Difference between revisions of "Louise A. Lewis"

From EEBedia
Jump to: navigation, search
(32 intermediate revisions by 2 users not shown)
Line 16: Line 16:
 
==Research Interests==
 
==Research Interests==
 
[[Image:ArizonaCrust.jpg|thumb|right|''Arizona Biotic Crust'']]
 
[[Image:ArizonaCrust.jpg|thumb|right|''Arizona Biotic Crust'']]
<span style="font-size: large">Desert Algae: Diversity and Physiology <br/></span>
+
<span style="font-size: large">Desiccation Tolerant Algae: Diversity and Physiology <br/></span>
Most species of green algae occur in aquatic or marine habitats, but there are many diverse green algae that live in terrestrial habitats such desert microbiotic crust communities.  My work in North American and South African arid habitats reveals that desert green algae have multiple evolutionary origins. I use traditional and molecular techniques to understand the diversity of desert green algae, and am interested in the physiological adaptations that allow these algae to survive under extreme conditions (e.g., desiccation, high light).<br/>
+
Many diverse green algae live in terrestrial habitats such desert microbiotic crust communities.  My work in North American and South African arid habitats reveals that desert green algae have multiple evolutionary origins. I use traditional and molecular techniques to understand the diversity of desert green algae, and am interested in the physiological adaptations that allow these algae to survive under extreme conditions (e.g., desiccation, high light).<br/><br/>
 
[[Image:screenpigs.jpg|thumb|right|''Desert green algae that are expressing sunscreening pigments.'']]
 
[[Image:screenpigs.jpg|thumb|right|''Desert green algae that are expressing sunscreening pigments.'']]
[[Image:protosiphon.jpg|thumb|right|''A green alga recovered from soils that were dry for 43 years (ongoing project with Dr. F.R. Trainor).'']]
+
[[Image:Protosiphon.jpg|thumb|right|''A green alga recovered from soils that were dry for 43 years (ongoing project with Dr. F.R. Trainor).'']]
 
*[http://hydrodictyon.eeb.uconn.edu/bcp/ Biotic Crust Project] - A web site and relational database designed initially to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States.  Now, additional projects are being served at this site.<br/>
 
*[http://hydrodictyon.eeb.uconn.edu/bcp/ Biotic Crust Project] - A web site and relational database designed initially to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States.  Now, additional projects are being served at this site.<br/>
 +
 +
* Lewis, L.A. and F.R. Trainor (in press) Survival of <i>Protosiphon botryoides</i> (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years. Phycologia.<br/>
 +
* Kaplan, F., L.A. Lewis, J. Wastian, and A. Holzinger (2012) Plasmolysis effects and osmotic potential of two <i>Klebsormidium</i> strains from alpine habitats. Protoplasma 249: 789-804. DOI: 10.1007/s00709-011-0324-z <br/>
 +
*Hall, J.D., K. Fučíková, C. Lo, L.A. Lewis and K.G. Karol (2010) An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie, Algologie 31: 529-555.<br/>
 
*Cardon, Z.G., D.W. Gray and L.A. Lewis (2008) The green algal underground – evolutionary secrets of desert cells. BioScience 58: 114-122.<br/>
 
*Cardon, Z.G., D.W. Gray and L.A. Lewis (2008) The green algal underground – evolutionary secrets of desert cells. BioScience 58: 114-122.<br/>
 
*Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives.  Plant Cell and Environment 30: 1240-1255.<br/>
 
*Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives.  Plant Cell and Environment 30: 1240-1255.<br/>
Line 26: Line 30:
 
*Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of ''Scenedesmus'' (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.<br/><br/>
 
*Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of ''Scenedesmus'' (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.<br/><br/>
  
<span style="font-size: large">Evolution of green algae and basal green plants<br/></span>
+
<span style="font-size: large">Evolution of green algae and early diverging lineages of green plants<br/></span>
I also am interested in morphological evolution within chlorophyceaen green algae, and have used molecular and morphological data to resolve the relationship among major groups of green algae and early-diverging land plants.<br/>
+
I also am interested in morphological evolution within chlorophyceaen green algae, and use molecular and morphological data to resolve the relationship among species and major groups of green algae and early-diverging land plants.<br/><br/>
 +
 
 +
*Rodríguez-Salinas, E., H. Riveros-Rosas, Z. Li, K. Fučíková, J.J. Brand, L.A. Lewis, D. González-Halphen (2012) Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Molecular Phylogenetics and Evolution 64: 166-176.
 +
*Fučíková, K. and L.A. Lewis (2012) Intersection of <i>Chlorella</i>, <i>Muriella</i>, and <i>Bracteacoccus</i>: Resurrecting the genus <i>Chromochloris</i> Kol & Chodat (Chlorophyceae, Chlorophyta). Fottea 12: 83-93.
 +
*McManus, H.A., P. Haugen, K. Fučíková and L.A. Lewis (2012) Invasion of protein coding genes by green algal ribosomal group I introns. Molecular Phylogenetics and Evolution 62: 109-116.  DOI: 10.1016/j.ympev.2011.09.027
 +
*Lewis, L.A., J.D. Hall, and F.W. Zechman (2011) Green Algae. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000333.pub2
 +
*McManus, H.A. and L.A. Lewis (2011) Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on <i>Pediastrum duplex</i>. Journal of Phycology 47: 152-163.
 +
*McManus, H.A., E. Schultz and L.A. Lewis (2011) Distinguishing multiple lineages of <i>Pediastrum duplex</i> Meyen 1829 with morphometrics, and a proposal for <i>Lacunastrum </i>N. Gen. Journal of Phycology 47: 123-130.
 
*Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) ''Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology''. Kluwer Academic Publishers, Dordrecht.<br/>
 
*Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) ''Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology''. Kluwer Academic Publishers, Dordrecht.<br/>
 
*McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.<br/>
 
*McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.<br/>
 
*Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.<br/>
 
*Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.<br/>
 
*Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.<br/>
 
*Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.<br/>
*Lewis, L. A., B. D. Mishler and R. Vilgalys (1997) Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene, rbcL. Molecular Phylogenetics and Evolution 7: 377-393.<br/>
+
 
*Mishler, B. M., L. A. Lewis, M. A. Buchheim, K. S. Renzaglia, D. J. Garbary, C. F. Delwiche, F. W. Zechman, T. S. Kantz and R. L. Chapman (1994) Phylogenetic relationships of the "green algae" and "bryophytes". Annals of the Missouri Botanical Garden 81: 451-483.<br/><br/>
+
  
 
<span style="font-size: large">Symbiotic green algae<br/></span>
 
<span style="font-size: large">Symbiotic green algae<br/></span>
 +
[[Image:anemone.jpg|thumb|right|''Sea anemone containing symbiotic green algae (we are currently studying the symbiont genomes).'']]
 
[[Image:zoochlorella.jpg|thumb|right|''Unicellular symbiontic green algae isolated from Pacific sea anemones (ongoing project with Molly Letsch).'']]
 
[[Image:zoochlorella.jpg|thumb|right|''Unicellular symbiontic green algae isolated from Pacific sea anemones (ongoing project with Molly Letsch).'']]
Unicellular green algae form symbioses with marine invertebrates, ciliates, fungi, and even flowering plantsIn collaboration with Gisele Muller-Parker (Western Washington State University) I have worked on the small green alga that occur with the sea anemones ''Anthopleura'' ''elegantissima''.  Ph.D. student [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Molly_Letsch Molly Letsch] is following up on this project in two anemone species, and across their geographic ranges.<br/>
+
Unicellular green algae form symbioses with marine invertebrates, ciliates, fungi, flowering plants, and even salamanders.  I collaborate with former Ph.D. student [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Molly_Letsch Molly Letsch] on the symbionts of anemone species, and with Tobias Landberg on the green algae of salamander eggs.<br/><br/>
*Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone ''Anthopleura'' ''elegantissima''. Biological Bulletin 207: 87-92.<br/>
+
*Letsch, M.R. and L.A. Lewis (2012) Four gene arrangements within the chloroplast genome of a closely related group of green algae (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 64: 524–532.<br/>
*Letsch, M.R., G. Muller-Parker, T. Friedl, and L.A. Lewis (2009) ''Elliptochloris marina'' n.sp. (Trebouxiophyceae, Chlorophyta), green symbiont of ''Anthopleura xanthogrammica'' and ''A. elegantissima'' (Anthozoa, Cnidaria). In Press, Journal of Phycology.<br/><br/>
+
*Letsch, M.R., G. Muller-Parker, T. Friedl, and L.A. Lewis (2009) ''Elliptochloris marina'' n.sp. (Trebouxiophyceae, Chlorophyta), green symbiont of ''Anthopleura xanthogrammica'' and ''A. elegantissima'' (Anthozoa, Cnidaria). Journal of Phycology 45: 1127-1135.<br/>
 +
*Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone ''Anthopleura'' ''elegantissima''. Biological Bulletin 207: 87-92.<br/><br/>
  
 
<span style="font-size: large">Beyond greens<br/></span>
 
<span style="font-size: large">Beyond greens<br/></span>
Line 51: Line 63:
 
|}
 
|}
  
==Courses==
+
==Current/Upcoming Courses==
 
+
Spring 2010
+
*During alternate spring semesters (next in 2010) I  co-teach [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Evolution_of_Green_Plants Evolution of Green Plants] with Dr. Bernard Goffinet.<br>
+
 
+
Fall (fall semesters of even years)
+
*Next in 2010, I will teach [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Biology_of_the_Algae Biology of the Algae] (co-listed as EEB 3250 and EEB 5250). <br>
+
 
+
Spring 2011 (usually in spring semesters of odd years, 2011, 2013, ...)
+
*I teach introductory biology for majors, Biology 1108. This course web site is accessed using [https://vista.uconn.edu/ Vista].
+
  
 +
Fall 2012
 +
*I teach [http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Biology_of_the_Algae Biology of the Algae] (co-listed as EEB 3250 and EEB 5250). <br>
  
 
[[Category:EEB Faculty|LewisL]] [[Category:EEB People|LewisL]]
 
[[Category:EEB Faculty|LewisL]] [[Category:EEB People|LewisL]]

Revision as of 14:09, 9 November 2012

Associate Professor

Department of Ecology and Evolutionary Biology
University of Connecticut
Storrs, CT 06269-3043

office: 200 Pharmacy/Biology Building
voice: +1 860-486-6723
fax: +1 860-486-6364
email: louise.lewis@uconn.edu

LLewisNipmuk3.jpg


Research Interests

Arizona Biotic Crust

Desiccation Tolerant Algae: Diversity and Physiology
Many diverse green algae live in terrestrial habitats such desert microbiotic crust communities. My work in North American and South African arid habitats reveals that desert green algae have multiple evolutionary origins. I use traditional and molecular techniques to understand the diversity of desert green algae, and am interested in the physiological adaptations that allow these algae to survive under extreme conditions (e.g., desiccation, high light).

Desert green algae that are expressing sunscreening pigments.
A green alga recovered from soils that were dry for 43 years (ongoing project with Dr. F.R. Trainor).
  • Biotic Crust Project - A web site and relational database designed initially to disseminate results of an NSF-funded (Biotic Systems and Inventories) project to document the diversity of green algae, cyanobacteria, lichens and bryophytes of the desert crust communities of the western United States. Now, additional projects are being served at this site.
  • Lewis, L.A. and F.R. Trainor (in press) Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years. Phycologia.
  • Kaplan, F., L.A. Lewis, J. Wastian, and A. Holzinger (2012) Plasmolysis effects and osmotic potential of two Klebsormidium strains from alpine habitats. Protoplasma 249: 789-804. DOI: 10.1007/s00709-011-0324-z
  • Hall, J.D., K. Fučíková, C. Lo, L.A. Lewis and K.G. Karol (2010) An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie, Algologie 31: 529-555.
  • Cardon, Z.G., D.W. Gray and L.A. Lewis (2008) The green algal underground – evolutionary secrets of desert cells. BioScience 58: 114-122.
  • Gray, D. W., Z. G. Cardon and L. A. Lewis (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell and Environment 30: 1240-1255.
  • Lewis, L. A. and P. O. Lewis (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology 54: 936-947. Helpful link to computing phylodiversity measures discussed in this paper.
  • Lewis, L. A., and V. R. Flechtner (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127-1137.

Evolution of green algae and early diverging lineages of green plants
I also am interested in morphological evolution within chlorophyceaen green algae, and use molecular and morphological data to resolve the relationship among species and major groups of green algae and early-diverging land plants.

  • Rodríguez-Salinas, E., H. Riveros-Rosas, Z. Li, K. Fučíková, J.J. Brand, L.A. Lewis, D. González-Halphen (2012) Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Molecular Phylogenetics and Evolution 64: 166-176.
  • Fučíková, K. and L.A. Lewis (2012) Intersection of Chlorella, Muriella, and Bracteacoccus: Resurrecting the genus Chromochloris Kol & Chodat (Chlorophyceae, Chlorophyta). Fottea 12: 83-93.
  • McManus, H.A., P. Haugen, K. Fučíková and L.A. Lewis (2012) Invasion of protein coding genes by green algal ribosomal group I introns. Molecular Phylogenetics and Evolution 62: 109-116. DOI: 10.1016/j.ympev.2011.09.027
  • Lewis, L.A., J.D. Hall, and F.W. Zechman (2011) Green Algae. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000333.pub2
  • McManus, H.A. and L.A. Lewis (2011) Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex. Journal of Phycology 47: 152-163.
  • McManus, H.A., E. Schultz and L.A. Lewis (2011) Distinguishing multiple lineages of Pediastrum duplex Meyen 1829 with morphometrics, and a proposal for Lacunastrum N. Gen. Journal of Phycology 47: 123-130.
  • Lewis, L. A. (2007) Chlorophyta on land. Independent lineages of green eukaryotes from arid lands. In: J. Seckbach (ed.) Extremophilic Algae, Cyanobacteria and non-photosynthetic Protists: From Prokaryotes to Astrobiology. Kluwer Academic Publishers, Dordrecht.
  • McManus, H. A. and L. A. Lewis (2005) Systematics, morphological variation and implications for colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44: 582-595.
  • Lewis, L. A. and R. M. McCourt (2004) Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.
  • Shoup, S. and L. A. Lewis (2003) Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). Journal of Phycology 39: 789-796.


Symbiotic green algae

Sea anemone containing symbiotic green algae (we are currently studying the symbiont genomes).
Unicellular symbiontic green algae isolated from Pacific sea anemones (ongoing project with Molly Letsch).

Unicellular green algae form symbioses with marine invertebrates, ciliates, fungi, flowering plants, and even salamanders. I collaborate with former Ph.D. student Molly Letsch on the symbionts of anemone species, and with Tobias Landberg on the green algae of salamander eggs.

  • Letsch, M.R. and L.A. Lewis (2012) Four gene arrangements within the chloroplast genome of a closely related group of green algae (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution 64: 524–532.
  • Letsch, M.R., G. Muller-Parker, T. Friedl, and L.A. Lewis (2009) Elliptochloris marina n.sp. (Trebouxiophyceae, Chlorophyta), green symbiont of Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). Journal of Phycology 45: 1127-1135.
  • Lewis, L. A. and G. Muller-Parker (2004) Phylogenetic placement of "Zoochlorellae" (Chlorophyta), algal symbiont of the temperate anemone Anthopleura elegantissima. Biological Bulletin 207: 87-92.

Beyond greens

  • Haugen, P., D. Bhattacharya, J.D. Palmer, S. Turner, L.A. Lewis, and K.M. Pryer (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evolutionary Biology 7: 159.
  • Hershkovitz, M. A. and L. A. Lewis (1996) Deep-level diagnostic value of the rDNA-ITS region. Molecular Biology and Evolution 13: 1276- 1295.
  • Hanelt, B., D. van Schyndel, C.M. Adema, L. A. Lewis, and E.S. Loker (1996) The phylogenetic position of Rhopalura opiocomae (Orthonectida) based on 18S ribosomal RNA sequence data. Molecular Biology and Evolution 13: 1187-1191.
  • Wawrzyniak, L.A. and R.A. Andersen (1983) Silica-scaled Chrysophyceae from North American boreal forest regions in northern Michigan, U.S.A. and Newfoundland, Canada. Nova Hedwigia 41: 127-145.
American Journal of Botany Oct. 2004 Biological Bulletin Oct. 2004 Plant Cell and Environment Oct. 2007

Current/Upcoming Courses

Fall 2012