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Abstract Genome-scale sequence data have become increasingly available in the phylogenetic studies for
understanding the evolutionary histories of species. However, it is challenging to develop probabilistic models to
account for heterogeneity of phylogenomic data. The multispecies coalescent model describes gene trees as
independent random variables generated from a coalescence process occurring along the lineages of the species
tree. Since the multispecies coalescent model allows gene trees to vary across genes, coalescent-based methods
have been popularly used to account for heterogeneous gene trees in phylogenomic data analysis. In this paper, we
summarize and evaluate the performance of coalescent-based methods for estimating species trees from genome-
scale sequence data. We investigate the effects of deep coalescence and mutation on the performance of species
tree estimationmethods. We found that the coalescent-basedmethods performwell in estimating species trees for
a large number of genes, regardless of the degree of deep coalescence and mutation. The performance of the
coalescent methods is negatively correlated with the lengths of internal branches of the species tree.
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Molecular sequences have been predominantly used to
understand the evolutionary history of species (Hillis et al.,
1993; Swofford et al., 1996). With the ancestral information
encoded in the genetic material of contemporary species,
researchers are able touncover some of the evolutionary
mysteries that occurredmillions of years ago (Song et al., 2012;
Jarvis et al., 2014). Yet, a large number of evolution-related
questions remain unresolved. Adequately addressing those
questions demands phylogenetically informative datasets and
computational approaches that can effectively extract
information contained in the molecular data (Liu et al.,
2015b). Over the past few years, genome-scale sequence data
have become increasingly available for phylogenetic studies
(Edwards et al., 2007; Casci, 2011; Kumar et al., 2012; Song
et al., 2012; Jarvis et al., 2014; Xi et al., 2014). Meanwhile, the
complexity of genome-scale data imposes a tremendous
challenge on developing probabilistic models to account for
heterogeneity of phylogenomic data (Edwards, 2009). The
challenge arises from the observation that phylogenomic data
analyses often produce highly incongruent gene trees, i.e.,
genes may have quite different histories (Degnan & Rosen-
berg, 2009; Liu et al., 2015a). Traditional phylogenetic
approaches, which infer species trees from the alignments
concatenated across genes (De Queiroz & Gatesy, 2007),
cannot handle heterogeneity among gene trees estimated
from phylogenomic data.

A number of biological processes can produce incongru-
ent gene trees embedded in the species tree (Maddison,

1997; Avise, 2000; Ma et al., 2000). It is desirable to integrate
those biological processes into mathematical models
that describe the probability distribution of gene trees
generated from the species tree. Those mathematical
models, which allow gene trees to vary across genes, are
the generalization to the concatenation model by relaxing
the assumption that all genes have the same history. A
variety of mathematical models have been developed
along this line (Liu et al., 2008; Kubatko, 2009; Bloomquist
& Suchard, 2010; Rasmussen & Kellis, 2012), among which
the multispecies coalescent model (Rannala & Yang, 2003)
has become most popular for phylogenomic data analysis. In
this paper, we describe the multispecies coalescent model,
and summarize the statistical and computational properties
of the coalescent-based methods for estimating species
trees. Previous simulation studies produced mixed results
for the performance of the coalescent and concatenation
methods in estimating species trees (Leache & Rannala,
2011; Mirarab et al., 2014a). We investigate the effects of
deep coalescence and mutation on the performance of
species tree estimation methods. We find that the coales-
cent-based methods perform well, regardless of the degree
of incomplete lineage sorting (ILS). In contrast, high ILS may
positively mislead the concatenation method (Kubatko &
Degnan, 2007; Roch & Steel, 2015). In the presence of a
high degree of deep coalescence and mutation, the
coalescent methods can accurately estimate the species
tree with a high probability, when there are a large number
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of genes. The performance of the coalescent methods is
negatively correlated with the lengths of internal branches
of the species tree.

The Multispecies Coalescent Model
The multispecies coalescent model was developed to deal
with gene tree heterogeneity observed in multilocus
sequence data (Rannala & Yang, 2003; Edwards et al., 2007;
Liu & Pearl, 2007). The multispecies coalescent model extends
the classical Kingman coalescent (Kingman, 1982) to multiple
populations with evolutionary relationships described by a
species tree. As discussed above, incongruent gene trees may
result from many biological processes, including ILS, horizon-
tal gene transfer (HGT), hybridization, recombination, and
gene duplication/loss. The biological process that is primarily
responsible for the incongruent gene trees may vary across
species. Nevertheless, the coalescence process often serves
as the null hypothesis (Liu et al., 2015b), and the evolution of
individual genes is commonly modeled as a coalescence
process occurring along the lineages of a species tree
(Wakeley, 2008). When the effects of hybridization, HGT,
and recombination are not negligible, the coalescent model
can be generalized by integrating those biological processes
into the model. Gene tree reconciliation methods estimate
species trees by minimizing the distance between the species
tree and gene trees caused by deep coalescence, HGT, and
gene duplication/loss (Pamilo & Nei, 1988; Powell, 1991; Baum,
1992; Doyle, 1992; Hudson, 1992; Brower et al., 1996; Page &
Charleston, 1997; Cao et al., 1998; Nichols, 2001; Pollard et al.,
2006). It has been shown that themethod forminimizing deep
coalescence (Maddison & Knowles, 2006) is statistically
inconsistent in estimating species trees under the multispe-
cies coalescentmodel (Than& Rosenberg, 2011). Alternatively,
gene tree reconciliation can be achieved by minimizing a tree
distance metric that is not defined upon any biological event
(i.e., deep coalescence, HGT, or gene duplication/loss). For
example, species trees are estimated from incongruent multi-
copy gene trees using the Robinson–Foulds distance (mulRF,
Chaudhary et al., 2015). The mulRF method can take
unresolved gene trees or gene trees with multiple alleles
per species as input data to infer species trees. For binary gene
trees with one allele per species, mulRF is equivalent to
the majority rule consensus method. Moreover, the Accurate
Species TRee ALgorithm (ASTRAL) (Mirarab et al., 2014b)
estimates species trees by minimizing the quartet distance
between gene trees and the species tree.

In the multispecies coalescent model, incongruent gene
trees G¼ (g1,. . ., gn), are assumed to be independently
generated from a coalescence process occurring along the
lineages of the species tree S (Fig. 1), in which n denotes the
number of genes (Liu & Pearl, 2007). The assumptions of the
multispecies coalescent model include that (i) incongruent
gene trees are caused by deep coalescence, (ii) there is no
gene flow after speciation, (iii) there is no recombination
within genes but free recombination between genes, (iv)
mating is random, and (v) there is no selection. These
assumptions are sufficient for modeling gene trees as
independent random variables given the species tree S.
Moreover, the multigene alignments D¼ (d1,. . .,dn) are

assumed to evolve independently along the branches of
individual gene trees under the substitution models (Fig. 1).

The evolution of multigene alignments involves two
stochastic processes—the coalescence process and the
mutation process (Fig. 1). Under the multispecies coalescent
model, gene trees are generated from a coalescence process
occurring along the lineages of the species tree (Fig. 1).
Meanwhile, molecular sequences evolve on gene trees,
following a mutation process described by a substitution
model (Felsenstein, 1981). The two stochastic processes
characterize the relationships among molecular sequences
D, gene trees G, and the species tree S. The probability
distribution of the gene tree given the species tree can be
derived from the coalescent process (Rannala & Yang, 2003;
Degnan & Salter, 2005). The probability density of gene trees
G given the species tree is

fðGjSÞ ¼ PifðgijSÞ: ð1Þ

With the assumption of free recombination between genes,
individual gene trees (g1,. . .,gn) are treated as independent
random variables conditional on the species tree S. Because
gene trees are random quantities, themultispecies coalescent
model allows genes to have distinct histories. Additionally, the
probability distribution of the alignments given a gene tree
can be derived from the mutation process (Fig. 1). The
likelihood function derived from the mutation process is one
used for calculating maximum likelihood (ML) gene trees by
traditional phylogenetic methods, i.e.,

fðDjG;gÞ ¼ Pifðdijgi; g iÞ: ð2Þ

Species tree 

Gene trees 

sequences 

coalescent  
process 

mutation  
process 

S1            S2            S3 

S1 S2 S3 S2 S3 S1 S1 S2 S3 

S1 
S2 
S3 

S1 
S2 
S3 

S1 

S2 

S3 

Fig. 1. The hierarchical model for multigene sequence data.
The model consists of three components—alignments, gene
trees, and the species tree. This hierarchical model involves
two layers; the sequences-and-genetree layer and the
genetree-and-speciestree layer. The species tree involes three
species S1, S2, and S3. The model assumes that the gene trees
are generated from a coalescent process occurring along the
lineages of the species tree, while the sequences are
generated from a mutation process occuring on the branches
of the gene trees.
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In Equation (2), gi represents the parameters of the
substitution model for gene i. Combining Equations (1) and
(2), the likelihood function of the species tree S is given by

iðSjDÞ ¼
Z
G
fðDjG;gÞfðGjSÞdG: ð3Þ

From Equation (3), genetic variation of multigene sequence
data is the consequence of the combination of coalescence
and mutation processes. The coalescence process results in
genetic variation between genes; the mutation process
results in genetic variation within genes. Both coalescence
and mutation variation can influence the accuracy of species
tree estimation.

Coalescent-Based Methods for Estimating
Species Trees
A number of coalescent-based methods have been developed
for estimating species trees from multigene sequence data.
The Bayesian coalescent approaches estimate species trees
from alignments (single or multiple alleles) (Table 1) using
both the likelihood function and the prior distribution of the
species tree (Liu & Pearl, 2007; Liu et al., 2008; Heled &
Drummond, 2009). Bayesian inference is based on the
posterior probability distribution approximated by a sample
of species trees generated from a Markov Chain Monte Carlo
(MCMC) algorithm. The Bayesian approach involves intensive
computation. Thus, it is not practical to apply the Bayesian
approach to genome-scale sequence data. To reduce
computational cost, various coalescent-based methods
were developed to estimate species trees in two steps—
estimating gene trees from multigene sequences and then
estimating the species tree from the estimated gene trees.
Carstens & Knowles (2007) proposed a coalescent-based
approach for estimating species trees from a collection of
estimated gene trees. Given the estimated gene trees, this
approach calculates the likelihood scores of all possible
species trees (Degnan& Salter, 2005). The best tree is selected
by a likelihood ratio test with the correction for multiple
comparisons (Anisimova & Gascuel, 2006). Because this
approach needs to calculate the likelihood scores of all
possible species trees, it cannot be used to reconstruct
phylogenies that involve a large number of taxa.

Numerous phylogenetic methods estimate species trees
using the summary statistics of a set of gene trees (Table 1).
Due to their computational advantages, gene-tree-based
coalescent methods have been primarily adopted in phylo-
genomic data analysis. However, the performance of gene-
tree-based methods can be significantly affected by the fact
that thosemethods do not utilize all phylogenetic information
contained in molecular sequence data (Liu et al., 2015b). As
one of the gene-tree-based methods, Global LAteSt Split
(GLASS) (Mossel & Roch, 2007), which is also called the
Maximum tree (Liu et al., 2010b), clusters species using
minimum coalescence times. Given true gene trees, GLASS
and the Maximum tree are statistically consistent under the
multispecies coalescent model, as the number of genes goes
to infinity. If population size parameter u is constant across
populations on the species tree, the Maximum tree is the ML
estimate of the species tree (Liu et al., 2010b). However, when
gene trees are estimated from DNA sequences, the minimum
coalescence time across gene trees converges to 0 as the
number of genes grows because the probability that two
arbitrary sequence shave exactly the same nucleotides is
positive. Since the species tree is estimated by the minimum
coalescent times, the biased minimum coalescence times can
consistently produce the wrong estimate of the species tree.
Thus, when gene trees are estimated from DNA sequences,
GLASS and the Maximum tree are statically inconsistent
(Degiorgio &Degnan, 2014). The principle of clustering species
by minimum coalescence times is also implemented in the
software Species Tree Estimation usingML, or STEM (Kubatko
et al., 2009). In contrast, the STEAC method estimates species
trees using average coalescence times, which is more robust
to the estimation error of coalescence times. Moreover, Liu
et al. (2009b) proposed to estimate species trees using
average ranks of gene coalescence times (STAR). The STAR
method estimatesthe species tree by a neighbor-joining tree
built from a distance matrix, in which the entries are twice the
average ranks across gene trees. Simulation studies suggest
that STAR outperforms STEAC, when the estimation error of
coalescence times is large. The STAR and STEAC methods can
quickly infer phylogenies even for large-scale phylogenomic
data (Liu et al., 2009a). When the true gene trees are given,
STAR and STEAC are statistically consistent in estimating
species trees (Liu et al., 2009b; Allman et al., 2013; Degnan,
2013). Both methods are robust to a limited amount of

Table 1 Coalescent methods for estimating species trees

Input Output Method Website Speed

ASTRAL Gene trees T Summary statistics https://github.com/smirarab/ASTRAL Fast
�BEAST Alignments T and B Bayesian method http://beast.bio.ed.ac.uk/Main_Page Slow
BEST Alignments T and B Bayesian method http://www.stat.osu.edu/�dkp/BEST/introduction/ Slow
BUCKy Gene trees T Bayesian method http://www.stat.wisc.edu/�ane/bucky/ Slow
GLASS Gene trees T and B Summary statistics http://code.google.com/p/phybase/downloads/list Fast
MP-EST Gene trees T and B Likelihood method http://bioinformatics.publichealth.uga.edu/ Fast
NJst Gene trees T Summary statistics http://bioinformatics.publichealth.uga.edu/ Fast
STAR Gene trees T Summary statistics http://bioinformatics.publichealth.uga.edu/ Fast
STEAC Gene trees T Summary statistics http://bioinformatics.publichealth.uga.edu/ Fast
STELLS Gene trees T and B Likelihood method http://www.engr.uconn.edu/�ywu/STELLS.html Slow
STEM Gene trees T Likelihood method http://www.stat.osu.edu/�lkubatko/software/STEM/ Fast

B, branch lengths of the species tree; T, topology of the species tree.
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horizontal transfer as well as deviations from the molecular
clock assumption, because some small values of coalescence
times due to horizontal transfer or rate variation in a small
number of genes do not have major effects on the average
ranks and average coalescence times when the number of
genes is moderate or large. STELLS (Wu, 2012) estimates the
species tree from a set of gene trees by maximizing
the probability of gene trees given the species tree under
the multispecies coalescent model (Degnan & Salter, 2005).
Liu et al. (2010a) introduced a maximum pseudo-likelihood
method for estimating species trees (MP-EST). The MP-EST
method estimates the species tree by maximizing the pseudo-
likelihood of the triplets in the species tree. Unlike most
summary-statistics-based methods, the MP-EST method is
able to estimate both the topology and branch lengths (in
coalescent units) of the species tree. Given the true gene
trees, MP-EST is statistically consistent, as the number of
genes increases to infinity. Moreover, if the sequence length
also goes to infinity, MP-EST based on the estimated gene
treescan consistently recover the true species tree under the
multispecies coalescent model (Liu et al., 2010a).

The coalescent methods described above require that the
input trees must be rooted gene trees. A distance method,
NJst, can infer species trees from unrooted gene trees (Liu &
Yu, 2011). In the NJst method, the distance between two
species is defined as the average number of internal nodes
between two species across gene trees. The species tree is
estimated by the neighbor-joining tree built from the distance
matrix. ASTRAL can estimate species trees from unrooted
gene trees, because it minimizes the quartet distance
between gene trees and the species tree(Mirarab et al.,
2014b). When gene trees are accurately estimated, both NJst
and ASTRAL methods are statistically consistent under the
multispecies coalescent model. BUCKy is a phylogenetic
program for Bayesian concordance analysis (Ane et al., 2007).
BUCKy estimates concordance trees (or population trees) by
calculating concordance factors (or quartet concordance
factors) of a group of estimated gene trees. Both ASTRAL and
BUCKy do not rely on any biological process to explain
discordant gene trees. Thus, ASTRAL and BUCKy are not
coalescent methods per se. However, because both methods
are statistically consistent under the multispecies coalescent
model, they are categorized as coalescent methods in this
paper (Table 1).

Coalescent versus Concatenation
Probabilistic models are the foundations of statistical
phylogenetic inference. Thus, model comparison is critical in
phylogenetic analysis. The concatenation model implicitly
assumes that all genes evolved with the same history
(Edwards, 2009). Under the concatenation model, gene trees
G are identical with the species tree S, i.e., gi¼ S for i¼ 1,. . .,n.
Since the sites evolve independently, the likelihood function
of the species tree S is the product of the likelihoods of
individual sites, i.e.,

iconðSjDÞ ¼ Pifðdijgi; g iÞ ¼ PifðdijS; g iÞ ð4Þ

In contrast, gene trees in the multispecies coalescent model
are independent random variables conditional on the species

tree. To simply the multispecies coalescent model, it is
assumed that one allele is sampled from each species. When
the species tree has long internal branches (in coalescent
units), the gene trees generated under the multispecies
coalescent model have the same or similar topology. As the
population size parameter u¼ 4mNe (m is the mutation
rate and Ne is the effective population size) goes to 0, the
coalescence times of the gene trees converge to the species
divergence times of the species tree. Thus, when the species
tree has long internal branches and small u, the multispecies
coalescent model reduces to the concatenation model (Liu
et al., 2015b). The likelihood function of the species tree under
the multispecies coalescent model reduces to

icoalðSjDÞ ¼
Z
G
fðDjG;gÞf GjSð ÞdG ¼ fðDjG; gÞ

¼ PifðdijS; g iÞ ð5Þ

The likelihood function (5) of the multispecies coalescent
model equals the likelihood function (4) of the concatenation
model. Thus, when the species tree has long internal branches
and small u, the Bayesian coalescent approaches and the
concatenation methods perform similarly in estimating
species trees because they use the same likelihood function
to infer species trees. However, gene-tree-based coalescent
methods do not use the full information of the sequence data.
It is expected that the Bayesian approaches outperform the
gene-tree-based coalescent methods in estimating species
trees. Thus, when ILS is low and gene trees are poorly
estimated, the concatenation method may outperform gene-
tree-based coalescent methods. However, the performance
of the gene-tree-based coalescent methods can be improved
by increasing the number of genes.

In contrast, the concatenation analyses may consistently
estimate wrong species trees when the internal branches of
species trees are short (Roch & Steel, 2015). The poor
performance of the concatenation method cannot be
improved by increasing the number of genes. Previous studies
have compared by simulation the performance of the
concatenation and coalescent methods for a finite number
of genes. In general, gene-tree-based coalescent methods
outperform concatenation methods when there is a high
degree of ILS, i.e., a large variation among gene trees. Since
high ILS is most likely to occur on the short branches of
the species tree, it indicates that coalescent methods are
more accurate than the concatenation methods in estimating
the short branches of the species tree. On the other hand,
when there is high uncertainty in gene tree estimation, the
concatenation methods may outperform the coalescent
methods in estimating the long branches of the species
tree. When gene trees are poorly estimated, we would expect
that both concatenation and coalescent methods produce
poorly supported estimates of the species tree. However,
when increasing the number of genes, coalescent methods
can accurately estimate the species tree with a high
probability.

The coalescent-based methods have been applied to
estimate species trees in a number of empirical studies.
Song et al. (2012) used both coalescent and concatenation
methods and incorporated 447 nuclear genes from 33
mammalian species and four outgroup species to address
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the effect of ILS on estimating deep-level phylogeny of
mammals. The mammalian genomic data exhibit considerable
gene tree heterogeneity, as all 447 gene trees differ from the
estimated species tree in topology. Such high level of ILS in
data exerted different influence on the performance of
coalescent and concatenation methods in estimating species
phylogenies. Coalescent methods, which take gene tree
heterogeneity into account, were able to estimate a reliable
and consistent species phylogeny for mammals, and showed a
positive correlation between the number of genes and the
nodal support values for nodes that exhibit high amount of
ILS. In contrast, concatenation methods, which assume
homogeneous gene tree across loci, can result in conflicting
but strongly support phylogenies for mammals from different
subsamples of loci. The mammalian genomic data will be used
in simulation to compare the performance of coalescent-
based and concatenation methods. In addition, gene-tree-
based coalescent methods were employed to estimate the
phylogenetic placement of Amborella (Xi et al., 2014). Their
results showed that rate variation among sites canmislead the
results of concatenation methods, as fast and slow evolving
sites support conflict and strongly supported phylogenies.
Coalescent methods, on the other hand, were able to infer a
consistent placement for Amborella from either fast or slow
evolving sites. These empirical studies demonstrated that
coalescence-based methods are able to estimate accurate
species trees from genome-scale data with high level of ILS or
rate variation, whereas this complexity can lead concatena-
tion methods to generate misleading results (Xi et al., 2014).

Performance of Species Tree Estimation
Methods
Simulation for the 5-taxon species tree
The amount of phylogenetic signal in the DNA sequence data
is determined by genetic variation generated from the
coalescence and mutation processes. We used simulation to
evaluate the effects of deep coalescence and mutation on
species tree estimation. Gene tree variation due to ILS is
positively correlated with the population size parameter u.
Two values of u were chosen to simulate high and low ILS. To
simulate high uncertainty in gene tree estimation, the branch
lengths of gene trees were shorten bymultiplying with a small
constant. Specifically, gene trees were generated from a five-
taxon species tree with one allele per species under the
multispecies coalescent model using an R package Phybase
(Liu & Yu, 2010). The population size parameter uwas constant
across the internal branches of the species tree. Two values
(0.02, 0.0002) of u were considered to simulate high and
low ILS. When u¼0.02, 90% of the simulated gene trees
are incongruent with the species tree (i.e., high ILS). As the
distribution of gene trees is almost flat, gene trees have little
coalescent signal for accurately estimating species trees.
When u¼0.0002, all simulated gene trees are congruent with
the species tree (i.e., no ILS), which satisfies the assumption of
the concatenation model. In this case, the multispecies
coalescent model reduces to the concatenation model. The
simulated gene trees were used as the input data to estimate
the species tree by the gene-tree-based coalescent methods.
Each simulation was repeated 100 times. To evaluate the

effect of uncertainty in gene tree estimation, the branch
lengths of gene trees were multiplied with a scale parameter
¼ 0.2, 0.4, 0.6, 0.8, or 1.0. Gene trees with short branches
(scale¼0.2) tend to have large estimation errors. DNA
sequences were then simulated from the rescaled gene trees
using Seq-Gen (Rambaut & Grassly, 1997) with the Jukes–
Cantor model (Jukes & Cantor, 1969). We estimated gene
trees from the simulated sequences using PhyML (Guindon &
Gascuel, 2003) with the Jukes–Cantor model. Finally, the
estimated gene trees were used to infer the species tree. Each
simulation was repeated 100 times. Since all gene trees
simulated with u¼ 0.0002 have the same topology, topologi-
cal variation among the estimated gene trees was caused
solely by the mutation process.

For high ILS (u¼ 0.02), gene-tree-based coalescent meth-
ods can accurately estimate the species tree with a high
probability as the number of genes increases (Fig. 2). The
coalescent methods outperform greedy consensus and
concatenation for all simulations with high ILS (Fig. 2). Given
the true gene trees, NJst and STAR appear to outperform
MP-EST and ASTRAL when the number of genes is small
(Fig. 2). In our simulations, there is no significant difference in
the performance of STAR, MP-EST, ASTRAL, and NJst. When
gene trees are estimated fromDNA sequences, the probability
of estimating the true species tree for all coalescent methods
decreases as the scale parameter m decreases from 1.0 to 0.2
(Fig. 2). Because small m results in large uncertainty in
estimating gene trees, this result suggests that gene tree
estimation error reduces the performance of gene-tree-based
coalescent methods. The negative effect of gene tree
uncertainty becomes more severe when the number of genes
is small (Fig. 2). In the presence of high uncertainty of gene
tree estimation, all gene-tree-based coalescent methods
perform similarly in recovering the true species tree.

When the sequence data were simulated with no ILS (i.e.,
u¼ 0.0002), gene-tree-based coalescent methods can accu-
rately estimate the species tree for all simulations as the
number of genes increases (Fig. 2). Moreover, the species tree
with no ILS is more likely to be recovered by gene-tree-based
coalescent methods than the species tree with high ILS,
because high ILS further increases the variability among the
estimated gene trees. All gene-tree-based coalescent meth-
ods perform equally well in estimating the true species tree,
but concatenation appears to outperform all gene-tree-based
coalescent methods for scale¼0.2 and a small number of
genes (ngene¼ 10) (Fig. 2). This result is consistent with our
expectation discussed in the previous section. Moreover, the
performance of all species tree estimation methods can be
dramatically improved by increasing the number of genes
(Fig. 2).

Simulation for the Mammalian tree
We simulated DNA sequences from the MP-EST tree
estimated from a mammalian dataset. The mammalian
dataset contained DNA sequences from 447 loci for 37 species
(Song et al., 2012). We used the MP-EST tree built from the
mammalian dataset as the true species tree to generate gene
trees under the multispecies coalescent model. Mirarab et al.
(2014a) used the same mammalian tree to compare the
performance of greedy consensus, concatenation, and
MP-EST. We re-estimated the branch lengths of the true
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species tree from the sequences concatenated across 447 loci
using PhyML with the GTRþG model (Tavar�e, 1986; Yang,
1994). We converted the species tree to an ultrametric tree by
equalizing the distances from the tips to the root of the tree
(Fig. 3a). The population size parameter u¼ 0.05was constant
on the entire tree. In this simulation, we compared the
performance of different species tree estimation methods.
Moreover, we investigated the correlation between the
performance of species tree estimation methods and the
lengths of internal branches of the species tree. We simulated
100 and 500 gene trees from the true species tree under the
multispecies coalescent model using Phybase. Then, we
simulated DNA sequences of 1000 base pairs from gene trees
using Seq-Gen with the Jukes–Cantor model. We estimated
gene trees from the simulated sequence data using PhyML
with the Jukes–Cantor model. The estimated gene trees were
then used as the input data of STAR, MP-EST, ASTRAL, greedy

consensus, and NJst to estimate the species tree. In addition,
we built ML trees for the concatenated sequences using
PhyML with the Jukes–Cantor model. Each simulation was
repeated 100 times. To evaluate the performance of species
tree estimation methods, we calculated the positive branch
rate for each branch of the species tree. The positive branch
rate for branch i is the proportion of the estimated species
trees in which branch i is successfully recovered. Moreover,
we calculated the correlation between the positive branch
rate and the length of the internal branch of the species tree.

The true species tree has short and long internal branches
(in mutation units, Fig. 3a). As the population size parameter
u¼ 0.05 is constant across internal branches of the species
tree, the branch lengths in coalescent units are equal to the
branch lengths in mutation units divided by the population
size parameter u¼ 0.05 (Fig. 3b). According to coalescent
theory, short branches (in coalescent units) are associated

Fig. 2. The heat map for the performance of species tree estimation methods. Gene trees (10, 20, 40, 60, 80, and 100) were
generated from a five-taxon species tree with the population size parameter u¼ 0.02 or 0.0002. High incomplete lineage sorting
(ILS) for u¼ 0.02 and no ILS for u¼ 0.0002. The branch lengths of the gene trees were multiplied by a scale parameter
(scale¼ 0.2, 0.4, 0.6, 0.8, 1.0). Gene trees were then used to simulate DNA sequences under the Jukes–Cantor model. The colors
represent the proportions of the correct species tree estimated by ASTRAL, STAR, greedy consensus, MP-EST, NJst, and
concatenation.
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Fig. 3. Simulation results for the Mammalian tree. a, The species tree used for simulating DNA sequence data. There are short
and long internal branches in the species tree. b, The average positive branch rates for species tree estimation methods. The
average positive branch rate is equal to the average of the positive branch rates across all internal branches of the species tree.
DNA sequences were simulated from 100 and 500 genes. c, The positive branch rate on each internal branch of the species tree
for the 100 genes simulation. On each branch, the numbers (from left to right) are the positive branch rates of ASTRAL,
concatenation, greedy consensus, MP-EST, NJst, and STAR, respectively. The short branches (branch length< 0.005 in mutation
units) are highlighted. d, The positive branch rate for the 500 genes simulation. The positive branch rates of all species tree
estimation methods increase when the number of genes increases to 500. On each branch, the numbers (from left to right) are
the positive branch rates of ASTRAL, concatenation, greedy consensus, MP-EST, NJst, and STAR, respectively.
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with high ILS. Overall, the average positive branch rates of
STAR and NJst are higher than those of other species tree
estimation methods (Fig. 3b). In contrast, ASTRAL and
consensus receive the lowest average positive branch rate
(Fig. 3b). Increasing the number of genes can improve the
performance of species tree estimation methods. For 500
genes, the positive branch rates of the species tree estimation
methods except concatenation (0.94) and greedy consensus
(0.86) are greater than 0.95. The improvement is more
significant for the coalescent-based methods than for
concatenation (Fig. 3b). When the number of gene trees
increases to 500, ASTRAL performs better than the concate-
nation and consensus methods (Fig. 3b). Moreover, the
positive branch rates for short internal branches are less than
those for long internal branches of the species tree (Figs. 3c,
3d). The positive branch rates of MP-EST, STAR, and NJst are
higher than those of ASTRAL, concatenation, and greedy
consensus (Figs. 3c, 3d). In general, the poor performance of

ASTRAL and consensus is more significant for short internal
branches of the species tree (Fig. 3c). In addition, the positive
branch rate is positively correlated with the length of
the internal branch of the species tree for all species tree
estimation methods (Fig. 4).

Conclusions
Genome-scale data have become increasingly available in
phylogenetic studies. Empirical analyses have demonstrated
strong evidence of heterogeneous gene trees. There are a
number of biological processes that can cause discrepancy
between gene trees and species trees. A reasonable
mathematical model for analyzing genome-scale data should
treat gene trees as random variables that may vary across
genes. Since the multispecies coalescent model allows gene
trees to vary across genes, it is more realistic than the
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Fig. 4. The correlation between the positive branch rate and the length of the internal branch of the species tree.
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concatenation model that assumes the same tree for all
genes. In fact, under certain conditions, the multispecies
coalescent model reduces to the concatenation model. Thus,
the coalescent methods perform well under the concatena-
tion model, but the concatenation methods may perform
poorly under the multispecies coalescent model, especially
when the internal branches of the species tree are short.

The evolution of multigene sequences involves two random
processes; the coalescent and mutation processes. The
performance of a species tree estimation method (coalescent
or concatenation) is determined bythe sampling error from
the combination of the two processes. When gene trees have
the same topology, the Bayesian coalescent methods and the
concatenation methods perform equally well, because they
use the same likelihood function to make inference about the
species tree. In contrast, the gene-tree-based coalescent
methods estimate species trees using only the topologies of
gene trees. Thus, when gene tree variation is primarily caused
by mutation errors, our simulation suggests that concatena-
tion outperform the gene-tree-based coalescent methods.
However, the performance of the gene-tree-based coalescent
methods can be greatly improved by increasing the number of
genes.

The coalescent-basedmethods are promising for accurately
estimating species trees from phylogenomic data. The
coalescent inference is based on the assumption that the
multispecies coalescent model is a good approximation to the
real biological process that causes incongruent gene trees.
There are preliminary attempts to assess the goodness of fit of
the multispecies coalescent model, but they were either
limited to small data sets (Reid et al., 2014) or they were based
on the distance between gene trees and the species tree
(Song et al., 2012), whichmay not have the power to reject the
multispecies coalescent model. Reid et al. (2014) evaluated
the multispecies coalescent model in a Bayesian framework
using posterior predictive simulation (PPS), in which the
estimated gene trees were compared with the predictive
distribution of gene trees. Since the predictive distribution of
gene trees is generated from a Bayesian coalescent approach
(i.e., �BEAST), PPS is not able to evaluate the multispecies
coalescent model for genome-scale sequence data. A
powerful goodness of fittest is needed to validate the
multispecies coalescent model for phylogenomic data.
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