Ecology and evolution

Limnology

Lecture 2

Outline

- Lab notebooks
- Quick and dirty ecology and evolution review

The Scientific Method

- 1. Develop hypothesis (general models)
 - Null hypothesis
 - Alternative hypothesis
- 2. Develop prediction (specific)
- 3. Perform test
- 4. Evaluate test results, update hypothesis
- 5. Rinse and repeat

The Scientific Method

- 1. Develop hypothesis (general models)
 - Null hypothesis
 - Alternative hypothesis
- 2. Develop prediction (specific)
- 3. Perform test
- 4. Evaluate test results, update hypothesis
- 5. Rinse and repeat

Models – hypothesis/prediction

Model – simplified reconstruction of important components of nature

- 1. Descriptive
- 2. Predictive

Generality vs. predictability

Testing Predictions

No clear conclusion without manipulative experiments Unrealistic experiments can and do give irrelevant results

What Causes Patterns?

• e.g. why do tadpoles survive in one pond but not another?

- Proximate factor:

Predators ate all the tadpoles

– Ultimate factor:

• Tadpoles evolved greater fitness in predator-free habitat, have not adapted traits to survive predator

Ecology

• "Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms"

Charles Krebs (1972)

Ecology

Description of natural history ~1900

Explanation of mechanisms ~2000

Ecology

- Abundance and diversity of species over space and time
- Predict how many species of x occur at location y at time z
 - Often using trait variation, environmental variation, movement

Abiotic frame

- Physical and chemical characteristics of an environment
- Varies in space and time
- Species differ in their abilities to live & reproduce in different abiotic environments "niche"

Niche – n-dimensional hypervolume of environmental conditions in which a population has positive population growth

Landscape filters

Traits

Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. *JNABS*. 16(2): 391-409.

Evolution

"Nothing in biology makes sense except in the light of evolution"Theodosius Dobzhansky

The Ecological Theater and the Evolutionary Play - G.E. Hutchinson (1965)

Evolution

Change in genetic frequencies across generations

- 1. Neutral (drift, random mutation)
- 2. Fitness (natural selection)

Individual fitness – an individual's contribution of offspring to future generations

~ lifetime reproduction

Evolution by natural selection

- 1. Phenotypic Variation
 Phenotype outward appearance of an organism
- 2. Variation linked to Fitness differences (Natural selection)
- 3. Variation Inherited (genetic basis)

Evolution is Very Flne!

Phenotypic Variation

Phenotypic Variation

Heritability – degree to which offspring resemble parents in a trait

Evolution by natural selection

Phenotypic plasticity

Environment-dependent response of individuals

- non-genetic

Nature vs. nurture

Nature = genetics Nurture = environment

Common garden experiment – raise individuals under same conditions

Mixture (evolved plasticity)

Each population has same response

Each population responds to environment

Trade-offs in ecology and evolution

- 1. Tradeoff organism/ species can't be good at everything
- 2. Environments differ
- 3. Tradeoffs determine distribution of species and phenotypes

Trade-offs in ecology and evolution

E.g., Growth/predation risk tradeoff

Predator present

Trade-offs in ecology and evolution

E.g., Egg number/size tradeoff

Limited reproductive energy output

Many small eggs

Few large eggs

Specialist vs. Generalist

Jack of all trades, master of none

Tradeoffs mean that no species can be best at everything

Specialist – really good at one thing, crappy at all others

Generalist – okay at everything

Specialist vs. Generalist

Today:

Scientific method

Ecology

Evolution

Plasticity

Abiotic frame and landscape filters

Trade-offs

Specialist-Generalist

Next Week:

Lake origins

Lab – Dunham Pond physical chemical properties