Difference between revisions of "Louise A. Lewis"

From EEBedia
Jump to: navigation, search
(102 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[Image:NipmukDec06.LL2.jpg|thumb|right|''Along the Nipmuk Trail in central Connecticut, Dec. 2006'']]
+
{|style="width:70%; height:40px" border="0"
Associate Professor<br/>
+
|<span style="font-size: large">Associate Professor<br/></span>
 
[http://hydrodictyon.eeb.uconn.edu/eebwww/ Department of Ecology and Evolutionary Biology]<br/>
 
[http://hydrodictyon.eeb.uconn.edu/eebwww/ Department of Ecology and Evolutionary Biology]<br/>
 
[http://www.uconn.edu/ University of Connecticut]<br/>
 
[http://www.uconn.edu/ University of Connecticut]<br/>
 
Storrs, CT 06269-3043<br/>
 
Storrs, CT 06269-3043<br/>
<br/>
+
 
 
office: 200 Pharmacy/Biology Building<br/>
 
office: 200 Pharmacy/Biology Building<br/>
 
voice: +1 860-486-6723<br/>
 
voice: +1 860-486-6723<br/>
 
fax:  +1 860-486-6364<br/>
 
fax:  +1 860-486-6364<br/>
 
email: [mailto:louise.lewis@uconn.edu louise.lewis@uconn.edu]<br/><br/>
 
email: [mailto:louise.lewis@uconn.edu louise.lewis@uconn.edu]<br/><br/>
[http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/L._Lewis_Lab L. Lewis Lab Homepage]
+
<div style="text-align: left">[http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/L._Lewis_Lab <span style="font-size: larger">L. Lewis Lab Homepage</span>]</div>
 +
|| [[Image:LLewisNipmuk3.jpg|150px]]  
 +
|}
  
==Research Interests and Selected Publications==
+
__NOEDITSECTION__
 +
==Research Interests==
 +
[[Image:ArizonaCrust.jpg|thumb|right|''Arizona Biotic Crust'']]
 +
<span style="font-size: large">Desiccation Tolerant Algae: Diversity and Physiology <br/></span>
 +
Many diverse green algae live in terrestrial habitats such desert microbiotic crust communities.  My work in North American and South African arid habitats reveals that desert green algae have multiple evolutionary origins. I use traditional and molecular techniques to understand the diversity of desert green algae, and am interested in the physiological adaptations that allow these algae to survive under extreme conditions (e.g., desiccation, high light).<br/><br/>
 +
[[Image:screenpigs.jpg|thumb|right|''Desert green algae that are expressing sunscreening pigments.'']]
 +
[[Image:Protosiphon.jpg|thumb|right|''A green alga recovered from soils that were dry for 43 years (ongoing project with Dr. F.R. Trainor).'']]
 +
*[http://hydrodictyon.eeb.uconn.edu/bcp/ Biotic Crust Project] - A web site and relational database designed initially to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States.  Now, additional projects are being served at this site.<br/>
  
<span style="font-size: large">Systematics and evolution of green algae<br/></span>
+
* Flechtner, V.R., N. Pietrasiak and L.A. Lewis (2013) Newly revealed diversity of eukaryotic algae from wilderness areas of Joshua Tree National Park (JTNP). Monographs of the Western North American Naturalist 6: 43-63.
*Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) ''Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology''. Kluwer Academic Publishers, Dordrecht.
+
* Lewis, L.A. and F.R. Trainor (2012) Survival of <i>Protosiphon botryoides</i> (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years. Phycologia 51: 662-665.<br/>
*McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.
+
* Kaplan, F., L.A. Lewis, J. Wastian, and A. Holzinger (2012) Plasmolysis effects and osmotic potential of two <i>Klebsormidium</i> strains from alpine habitats. Protoplasma 249: 789-804. DOI: 10.1007/s00709-011-0324-z <br/>
[[Image:abotC.jpg|right|''AJB Cover 2004'']]
+
*Hall, J.D., K. Fučíková, C. Lo, L.A. Lewis and K.G. Karol (2010) An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie, Algologie 31: 529-555.<br/>
*Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.
+
*Cardon, Z.G., D.W. Gray and L.A. Lewis (2008) The green algal underground – evolutionary secrets of desert cells. BioScience 58: 114-122.<br/>
*Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.
+
*Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell and Environment 30: 1240-1255.<br/>
*Watanabe, S., A. Himizu, L. A. Lewis, G. L. Floyd and P. A. Fuerst (2000) ''Pseudoneochloris marina'', a new coccoid Ulvophycean alga, and its phylogenetic position inferred from morphological and molecular data. Journal of Phycology 36: 596-604.
+
*Lewis, L. A. and P. O. Lewis (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology 54: 936-947. [http://hydrodictyon.eeb.uconn.edu/people/plewis/faq.html#computing_phylodiversity_using_PAUP Helpful link] to computing phylodiversity measures discussed in this paper.<br/>
*Lewis, L. A. (1997) Phylogenetic placement of ''Bracteacoccus'' based on 18S rDNA sequence data. Journal of Phycology 33: 279-28.
+
*Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of ''Scenedesmus'' (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.<br/><br/>
*Lewis, L. A., L. W. Wilcox, P. A. Fuerst and G. L. Floyd (1992) Concordance of molecular and ultrastructural data in the study of zoosporic green algae. Journal of Phycology 28: 375-380.<br/>
+
  
<span style="font-size: large">Biodiversity of desert green algae<br/></span>
+
<span style="font-size: large">Evolution of green algae and early diverging lineages of green plants<br/></span>
[[Image:ArizonaCrust.jpg|thumb|right|''Arizona Biotic Crust'']]
+
I also am interested in morphological evolution within chlorophyceaen green algae, and use molecular and morphological data to resolve the relationship among species and major groups of green algae and early-diverging land plants.<br/><br/>
*[http://hydrodictyon.eeb.uconn.edu/bcp/ Biotic Crust Project] - web site and relational database is designed to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States.
+
*Lewis, L. A. and P. O. Lewis (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology 54: 936-947.
+
*Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of ''Scenedesmus'' (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.
+
*Lewis, L. A. and V. R. Flechtner (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51: 443-451.<br/>
+
  
<span style="font-size: large">Physiology of desert green algae<br/></span>
+
*Rodríguez-Salinas, E., H. Riveros-Rosas, Z. Li, K. Fučíková, J.J. Brand, L.A. Lewis, D. González-Halphen (2012) Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Molecular Phylogenetics and Evolution 64: 166-176.
*Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relativesPlant Cell and Environment, Forthcoming.
+
*Fučíková, K. and L.A. Lewis (2012) Intersection of <i>Chlorella</i>, <i>Muriella</i>, and <i>Bracteacoccus</i>: Resurrecting the genus <i>Chromochloris</i> Kol & Chodat (Chlorophyceae, Chlorophyta). Fottea 12: 83-93.
*Gray, D. W., Z. G. Cardon and L. A. Lewis (2006) Simultaneous collection of rapid chlorophyll fluorescence induction kinetics, fluorescence quenching parameters, and environmental data using an automated PAM-2000/CR10X data logging system. Photosynthesis Research 87: 295-301.<br/>
+
*McManus, H.A., P. Haugen, K. Fučíková and L.A. Lewis (2012) Invasion of protein coding genes by green algal ribosomal group I introns. Molecular Phylogenetics and Evolution 62: 109-116DOI: 10.1016/j.ympev.2011.09.027
 +
*Lewis, L.A., J.D. Hall, and F.W. Zechman (2011) Green Algae. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000333.pub2
 +
*McManus, H.A. and L.A. Lewis (2011) Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on <i>Pediastrum duplex</i>. Journal of Phycology 47: 152-163.
 +
*McManus, H.A., E. Schultz and L.A. Lewis (2011) Distinguishing multiple lineages of <i>Pediastrum duplex</i> Meyen 1829 with morphometrics, and a proposal for <i>Lacunastrum </i>N. Gen. Journal of Phycology 47: 123-130.
 +
*Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) ''Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology''. Kluwer Academic Publishers, Dordrecht.<br/>
 +
*McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.<br/>
 +
*Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.<br/>
 +
*Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.<br/>
  
<span style="font-size: large">Phylogenetic relationships of symbiotic green algae<br/></span>
 
[[Image:BiolBulletin.gif|right|''Biological Bulletin Cover'']]
 
*Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone ''Anthopleura'' ''elegantissima''. Biological Bulletin 207: 87-92.<br/>
 
  
<span style="font-size: large">Phylogeny of basal green plants<br/></span>
+
<span style="font-size: large">Symbiotic green algae<br/></span>
*Lewis, L. A., B. D. Mishler and R. Vilgalys (1997) Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene, rbcL. Molecular Phylogenetics and Evolution 7: 377-393.
+
[[Image:anemone.jpg|thumb|right|''Sea anemone containing symbiotic green algae (we are currently studying the symbiont genomes).'']]
*Mishler, B. M., L. A. Lewis, M. A. Buchheim, K. S. Renzaglia, D. J. Garbary, C. F. Delwiche, F. W. Zechman, T. S. Kantz and R. L. Chapman (1994) Phylogenetic relationships of the "green algae" and "bryophytes". Annals of the Missouri Botanical Garden 81: 451-483.<br/>
+
[[Image:zoochlorella.jpg|thumb|right|''Unicellular symbiontic green algae isolated from Pacific sea anemones (ongoing project with Molly Letsch).'']]
 +
Unicellular green algae form symbioses with marine invertebrates, ciliates, fungi, flowering plants, and even salamanders.  I collaborate with former Ph.D. student [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Molly_Letsch Molly Letsch] on the symbionts of anemone species, and with Tobias Landberg on the green algae of salamander eggs.<br/><br/>
 +
*Letsch, M.R. and L.A. Lewis (2012) Four gene arrangements within the chloroplast genome of a closely related group of green algae (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 64: 524–532.<br/>
 +
*Letsch, M.R., G. Muller-Parker, T. Friedl, and L.A. Lewis (2009) ''Elliptochloris marina'' n.sp. (Trebouxiophyceae, Chlorophyta), green symbiont of ''Anthopleura xanthogrammica'' and ''A. elegantissima'' (Anthozoa, Cnidaria). Journal of Phycology 45: 1127-1135.<br/>
 +
*Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone ''Anthopleura'' ''elegantissima''. Biological Bulletin 207: 87-92.<br/><br/>
  
 
<span style="font-size: large">Beyond greens<br/></span>
 
<span style="font-size: large">Beyond greens<br/></span>
*Hershkovitz, M. A. and L. A. Lewis (1996) Deep-level diagnostic value of the rDNA-ITS region. Molecular Biology and Evolution 13: 1276- 1295.
+
*Haugen, P., D. Bhattacharya, J.D. Palmer, S. Turner, L.A. Lewis, and K.M. Pryer (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evolutionary Biology 7: 159.<br/>
*Hanelt, B., D. van Schyndel, C.M. Adema, L. A. Lewis, and E.S. Loker (1996) The phylogenetic position of ''Rhopalura opiocomae'' (Orthonectida) based on 18S ribosomal RNA sequence data. Molecular Biology and Evolution 13: 1187-1191.
+
*Hershkovitz, M. A. and L. A. Lewis (1996) Deep-level diagnostic value of the rDNA-ITS region. Molecular Biology and Evolution 13: 1276- 1295.<br/>
*Wawrzyniak, L.A. and R.A. Andersen (1983) Silica-scaled Chrysophyceae from North American boreal forest regions in northern Michigan, U.S.A. and Newfoundland, Canada. Nova Hedwigia 41: 127-145.  
+
*Hanelt, B., D. van Schyndel, C.M. Adema, L. A. Lewis, and E.S. Loker (1996) The phylogenetic position of ''Rhopalura opiocomae'' (Orthonectida) based on 18S ribosomal RNA sequence data. Molecular Biology and Evolution 13: 1187-1191.<br/>
 +
*Wawrzyniak, L.A. and R.A. Andersen (1983) Silica-scaled Chrysophyceae from North American boreal forest regions in northern Michigan, U.S.A. and Newfoundland, Canada. Nova Hedwigia 41: 127-145.<br/>
 +
 
 +
{|style="width:60%; height:100px"
 +
| [[Image:abotC.jpg|''American Journal of Botany Oct. 2004'']] || [[Image:BiolBulletin.gif|''Biological Bulletin Oct. 2004'']] || [[Image:PCEcover.gif|''Plant Cell and Environment Oct. 2007'']]
 +
|}
  
 +
==Current/Upcoming Courses==
  
==Courses==
+
Fall 2012
 +
*I teach [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Biology_of_the_Algae Biology of the Algae] (co-listed as EEB 3250 and EEB 5250). <br>
  
*I am involved in teaching introductory biology for majors, Biology 108, usually in alternate spring semesters (2007, 2009...). This course web site is accessed using [https://vista.uconn.edu/ Vista].
+
[[Category:EEB Faculty|LewisL]] [[Category:EEB People|LewisL]]
<br>
+
*I also teach [http://hydrodictyon.eeb.uconn.edu/courses/algae/ Biology of the Algae] (co-listed as EEB 290 and EEB 390) in alternate fall semesters (2006, 2008...).
+
<br>
+
*During alternate spring semesters (next in spring 2008) I will co-teach [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Evolution_of_Green_Plants Evolution of Green Plants] with Dr. Bernard Goffinet.
+
<br>
+

Revision as of 16:53, 10 December 2012

Associate Professor

Department of Ecology and Evolutionary Biology
University of Connecticut
Storrs, CT 06269-3043

office: 200 Pharmacy/Biology Building
voice: +1 860-486-6723
fax: +1 860-486-6364
email: louise.lewis@uconn.edu

LLewisNipmuk3.jpg


Research Interests

Arizona Biotic Crust

Desiccation Tolerant Algae: Diversity and Physiology
Many diverse green algae live in terrestrial habitats such desert microbiotic crust communities. My work in North American and South African arid habitats reveals that desert green algae have multiple evolutionary origins. I use traditional and molecular techniques to understand the diversity of desert green algae, and am interested in the physiological adaptations that allow these algae to survive under extreme conditions (e.g., desiccation, high light).

Desert green algae that are expressing sunscreening pigments.
A green alga recovered from soils that were dry for 43 years (ongoing project with Dr. F.R. Trainor).
  • Biotic Crust Project - A web site and relational database designed initially to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States. Now, additional projects are being served at this site.
  • Flechtner, V.R., N. Pietrasiak and L.A. Lewis (2013) Newly revealed diversity of eukaryotic algae from wilderness areas of Joshua Tree National Park (JTNP). Monographs of the Western North American Naturalist 6: 43-63.
  • Lewis, L.A. and F.R. Trainor (2012) Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years. Phycologia 51: 662-665.
  • Kaplan, F., L.A. Lewis, J. Wastian, and A. Holzinger (2012) Plasmolysis effects and osmotic potential of two Klebsormidium strains from alpine habitats. Protoplasma 249: 789-804. DOI: 10.1007/s00709-011-0324-z
  • Hall, J.D., K. Fučíková, C. Lo, L.A. Lewis and K.G. Karol (2010) An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie, Algologie 31: 529-555.
  • Cardon, Z.G., D.W. Gray and L.A. Lewis (2008) The green algal underground – evolutionary secrets of desert cells. BioScience 58: 114-122.
  • Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell and Environment 30: 1240-1255.
  • Lewis, L. A. and P. O. Lewis (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology 54: 936-947. Helpful link to computing phylodiversity measures discussed in this paper.
  • Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.

Evolution of green algae and early diverging lineages of green plants
I also am interested in morphological evolution within chlorophyceaen green algae, and use molecular and morphological data to resolve the relationship among species and major groups of green algae and early-diverging land plants.

  • Rodríguez-Salinas, E., H. Riveros-Rosas, Z. Li, K. Fučíková, J.J. Brand, L.A. Lewis, D. González-Halphen (2012) Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Molecular Phylogenetics and Evolution 64: 166-176.
  • Fučíková, K. and L.A. Lewis (2012) Intersection of Chlorella, Muriella, and Bracteacoccus: Resurrecting the genus Chromochloris Kol & Chodat (Chlorophyceae, Chlorophyta). Fottea 12: 83-93.
  • McManus, H.A., P. Haugen, K. Fučíková and L.A. Lewis (2012) Invasion of protein coding genes by green algal ribosomal group I introns. Molecular Phylogenetics and Evolution 62: 109-116. DOI: 10.1016/j.ympev.2011.09.027
  • Lewis, L.A., J.D. Hall, and F.W. Zechman (2011) Green Algae. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000333.pub2
  • McManus, H.A. and L.A. Lewis (2011) Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex. Journal of Phycology 47: 152-163.
  • McManus, H.A., E. Schultz and L.A. Lewis (2011) Distinguishing multiple lineages of Pediastrum duplex Meyen 1829 with morphometrics, and a proposal for Lacunastrum N. Gen. Journal of Phycology 47: 123-130.
  • Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology. Kluwer Academic Publishers, Dordrecht.
  • McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.
  • Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.
  • Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.


Symbiotic green algae

Sea anemone containing symbiotic green algae (we are currently studying the symbiont genomes).
Unicellular symbiontic green algae isolated from Pacific sea anemones (ongoing project with Molly Letsch).

Unicellular green algae form symbioses with marine invertebrates, ciliates, fungi, flowering plants, and even salamanders. I collaborate with former Ph.D. student Molly Letsch on the symbionts of anemone species, and with Tobias Landberg on the green algae of salamander eggs.

  • Letsch, M.R. and L.A. Lewis (2012) Four gene arrangements within the chloroplast genome of a closely related group of green algae (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 64: 524–532.
  • Letsch, M.R., G. Muller-Parker, T. Friedl, and L.A. Lewis (2009) Elliptochloris marina n.sp. (Trebouxiophyceae, Chlorophyta), green symbiont of Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). Journal of Phycology 45: 1127-1135.
  • Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone Anthopleura elegantissima. Biological Bulletin 207: 87-92.

Beyond greens

  • Haugen, P., D. Bhattacharya, J.D. Palmer, S. Turner, L.A. Lewis, and K.M. Pryer (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evolutionary Biology 7: 159.
  • Hershkovitz, M. A. and L. A. Lewis (1996) Deep-level diagnostic value of the rDNA-ITS region. Molecular Biology and Evolution 13: 1276- 1295.
  • Hanelt, B., D. van Schyndel, C.M. Adema, L. A. Lewis, and E.S. Loker (1996) The phylogenetic position of Rhopalura opiocomae (Orthonectida) based on 18S ribosomal RNA sequence data. Molecular Biology and Evolution 13: 1187-1191.
  • Wawrzyniak, L.A. and R.A. Andersen (1983) Silica-scaled Chrysophyceae from North American boreal forest regions in northern Michigan, U.S.A. and Newfoundland, Canada. Nova Hedwigia 41: 127-145.
American Journal of Botany Oct. 2004 Biological Bulletin Oct. 2004 Plant Cell and Environment Oct. 2007

Current/Upcoming Courses

Fall 2012