Lecture 15. Genetic Variation
EEB 2245, C. Simon, 21 March 2017

### Last time...

- Uses of Evolutionary Biology (continued)
- Evolution vs Creationism

### This time...

- Importance of variation, polymorphisms
- Mendel's laws
- Deviations from Mendelian ratios (genetic and non genetic causes)

### This Time..

- Heritability, plasticity, selection, common garden, genetic assimilation, canalization
- Epigenetic inheritance
- H-W equation, assumptions, terminology, usefulness
- Importance of Lewontin & Hubby 1966

**Genetic Variation** 

Variation in traits results in multiple phenotypes within a population or "polymorphism"

- Systematists work with "type specimens"
- But in nature, species are not unvarying types
- Traits vary with-in and among-populations
- Thousands of examples of polymorphic traits,
- Examples: color or color pattern
  - Albino, melanistic, green vs. yellow, brown (or pink)
  - Mimicry pattern polymorphism

# Albino mutations











http://www.popartuk.com/gl/lig3734+brothers-albino-tiger-and-bengal-tiger-poster.jpg; http://www.hedgehogs.org/albino-hedgehog.jpg http://media.ebaumsworld.com/picture/DamianRules/albino1.jpg; http://rebel5ive.lbbhost.com/AlbinoFawn/AlbinoSquirrel.jpg

# Green/Brown Color Polymorphism *Kikihia peninsularis* cicadas from NZ







Orange and purple morphs, *Pisaster ochraceus* starfish Pacific NW http://resweb.llu.edu/sdunbar/students/Perumal\_clip\_image002\_0002.jpg

Heliconius butterflies- color pattern polymorphisms controlled by one large region of the genome less than one megabase long containing ~ 20 genes differing in expression among the different forms.



Polymorphism Examples in Futuyma:

- Blue geese vs snow geese (2 alleles, 1 locus)
- Swallowtail butterfly, *Papilio dardanus*, males nonmimetic, females mimic three very different species
- Multilocus traits w many alleles such as hair and skin color

# Simple Mendelian Inheritance

Given the following mating (one trait).. AA x aa  $\rightarrow$  F<sub>1</sub> A - dominant, a - recessive

All  $F_1$  genotype Aa (phenotype A) Aa x Aa  $\rightarrow F_2$ 

In F<sub>2,</sub> recessive alleles segregate out but minority (25%)

Review from basic biology....

### Mendel's laws

**Dominance**- two alleles, one from each parent. recessive alleles will segregate out in the next generation (hidden variation). Dominance can also be incomplete.

- •Segregation- paired alleles segregate at random into gametes
- Independent assortment- segregation of one pair of alleles is unrelated to the segregation of any other pair of alleles

### Non-Mendelian Inheritance

# Many factors can cause deviations from Mendelian ratios

e.g., tight linkage- alleles close together on the same chromosome.



Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance

### Non-Mendelian Inheritance

# Many factors can cause deviations from Mendelian ratios

e.g., tight linkage- alleles close together on the same chromosome.

### **Violates Independent assortment**

segregation of one pair of alleles **will be** related to the segregation of other pairs of alleles

The farther apart two loci on a chromosome, the more likely they are to assort independently

Crossing over.

Genes on same chromosome can assort independently

### Violation of Mendel's laws

- Independent assortmentsegregation of one pair of alleles unrelated to the segregation of any other
- Violated by Meiotic Drive = Segregation distortion
- •x-linked genes.
- increases the proportion of xbearing sperm (producing females).





# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles (in embryo)
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance



# Barbara McClintock (1902-1992)





- PhD, Cornell, 1927- maize genetics
- First genetic map for maize
- Role of telomere and centromere
- Cornell –Missouri (1936) -- Cold Spring Harbor (1941)
- 1940's-50's discovered transposition in maize
- National Academy of Sciences 1944
- 1953 Due to harsh skepticism--stopped publishing on transposition
- 1983 awarded Nobel Prize for this work

# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance

# Cultural inheritance (not Mendelian)- songs are learned in birds. Dialects are common.





# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance

# Phenotypic plasticity

• The capacity of an organism, of a given genotype, to express different phenotypes under different environmental conditions.

Not all variation is heritable.

Some variation comes solely from a plastic response to environmental stimuli.

$$V_{total} = V_{genetic} + V_{environment}$$



- Water containing chemical cues from predators (kairomones) ...
- induces changes in exoskeleton over life of Daphnia cucullata, water fleas
- · Helmet length,
- · body length,
- tail spine length



# $V_{total} = V_{genetic} + V_{environment}$







# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance





Both genetics and plasticity can affect a phenotype simultaneously





# Two theories for the effect of phenotypic plasticity on evolution...

- Plasticity will allow optimal phenotypic response to a wide variety of environments and therefore shield the genotype from selection.
- Phenotypic change induced by a new environment may prove adaptive and become genetically assimilated (Mary Jane West-Eberhard).

# Genetic Assimilation- Waddington 1953

- Drosophila cross-vein sometimes fails to appear if pupa given a heat shock.
- Waddington artificially selected individuals that responded to the heat shock over many generations.
- Eventually, a large proportion of the population was cross-veinless even without heat shock.
- The trait was genetically assimilated (no longer plastic).

# Does plasticity become genetically assimilated? Manduca quinquemaculata Tomato hornworm Low temperature morph High temperature morph Manduca sexta: Tobacco Hornworm Green at all temperatures.

### Definition: canalization

- Environmentally canalized- insensitive to alteration by environmental changes.
- Genetically canalized- a phenotype with a low sensitivity to the effects of mutation

# Epigenetic signals

- DNA methylation,
- Histone modifications (acetylation)
- Noncoding RNAs
- Transcription factors (TFs)

Control heritable cell memory and maintain cell identity. Effects behavior and lifespan.

Yan et al. 2015. ann. Rev. Entomol.

# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance

# Epigenetic inheritance

- E.g., DNA methylation
  - Methyl group joined to C-G couplet during replication
  - Can prevent or lower gene expression
  - Can be influenced ay environment, aging, maternal & paternal condition.





hans regard pro

Futuyma Example- mutant toadflax, caused ay extensive methylation of floral symmetry gene.

Methylation is lost in some lineages, e.g., Drosophila and Nematodes.

### Methylation-location in gene varies across lineages

Table 1 Evolutionary overview of DNA methylation

|                          |                          |                           | - 56      | ebylation status |             | ,            |
|--------------------------|--------------------------|---------------------------|-----------|------------------|-------------|--------------|
| Species                  | Common name              | CG<br>methylation<br>(%)* | Gene body | Promoter         | Transposons | Reference(s) |
| Home sapiens             | Human                    | 70-90                     | Yes       | Yes              | Yes         | 38<br>38,88  |
| Mini innecialni          | House mouse              | 74                        | Yes       | Yes              | Yes         | 38           |
| dpli mellifera           | Honey bee                | <1                        | Yes       | No               | No          | 38,88        |
| Harpognathu saltana      | Jerdon's jumping<br>ant  | ~0.2                      | Yee       | No               | No          | 17           |
| Componental<br>Meridanso | Florida carpenter<br>ant | <0.2                      | Yes       | No               | No          | 17           |
| Name a principental      | Jewel-warp               | 1-2                       | Yes       | No               | No.         | . 132        |
| Arabidipris theSana      | Thale cress              | 22-24                     | Yes       | Yes              | Yes         | 25,39        |

"KG methylation levels litted born in mones (A. melljine, H. adhaw, C. floridens, N. intrjenso) have been measured by bindfur removation followed by gameone wide superming (RS-seq). Another approach, amplified fragment length polymorphism (AVLP), in Bally to convenience DNA methylation (85, 80, 133).

Yan et al. 2015. Ann. Rev. Entomol.

# Epigenetic inheritance

- All ants in a colony share the same genes regardless of caste
- DNA methylation, juvenile hormone, nutrition → castes of social insects



Queens, males, workers (minors, majors, super majors)



# Causes of deviation from Mendelian ratios of offspring allele frequencies in crosses

- Tight Linkage (genetic hitch-hiking)
- Meiotic drive (segregation distortion)
- Lethal alleles
- Epistasis (many genes affecting one trait)
- Transposable elements
- New mutations (rare)
- Non-genetic variation- Cultural inheritance
- Plastic response to the environment
- Non-genetic variation- Maternal effects
- Epigenetic inheritance

A knowledge of Mendelian genetics led population geneticists Hardy and Weinberg to independently come up with the same equation to predict genotype frequencies in a population.

These processes equivalent to the assumptions necessary for the HW equation to work

- Diploid population
- No Natural selection (or tight linkage w another gene under selection)
- No Migration of alleles
- No New Mutations
- Random Mating
- Only one population has been sampled.

What does the H-W equation state?

Given that the assumptions of H-W are not violated then...

What does the H-W equation state?

Given that the assumptions of H-W are not violated then...

• Allele frequencies will not change from one generation to the next, and

What does the H-W equation state?

Given that the assumptions of H-W are not violated then...

- Allele frequencies will not change from one generation to the next, and
- Genotype frequencies of the offspring can be predicted by the equation:  $p^2 + 2pq + q^2 = 1$

A Naïve geneticist asked...

Given the following mating (one trait).. AA x aa  $\rightarrow$  F<sub>1</sub>

All the  $F_1$  will be Aa (phenotype A) Aa x Aa  $\rightarrow F_2$ 

In the  $\rm F_2$  recessive alleles will segregate out but will be in the minority (25%)

In future generations, will "a" disappear?

### What does the H-W equation state?

Given that the assumptions of H-W are not violated then...

- Allele frequencies will not change from one generation to the next, and
- Genotype frequencies of the offspring can be predicted by the equation:  $p^2 + 2pq + q^2 = 1$
- Where p = freq of allele A
   q = freq of allele a, and
   p + q = 1

No, Allele frequencies will not change from one generation to the next.

Calculations (but first some terminology...)

| Number indiv.<br>each genotype | Number of each allele |                   | Frequency of each genotype |
|--------------------------------|-----------------------|-------------------|----------------------------|
|                                | Α                     | а                 |                            |
| 25 AA                          | 50                    |                   | .25 = D                    |
| 50 Aa                          | 50                    | 50                | .50 = H                    |
|                                |                       | 50                | .25 = R                    |
| 25 aa                          |                       | 30                |                            |
| Total number of indiv. = 100   | Total nu              | umber<br>es = 200 |                            |



p = freq of "A" allele = #A alleles / total # alleles = 100/200 = 0.50

$$p = (D + \frac{1}{2}H) = 0.25 + \frac{1}{2}(0.50) = 0.50$$

q = freq of "a" allele = # a alleles / total # alleles = 100/200 = 0.50

$$q = (R + \frac{1}{2}H) = 0.25 + \frac{1}{2}(0.50) = 0.50$$