmers and Rosenberg 2000).  

Females nest near the ground, which makes the nests vulnerable to tidal flooding (DiQuinzio et 

al. 2002, Shriver et al. 2007, Gjerdrum et al. 2008a, Bayard 2010, Bayard and Elphick 2011).  

Males are not territorial and provide no parental care (Woolfenden 1956, Greenlaw and Rising 

1994), and both male and female sparrows are frequently found in areas where nesting does not 

occur (Chapter 1).  Consequently, sparrow presence does not necessarily indicate that conditions 

are suitable for nesting, even during the peak breeding season.  As a result, conservation 

strategies need to account for differences between marsh areas where sparrows occur and those 

where nesting takes place. 

In Chapter 1, I examined a set of alternative models designed to explain variation in the 

distribution and nesting activity of saltmarsh sparrows.  These models examined a wide range of 

variables generated from both field and remote sensing data, and collectively tested the 

importance of plant composition, vegetation structure, marsh spectral characteristics, the distance 

from the marsh’s upland edge, whether and how marsh restoration had occurred at a site, and 

landscape-level features of the marsh.  The sparrow presence model that best fit the data used a 

variable derived from raw spectral reflectance values associated with plots where sparrows did 

not occur.  Nest presence, in contrast, was modeled best using vegetation structure variables that 

required data collection on the ground.  Collecting this type of ground data over large areas, 

however, is not feasible, so the best nest model cannot generate regional predictions of where 

nesting habitat exists.  An alternative model, which used a measure of the amount of high marsh 

habitat that was derived from remote sensing data, received almost as much support as the best 

model, and was proposed as the best option for predicting the distribution of nesting habitat in 

new areas. 

The objective of the current study was to test predictions of the best model for sparrow 

presence, and the best remote sensing model for nest presence, using data from a new set of sites.  
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I surveyed a stratified random sample of marsh conditions for sparrows, and compared the 

observations to the predicted probabilities of presence and nesting generated from each model.  

Because the model for presence and the model for nests each used a different approach in linking 

the sparrows with habitat conditions, evaluating both models offers an opportunity to examine the 

different inferences and expectations from remote sensing habitat models. In addition, the 

predictive maps derived from the two models provide detailed information about the current 

distribution of saltmarsh sparrows in Connecticut. 

 

II. METHODS    

 To generate regional maps of predicted sparrow presence I used a model based on a 

supervised classification of saltmarsh pixels, which previous work showed to provide a better fit 

than alternative models (Chapter 1).  This classification determined whether each pixel of 

saltmarsh habitat in the region had spectral characteristics that corresponded to marsh areas in 

previously surveyed plots where sparrows were either confirmed to be present (designated 

“sparrow-presence pixels”) or not found despite extensive surveys (“sparrow-absent pixels”).  

The model predicted that increasing proportions of sparrow-absent pixels were associated with a 

decreasing probability of saltmarsh sparrow presence.  The full equation describing this 

relationship was the following, in which SD refers to the standard deviation for each coefficient: 

 

Logit of predicted probability of sparrow presence within 1 ha = 7.31 (SD 1.5) – 

0.17 (SD 0.05) x proportion of sparrow-absent pixels .   

 

A grid of 1-ha cells was overlaid across all of Connecticut’s salt marshes, and the 

proportion of sparrow-absent pixels within each grid cell was calculated.  To ensure I sampled 

areas across a wide spectrum of prediction probabilities, I organized cells into three groups: cells 

with <20% sparrow-absent pixels, cells with 20-40%, and cells with >40%.  These three 
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categories approximately correspond to sites that are almost certain to have sparrows (“high 

expectation”), those that have a 50-95% chance of having sparrows (“medium expectation”), or 

those that have a <50% chance of having sparrows (“low expectation”).  I generated predictions 

using WinBUGS (Spiegelhalter et al. 2000), where the uncertainty about model structure as well 

as uncertainty around parameter estimates could be propagated throughout the model-fitting 

process to the predictions. 

 Randomly sampling 24 cells from each of the three categories, I selected 72 cells to visit 

during field tests between 25 May and 25 August 2009.  In the field, I placed 0.5 ha plots within 

the chosen cells, or as close to the original selection as logistically possible.  In two cases, minor 

shifts in location caused the classification of the sample site to change, such that the final samples 

for the high, medium, and low expectation categories were 26, 23, and 23, respectively.  The 

sampled cells occurred in 29 marsh systems that ranged from Sherwood Island State Park in 

Westport, CT to Barn Island Wildlife Management Area in Stonington, CT (Fig. 1A; Appendix C 

lists the latitude and longitude of all test plots).  I conducted 10-min point counts in each plot to 

determine whether sparrows were present.  All counts took place before 11:00, and I recorded all 

sparrows seen and heard within the plot.  After each point count, I slowly walked back and forth 

throughout the entire plot, and recorded any sparrows not detected during the point count.  Sites 

where no sparrows were detected were repeatedly surveyed, at least two weeks apart, either until 

I encountered sparrows or until four visits had been completed.  I set the number of surveys 

required to establish absence after calculating detection probabilities from previous survey efforts 

in Connecticut salt marshes (C.S. Elphick and S. Meiman, unpublished data).  Using data from 40 

sites surveyed in 2007 and 2008, I calculated the probability of detecting at least one sparrow in a 

5-min point count using PRESENCE 2.0 (Hines and MacKenzie 2004).  From the most 

parsimonious model with the best fit, a constant-probability model, I estimated that four visits to 

a site reduced the probability of missing sparrows if they were present to less than 5%.  By using 
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longer (10-min) point counts combined with area searches, the chance of detecting sparrows if 

present at my survey points should have been very high. 

 During 2009, I also surveyed the sampled cells for nests.  The best remote sensing model 

for nest locations used the proportion of high marsh habitat within a 1-ha plot, which was derived 

from a GIS data layer that delineated plant community classifications (Hoover 2009; Chapter 1).  

This data layer was not available for the entire state prior to the field test, so I used the same 

sampling frame selected for the sparrow presence model to evaluate the nest presence model.  

The full equation describing the relationship between nest density and the amount of high marsh 

was:  

 

Logit of probability of nest presence within 1 ha = -3.86 (SD 1.07) + 7.88 (SD 

2.11) x proportion of high marsh. 

 

After the field season, plant community data became available for all of my study sites 

and I was able to determine the percentage of high marsh habitat within each of the test cells.  

This allowed me to classify cells into three groups according to their likelihood of containing 

nesting birds based on the model.  Cells with <20% high marsh had a <10% predicted probability 

of nest presence (“low expectation”), cells with 20-50% high marsh had a 10-50% predicted 

probability of nest presence (“medium expectation”), and cells that consisted of >50% high marsh 

had greater than 50% predicted probability of nest presence (“high expectation”) (Fig. 1B).   

 To determine whether birds were nesting in the test cells, I watched for birds flying with 

food or fecal sacs during the point counts and subsequent time spent in the plot.  After each point 

count survey, I also searched for nests in the plot by slowly walking back and forth throughout 

the area in a zig-zag fashion and located nests by noting the point from where birds flushed.  At 

sites where sparrows had been found but where nests had not, I conducted additional searches at 

approximately 2 week intervals until a minimum of 3 nest searches had been completed.   To 
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evaluate how well I was able to detect nests using this search pattern, I analyzed nest detection 

probabilities after the 2009 survey season using the program PRESENCE 2.0 (Hines and 

McKenzie 2004), and estimated that in plots where sparrows occurred, 3 visits were sufficient to 

have less than a 5% probability of missing a nest if it was present.  

I evaluated each models’ predictions in three ways.  First, I calculated the area under a 

receiver operating curve (AUC) for each model as a measure of model performance.  This is a 

single measurement of model performance that does not depend on designating a threshold for 

prediction of presence (Fielding and Bell 1997), and is relatively robust to differences in 

prevalence (Manel et al. 2001).  Values of AUC can range from 0.5, in which the model decisions 

of positive and negative outcomes are not better than random, to 1.0, in which the model 

discriminates perfectly between positive and negative predictions.  To compare the model 

performances between test data and training data, I also calculated the AUC for the data used to 

build the models.   

Second, I calculated an index of how much the field data deviated from the predictions.  

For each cell, I determined the difference between the observation (1 = present, 0 = absent), and 

the predicted probability (values ranged from 0 - 1).  I then took the sum of the deviations and 

compared it to the distribution of the same deviance indices derived from 1000 dummy datasets, 

in which the same number of presences were randomly assigned to the same predicted 

probabilities.  

Third, to assess each models’ ability to predict absences in the low probability category 

and presences in the high probability category, I determined how many of the cells that were 

predicted to have a <50% chance of containing sparrows actually lacked them, and how many 

cells predicted to have a >95% chance of containing sparrows actually had them.  For the nest 

model, I determined how many cells that were predicted to have a <10% chance of having nests 

actually lacked them, and how many cells predicted to have  >50% chance of containing nests 

actually had them.   
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 Finally, I examined the actual distribution of the sparrows and nests.  I mapped the 

observed presences and absences to determine whether a) they were concentrated in certain areas, 

b) prediction errors were concentrated in certain areas, and c) there were areas where both models 

generated errors.   

 

III. RESULTS 

Based on the presence model, saltmarsh sparrows are expected to occur in most of the 

saltmarsh habitat in the study region.  Of the 3,738 ha of salt marsh for which probability of 

sparrow presence was predicted, 66% had a high expectation of saltmarsh sparrows presence, 

28% a medium expectation, and 5% a low expectation.  Overall, the mean predicted probability 

of presence was greater than 95% for most of the major marsh systems (Fig. 2, Appendix D).  Of 

the marshes where mean predicted probabilities were high, some had uniformly high probabilities 

across the whole marsh, while others did not.  For example, all cells in the Wheeler Marsh at the 

mouth of the Housatonic River in Milford and in the Hammock River marsh in Clinton were 

predicted to have presence probabilities of at least 85%.  In contrast, the marshes on the East 

River in Guilford and the Quinnipiac River in New Haven included areas where the probability of 

sparrow presence was predicted to be as low as 15% and 20%, respectively.  Yet other sites had 

much more variable suitabilities.  For example, the marshes on the Upper Farm River in Branford 

had a mean predicted probability of sparrow presence of 63% with predictions for individual cells 

that ranged from 2% to 99%. 

I detected saltmarsh sparrows in 50 of the 72 cells sampled.  As expected, sparrows were 

most often detected in cells predicted to have a high chance of containing them, and least often 

detected in cells predicted to have a low chance (Fig. 3).   The AUC for the presence model was 

0.70, indicating that predictions were better than random, but poorer than that obtained for the 

training data (0.88).  Overall, the deviance between the model’s predictions and my field 
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observations was far lower than expected by chance (43.0 versus a mean of 63.8 for the null 

distribution, p < 0.001, Fig. 4). 

Finally, I examined the model’s ability to classify cells correctly.  Sparrows were absent 

at fifty percent of sites classified as having a <50%  (“low”) chance of containing sparrows, and 

sparrows were present at 85% of sites classified as having a >95% (“high”) chance of containing 

sparrows.   

The nest model predicted that 43% of the marshes across Connecticut had a low 

probability of sparrows nesting, 27% had a medium probability, and 29% had a high probability.  

Within each of the major marsh systems, cells occurred that had <2% predicted probability of 

sparrow nests as well as cells predicted to have >95% probability of nests.  The mean predicted 

probabilities within marsh systems ranged from 12 to 54% (Fig. 2, Appendix D). 

For the test of the nest model, 61 cells met the minimum criterion of at least three visits 

and were included in subsequent analyses.  I found nests in 19 (31%) of these cells, a majority of 

which were classified as having a high chance of containing nesting birds (Fig. 5).  Only two of 

the 28 cells predicted to have a low chance of containing nesting sparrows did so. The AUC 

calculated for the test data was 0.79, compared to an AUC of 0.78 for the training data.  The total 

deviance between the predicted probabilities and the nest presence/absence data was significantly 

less than expected by chance (28.9 versus a mean deviance of 48.8 for the null distribution, p < 

0.001, Fig. 6).  Because only one of the 42 nests I found successfully fledged young (due to high 

failure rates associated with repeated tidal flooding in 2009; Bayard and Elphick 2011), no 

analysis to examine levels of reproductive success associated with amount of high marsh in a cell 

was possible.  I found no nests at 92% of the sites classified as having a <10% (“low”) chance of 

having nests present, and located nests at 54% of sites classified as having a >50% (“high”) 

chance of containing nests. 

The presences, absences, and prediction errors for both models were distributed across 

the entire study region (Fig. 7, 8). Combining information from both models showed one cell had 
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a high expectation for both sparrow presence and nest presence but had no sparrows (Sasco Creek 

in Westport). There were conflicting predictions from the two models (low probability of sparrow 

presence and high probability of nest presence) for four cells, of which two had sparrows and 

nests present (Cottrell Marsh in Stonington and Pine Creek in Fairfield), while one had sparrows 

but no nests (Bluff Point in Groton), and the other had no sparrows (a second plot in Cottrell 

Marsh in Stonington). 

 

IV. DISCUSSION 

The predictions generated by the models discriminated between areas where sparrows 

and nesting did and did not occur fairly well.  Cells predicted to have a high likelihood of 

containing sparrows or nests had the most presences, while those predicted to have a low 

likelihood had the least.  Model deviances and AUC measures indicated that predictions from 

both models were better than expected by chance alone.  The presence model predictions were 

worse using test data than when the original training data were used, but the performance of the 

nest model was remarkably similar for both data sets.  

Although the predictions were quite good, they were not perfect.  Model errors may be 

caused by errors introduced while processing the remote sensing data, leading to habitat 

misclassification.  While many studies that use remote sensing data have tested processing 

accuracy, the focus of this study was to test whether the processing results could be used to 

predict an organism’s occurrence, as increasing the precision of a poor predictive variable would 

not lead to improved model performance.   Because the pixel classifications were built using 

presence data, the model may have been overfit to the original plot characteristics.  Additionally, 

the plots used for training data may not have included all salt marsh elements that sparrows avoid, 

or some marsh elements that sparrows avoid may lack unique spectral characteristics.      

 Other errors may be due to factors such as competition or population dynamics, which 

can affect whether an organism is actually found in areas of suitable habitat.  For instance, by 
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varying life history parameters of greater gliders (Petauroides volans) in simulated landscapes, 

Tyre et al. (2001) found that habitat elements, which were perfectly delineated in the simulations, 

were unable to explain more than half of the variability in species occupancy because of the 

confounding effects of demographic stochasticity and dispersal limitation.  In a study by 

Rotenberry and Wiens (2009), models for shrubsteppe bird species generated using data about 

habitat associations collected between 1977 and 1983 were used to predict occupancy in 1997, in 

the same areas that had originally been studied.  Although bird abundance and distributions in the 

region remained similar, few of the models performed well (Rotenberry and Wiens 2009).  These 

discrepancies suggest that the inferences that can be drawn from predictive distribution maps that 

have been built from remote sensing data depend on how closely the modeled variables relate to 

critical aspects of the organism’s biology (Guisan and Zimmerman 2000, Austin 2002, Van 

Horne 2002).  

High marsh, the predictor variable for the nest model, combined elements of elevation 

and vegetation composition.  Both of these elements previously have been demonstrated to have 

important associations with sparrow nesting.  Minor elevation differences affect the risk of 

flooding (Gjerdrum et al. 2005, Gjerdrum et al. 2008a,  Bayard and Elphick 2011), while several 

high marsh plant species contribute to a vegetation structure that is associated with nests 

(Gjerdrum et al. 2008b).  Until a sufficiently detailed habitat classification GIS layer was built, 

however, the extent to which high marsh can be used as a predictor of sparrow nesting could not 

be established.  In this study, sparrow nests were consistently absent where the amount of high 

marsh delineated within a hectare was less than 20% (low predicted probability class).  Areas 

with greater proportions of high marsh at the 1-ha scale should be considered of higher priority 

for conservation planning for saltmarsh sparrows than areas with less high marsh, even if 

sparrows occupy the latter areas.   

The map generated using the nesting model directly links habitat to reproduction and has 

specific implications for saltmarsh sparrow conservation and management.  In addition, because 
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the nest model was built using a predefined high marsh community classification, this model is 

likely transferable to other areas where saltmarsh sparrows occur, as long as high marsh is 

classified in the same way and the birds’ nest site selection behavior is similar.  Maps of this 

habitat could then be used to identify priority sites for sparrow conservation and to track the 

availability of suitable habitat over time. 

On the other hand, the reasons why the main predictor variable in the sparrow presence 

model is ecologically important to saltmarsh sparrows are unclear, making interpretation of the 

map produced by that model more difficult.  The sparrow presence model was built on the 

premise that areas of marsh that sparrows do not occupy have different reflective properties than 

the areas they do occupy.  Sparrow occupancy was predicted with moderately good accuracy in 

new areas using these reflective properties, suggesting that the processes driving the reflective 

difference occur throughout the sampling region.  However, the remote sensing data used to 

generate the pixel classifications were collected under specific conditions of season, time, tide, 

and resolution  Unless data from other areas are collected under very similar conditions, this 

model may not work well elsewhere.  

Currently it is not known whether areas that are occupied but not used for nesting are 

needed to sustain sparrow populations.  This study highlights two elements that require 

investigation.  The first is to determine what the sparrows do in these areas, and whether it is 

likely to affect populations if these areas disappear.  Second, it is important to determine how the 

reflective properties of occupied sites relate to saltmarsh sparrow biology.  Reflective 

characteristics may differ due to divergent growth responses of plants that have been subjected to 

different durations of tidal inundation.  Inundation pattern could be associated with sparrow 

occurrence simply because it affects the amount of suitable foraging habitat, or it could directly 

affect prey resources.  Targeting areas predicted to have high versus low chances of containing 

sparrows to test specific hypotheses about environmental conditions that cause the different 

reflectance properties might clarify the underlying biological relationships.   
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Of the saltmarsh area in Connecticut, two-thirds was classified as having at least a 95% 

chance of having sparrows present.  In contrast, 29% of the saltmarsh area was predicted to have 

a high (>50%) chance of containing nesting sparrows.  Because the total area where reproduction 

is likely to occur is much smaller than the total area where sparrows are likely to be found, 

monitoring saltmarsh sparrow populations should focus primarily on the areas where there is a 

high chance of nesting. Methods that simply record whether the species is present will not be 

adequate for inferring whether there is any associated reproductive behavior.  In addition, the 

wide disparity between the predictions for sparrow presence and sparrow nesting at several marsh 

systems (Fig. 2) warrants a closer examination of the reasons for sparrow activity in some of 

these areas. 

One reservation that has been expressed in the application of remote sensing data to 

habitat model building is that the form used in the model can be several steps removed from a 

proximal causes of presence or absence (Henebry and Merchant 2002, Van Horne 2002).  

However, directly linking elements identified in remote sensing to how an organism interacts 

with its environment requires prior knowledge about the organism.  This study used the 

association of remote sensing data with saltmarsh sparrow presence because previous work had 

shown that prior knowledge was insufficient to explain and predict distribution patterns 

(Gjerdrum et al. 2008b).  By generating a map that details the distribution of a useful predictor 

variable, the differences between areas with and without the species can be more closely 

examined.  This strategy has been adopted for regional assessment of habitats associated with the 

occurrence of a variety of species (e.g., white-throated sparrows Zonotrichia albicollis, Tuttle et 

al. 2006; redtail monkey Cercopithecus ascanius, Stickler and Southworth 2008; Alaotran gentle 

lemur Hapalemur alaotrensis Lahoz-Monfort et al. 2010).  These studies all used remote sensing 

to detect within-class variability not easily detected using general land cover classes.  Because 

remote sensing can be used to detect both direct and indirect mechanisms that affect presence and 

reproduction, it is a useful tool for conservation planning.   
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Fig. 1A Locations and predicted probability categories of the 72 cells used to evaluate the saltmarsh sparrow habitat model in Connecticut in 2009.  

Cells were randomly sampled from the three categories of predicted presence probability.  B. Predicted probability of saltmarsh sparrow nest 

presence at 61 of the 2009 survey locations for which sampling was sufficient to establish presence or absence of nests.  Categories of expected 

nest presence were assigned after the field surveys had been conducted
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Fig. 2 Predicted probabilities of sparrow presence (black squares indicate marsh-wide mean, lines 

represent the range from min to max) and nest presence (open circles) in the largest (>90 ha) 

marsh systems studied.  Nest presence prediction probabilities for all marshes ranged from 0 to 1, 

and so ranges were not illustrated  
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Fig. 3 Observed saltmarsh sparrow presence rates in cells predicted to have high (>95%), 

medium (50-95%), and low (<50%) predicted chances of containing sparrows.  Dark gray 

indicates sparrow presence, and pale gray indicate sparrow absence 
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Fig. 4 Deviance of observed data (indicated by arrow) relative to deviations from 1000 dummy 

datasets that had the same number of sparrow presences randomly distributed across sampled 

sites.  Deviances were calculated as the sum of the differences between the observed data 

(sparrow presence = 1, sparrow absence = 0) and the predicted probability of presence at each site 
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Fig. 5 Proportion of sampled cells with nesting saltmarsh sparrows for cells with high (>50%), 

medium (10-50%), and low (<10%) predicted chances of supporting nesting.  Dark grey indicates 

nest presence, and pale gray indicate no nests were found



 

 67 

 

 

0

50

100

150

200

250

300

28 32 36 40 44 48 52 56 60 64 68

Dummy dataset deviations for nest model

F
re

q
u

e
n

c
y

 
 

Fig. 6 Deviance of observed data (indicated by arrow) relative to deviations from 1000 dummy 

datasets that had the same number of nest presences randomly distributed across sampled sites. 

Deviances were calculated as the sum of the differences between the observed data (nest presence 

= 1, nest absence = 0) and the predicted probability of presence at each site
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Fig. 7 Maps showing magnitude of sparrow presence prediction errors for each sampled cell.  Darker colors indicate greater deviances between the 

model predictions for each site and the observations.  Panels show accuracy of predictions for (A) the presence of sparrows, (B) the absence of 

sparrows 
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Fig. 8 Maps showing magnitude of sparrow nest prediction errors for each sampled cell. Darker colors indicate greater deviances between the 

model predictions for each site and the observations. Panels show accuracy of predictions for (A) the presence of saltmarsh sparrow nests, and (B) 

the absence of saltmarsh sparrow nests
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APPENDIX C.  Test plot locations 

  
ID Site Town Latitude Longitude 

1153 Sherwood Island Westport 41.11895248 -73.32664681 
1207 New Creek  Westport 41.1203009 -73.3158565 
1257 Sasco Creek  Westport 41.12810166 -73.29755449 
1299 Pine Creek Fairfield 41.12579351 -73.26562446 
2385 Wheeler Milford 41.18588447 -73.11641259 
2492 Wheeler Milford 41.18097321 -73.11407441 
2500 Wheeler Milford 41.1859033 -73.1137034 
2713 Wheeler Milford 41.18200908 -73.10927238 
3079 Wheeler Milford 41.18091831 -73.10069132 
3477 Settler's Cove Condo Milford 41.21414509 -73.05596285 
3571 Indian River (West) Milford 41.22087731 -73.03847406 
4591 Quinnipiac River North Haven 41.34186769 -72.88294735 
4598 Quinnipiac River North Haven 41.34768801 -72.88165235 
4639 Quinnipiac River North Haven 41.34454695 -72.8811919 
4693 Quinnipiac River North Haven 41.34571743 -72.8789568 
4929 Upper Farm River  East Haven 41.27051643 -72.86360354 
4952 Upper Farm River  East Haven 41.2677936 -72.86211899 
4956 Upper Farm River  East Haven 41.26932278 -72.86283409 
5038 Upper Farm River  Branford 41.26559177 -72.85671484 
5056 Upper Farm River  Branford 41.26488919 -72.85557676 
5242 Branford River-Lower Branford 41.26713669 -72.82144373 
5261 Indian Neck Branford 41.25638192 -72.81778387 
5291 Indian Neck Branford 41.25557412 -72.81575149 
5296 Indian Neck Branford 41.25854621 -72.81590444 
5452 Branford River  Branford 41.28321897 -72.80388339 
5476 Branford River Branford 41.2739791 -72.80247174 
6037 Great Harbor Guilford 41.26099954 -72.70581045 
6058 Great Harbor Guilford 41.26187033 -72.70458472 
6103 Great Harbor Guilford 41.25999517 -72.70224425 
6147 Great Harbor Guilford 41.26010934 -72.69869913 
6307 Farmview Rd Guilford 41.2842388 -72.68853755 
6565 Chittenden Park Guilford 41.27010381 -72.67332219 
6695 East River Guilford 41.27635751 -72.66346592 
6714 East River Madison 41.27452035 -72.66227982 
6736 East River Madison 41.27547003 -72.66114968 
7012 East River Madison 41.2815445 -72.64896625 
7052 East River Madison 41.27774359 -72.64789327 
7055 East River Madison 41.28034647 -72.64715452 
7182 Guilford Salt Meadows 

Sanctuary 
Guilford 41.29514731 -72.64508864 

7231 Guilford Salt Meadows 
Sanctuary 

Guilford 41.29586353 -72.64365048 

7738 Upper Hammonassett Madison 41.28472226 -72.55431477 
8032 Cedar Island Marina Clinton 41.26731383 -72.54508674 
8036 Cedar Island Marina Clinton 41.26936999 -72.54599311 
8408 Clinton Cemetary Clinton 41.2812968 -72.52198517 
8457 Hammock River Clinton 41.25895904 -72.51748282 
8517 Hammock River Clinton 41.26000993 -72.51358641 
9748 Old Saybrook Old Saybrook 41.27655374 -72.38048483 
10121 Ragged Rock Old Saybrook 41.30189106 -72.36233319 
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Appendix C.  Test plot locations (cont). 

 
ID Site Town Latitude Longitude 

10202 Ragged Rock Old Saybrook 41.30049205 -72.36069542 
10204 Ragged Rock Old Saybrook 41.30221293 -72.36034389 
10207 Ragged Rock Old Saybrook 41.30385171 -72.36023848 
10316 Ragged Rock Old Saybrook 41.30103237 -72.3581045 
10388 Ragged Rock Old Saybrook 41.30461413 -72.35521441 
10494 Upper Island Old Lyme 41.30632958 -72.34462184 
10495 Upper Island Old Lyme 41.30729122 -72.3446537 
10541 Upper Island Old Lyme 41.30815486 -72.34214364 
10652 Great Island Old Lyme 41.29361477 -72.33777913 
10862 Great Island Old Lyme 41.2898668 -72.33291905 
10870 Upper Island Old Lyme 41.2951953 -72.33351647 
10997 Great Island Old Lyme 41.29165211 -72.33086551 
11003 Upper Island Old Lyme 41.29603366 -72.33073335 
11616 Mile Creek Old Lyme 41.28173228 -72.29146971 
12079 Black Pt Road East Lyme 41.29516257 -72.21477427 
12309 Waterford Town Beach 

Park 
Waterford 41.30602473 -72.10539733 

12461 Bluff Point Groton 41.32298333 -72.03914753 
12542 Bluff Point Groton 41.32357209 -72.02230741 
12651 Groton - Long Point Groton-Long 

Point 
41.31500956 -72.00731546 

16109 Cottrell Stonington 41.34062764 -71.951445 
16118 Cottrell Stonington 41.34153516 -71.95054939 
16640 Barn Island Stonington 41.34748505 -71.87460507 
16652 Barn Island Stonington 41.34231691 -71.87397687 
16858 Barn Island Stonington 41.33407848 -71.85956527 
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APPENDIX D.  Mapped predictions of sparrow presence and nest presence for major marsh 

systems in Connecticut. 

 

D1. Barn Island Wildlife Management Area, Stonington, CT 

D2. Bluff Point State Park, Groton, CT 

D3. Connecticut River (east side), Old Lyme, CT 

D4. Connecticut River (west side), Old Saybrook, CT 

D5. McKinney National Wildlife Refuge, Salt Meadow Unit, Westbrook, CT 

D6. Hammock River and Hammonassett State Park, Clinton and Madison, CT 

D7. East River and West Rivers, Madison and Guilford, CT 

D8. Lower Housatonic River, Milford and Stratford, CT 

D9. McKinney National Wildlife Refuge, Great Meadows Marsh, Stratford, CT 

D10. Sasco Creek and Sherwood Island State Park, Westport, CT 
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D1 Saltmarsh sparrow habitat at Barn Island Wildlife Management Area in Stonington, CT. Darker 

colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) sparrow 

nesting  
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D2 Saltmarsh sparrow habitat at sites near Bluff Point State Park in Groton, CT. Darker colors 

indicate decreasing probability predicted for (top) sparrow presence, and (bottom) sparrow nesting 
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D3 Saltmarsh sparrow habitat on the east side of the Connecticut River mouth in Old Lyme, CT. 

Darker colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) 

sparrow nesting  
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D4 Saltmarsh sparrow habitat on the west side of the Connecticut River mouth in Old Saybrook, CT. 

Darker colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) 

sparrow nesting 
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D5 Saltmarsh sparrow habitat at McKinney National Wildlife Refuge Salt Meadow Unit in 

Westbrook, CT.  Darker colors indicate decreasing probability predicted for (top) sparrow presence, 

and (bottom) sparrow nesting 
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D6 Saltmarsh sparrow habitat at the Hammock River and Hammonassett State Park in Clinton and 

Madison, CT.  Darker colors indicate decreasing probability predicted for (top) sparrow presence, and 

(bottom) sparrow nesting 
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D7  Saltmarsh sparrow habitat at the East and West Rivers in Madison and Guilford, CT. Darker 

colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) sparrow 

nesting 
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D8 Saltmarsh sparrow habitat along the lower Housatonic River in Milford and Stratford, CT.  Darker 

colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) sparrow 

nesting 
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D9 Saltmarsh sparrow habitat at McKinney National Wildlife Refuge, Great Meadows Marsh, 

Stratford, CT.  Darker colors indicate decreasing probability predicted for (top) sparrow presence, and 

(bottom) sparrow nesting 
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D10 Saltmarsh sparrow habitat from Sasco Creek to Sherwood Island State Park, Westport, CT.  

Darker colors indicate decreasing probability predicted for (top) sparrow presence, and (bottom) 

sparrow nesting 

 


