Lect. 21. Geographic Variation (cont.)

13 April 2017

Four test questions most often missed.

- 8) Which of the following diseases is likely to evolve the strongest virulence?
 - a) Hepatitis C (transmitted by contact with contaminated bodily fluids)
 - b) Tuberculosis (airborne contamination)
 - c) Cholera (waterborne transmission)

Most missed test questions

- 20) You are a population biologist and you sample two populations, thinking that you have sampled just one. Which of the HW assumptions will appear to have been violated in your composite population as a result of your mistaken sampling?
 - a) No new mutations,
 - b) Random mating (panmixia),
 - c) Infinite population size,
 - d) No migration,
 - e) No selection.

Most missed test questions

- 41) How will a short bottle neck affect number of alleles in a population?
 - a) Little effect,
 - b) Strong effect,
 - c) No effect

Most missed test questions

- 47) Pocket gophers have strong among-population differences in allozyme frequency. Chromosomal translocations differ among populations and contribute to a lack of gene exchange and suggest speciation in progress. Why is it suspected that something other than natural selection has led to differences among populations in chromosomal translocation type?
 - a) Because 4 out of six gametes have incomplete gene complements and natural selection does not act to lower fitness
 - b) Because no gene flow is occurring
 - c) Because the populations are small
 - d) All of the above.

Last time ...

- Competitive character displacement
- Sexual Selection
- Conflicting selection pressures (sexual selection and predation)
- Frequency dependent selection
- Multiple niche polymorphisms
- Balancing selection
- Begin Geographic Variation clines, geographic races, selection & clines.

This time ...

- Reasons for clines.
- Factors that reduce or prevent gene flow

Reasons for clines

- 1) Correlation w environmental variables (abiotic or biotic)
- 2) Genetic Hitching w selected trait
- Secondary contact btw two formerly isolated populations- maintained by balance btw gene flow & selection; can be permanent or temporary.

Latitude

Ensatina salamanders "Ring Species"

What are the consequences of isolation by distance?

What are the consequences of secondary contact?

Ring species

A natural experiment.

Ensatina salamanders

Northern populations migrated south in mountains

Interbreeding (intergradation) around the ring

E. e. eschscholtzii &

E. e. klauberi do not interbreed!

http://www-tc.pbs.org/wgbh/evolution/library/05/2/images/I_052_05_I.jpg

Factors that Reduce or Prevent Gene Flow Between Species

- Pre-Mating, Pre-zygotic
- Post Mating, Pre-zygotic
- Post Mating, Post-zygotic

What determines the success of mating?

- Ability to attract mates
- Physical ability to mate
- Ability of offspring to develop
- Ability of offspring to survive and reproduce

I. Pre-Mating, Pre-Zygotic

- Adults do not meet: Spatial Isolation
 - Red- & yellow-shafted flickers (next slide)
 - Hawaiian Banza katydid species on different islands or volcanoes

Adults do not meet (well, they didn't until people came along) Fig. 9.25. Subspecies of flickers.

I. Pre-Mating, Pre-Zygotic (cont.)

- Adults do not meet: Temporal Isolation
 - All 17-year cicada broods
 - Plants with anthers maturing at times different from stigmas.
 - Gryllus veletis & Gryllus pennsylvanicus crickets w/ spring vs. fall adults

Allochronic 17-year cicada broods

If in different populations, anthers mature at different

times than stigmas, crossing is inhibited.

I. Pre-Mating, Pre-Zygotic (cont.)

- Adults meet but don't mate
 - Visual- color, dances, light flashes
 - Auditory- substrate borne vibrations, air-borne vibrations
 - Chemical- pheromones

I. Pre-Mating, Pre-Zygotic (cont.)

Color pattern, dances (push-ups)

Anolis dulaps

Australian Peacock Spider

http://www.youtube.com/watch? feature=player_embedded&v=9GgAb yYDFeg

Color pattern, songs, & dances

http://gallery.photo.net/photo/2271187-lg.jpg; http://www.hpfineprints.com/images/LearGouldbirds/Birds of Paradise1.jpg

Fireflies

Light flashes

Species specific timing & flight paths

Aggressive mimicry

http://ase.tufts.edu/biology/Firefly/flying.jpg; http://www.sciencenewsforkids.org/articles/20060614/a1156_art962.jpg

Massimo Gugliucciello http://yourshot.nationalgeographic.com/photos/3618920/?source=gallery

Hawaiian picture-wing *Drosophila mating dance,* + song and pheromones

Near-field air pulsing: Diptera, Drosophila

Excitation of substrate by tymbals: Hemiptera, Auchenorrhycha

Excitation of substrate by abdominal jerking: Neuroptera, Chrysoperla

Illustration by Charles Henry

Substrate borne vibrations

Photos by William Mull

Hawaiian planthoppers

Male-female duets

Dictyophorodelphax miriabilis

Figure 61—Holotypes of Nesosydne: a, N. nubigena Kirkaldy, male; b, rear view of pygophore of a; c, the same in lateral outline; d, N. nephelias Kirkaldy, male

Planthopper genus: Nesosydne

Sounds from Hannelore Hoch & Manfred Asche

Audible songs Cicadas

The NZ clicking cicada:

Amphipsalta zelandica

Wing clicks

Timbal vibrations

D.C. Marshall et al. / Molecular Phylogenetics and Evolution 48 (2008) 1054-1066

In NZ cicadas, females respond to male song by wing flicking to denote receptivity:

Dan Vanderpool demonstrates w/ Maoricicada campbelli

II. Post-Mating, Pre-Zygotic

- Lock and Key Hypothesis
- Sexual selection by female choice
 - Evidence for selective elimination of sperm from multiple fathers
 - F evaluate M quality during, & after copulation
- Zygote mechanically fails to form

Phyllophaga May beetles > 200 spp.

Photos by Maxi Polihronakis

Male genitalia of *Phyllophaga* sp.

P. infidelis- Lateral view

P. knochii- Lateral view

Photos by Maxi Polihronakis

P. glaberrima- lateral view

P. hornii- lateral view

P. gracilis- lateral View

P. ilicis- lateral view

Photos by Maxi Polihronakis

Stages at which zygote formation can fail

- 1. Attraction of sperm to egg
- 2. Induction of sperm acrosome by egg surface proteins.
- 3. Adhesion of sperm to egg envelope
- 4. Penetration of egg envelope by sperm
- 5. Fusion of sperm and egg cell membranes
- 6. Fusion of sperm and egg nuclei

Lee & Vacquier sequenced Lysin gene in seven species of Abalone

Abalone

Lysin in abalone

Lee & Vacquier (1992) Biological Bulletin. 182:97-104.

- Sequenced 7 species of abalone.
- Detected positive selection at AA level in <u>active site</u> of Lysin protein in 20/21 pairwise comparisons.
- McDonald Kreitman test: d_N/d_S where
 N= non-synonymous (AA replacement) and
 S = synonymous (Silent)
- $d_N/d_S > 1 = positive selection$

Swanson and Vacquier. 2002. Ann. Rev. Ecol. Evol. Syst. 33: 161-179.

Table 1. Evidence that reproductive genes evolve quickly

Gene (locus)	Organism	${\bf Evidence\ for + selection}$	Reference
Pollen coat proteins	Arabidopsis	None	(Mayfield et al. 2001)
Lysin	Tegula & Haliotis (turban snails and abalone)	Overall $d_N/d_S > 1$	(Hellberg & Vacquier 1999, Lee et al. 1995)
sp18	Haliotis (abalone)	Overall $d_N/d_S > 1$	(Swanson & Vacquier 1995a)
TMAP	Tegula (turban snails)	Overall $d_N/d_S > 1$	(Hellberg et al. 2000)
Bindin	Sea urchins	Region with $d_N/d_S > 1$	(Metz & Palumbi 1996)
Acp26Aa	Drosophila	Lineage with $d_N/d_S > 1$	(Tsaur & Wu 1997)
Acp36DE	Drosophila	Polymorphism survey	(Begun et al. 2000)
ZP3	Mammals	Class of sites with $d_N/d_S > 1$	(Swanson et al. 2001c)
ZP2	Mammals	Class of sites with $d_N/d_S > 1$	(Swanson et al. 2001c)
OGP	Mammals	Class of sites with $d_N/d_S > 1$	(Swanson et al. 2001c)
Zonadhesin	Mammals	None	(Gao & Garbers 1998)
TCTE1	Mammals	None	(Juneja et al. 1998)
Protamines	Mammals	$d_N/d_S > 1$	(Wyckoff et al. 2000)

Swanson & Vacquier. 2002. AREES.

III. Post-Mating, Post-Zygotic

- A. Zygote forms, embryo dies
- B. Hybrids are produced but are of low fitness
- C. Adult offspring are viable but sterile or partially sterile.

Factors that reduce gene flow

R. pipiens x R. sylvatica

Hybrid embryo stops developing at early gastrula stage

donkey x horse = sterile mule

Drosophila paulistorum semispecies

- Guatemala to southern Brazil
- Six genetically homogeneous "strains" or semispecies: 1) Centroamerican, 2) Andean-Brazilian, 3) Orinocan, 4) Interior, 5) Amazonian, 6) Transitional.
- Outcomes of crosses:
- a) Hybrids F1 males sterile; F1 females fertile.
- b) No hybrids form
- c) In one case: vigorous fertile F1 hybrids ("Transitional" group x Centroamerican or Andean-Brazilian).

JBS Haldane

Haldane's Rule

- Background: In Humans and Drosophila, males are heterogametic, but in other organisms, e.g., most amphibians, birds, butterflies and reptiles, the female is heterogametic.
- Rule: when sterility is confined to one sex, it will always be the heterogametic sex. Why?
- Partial explanation: when recessive deleterious alleles causing hybrid problems are on sex chromosomes they are expressed in heterogametic hybrids but not in homogametic hybrids. Orr, A. 1997. Ann. Rev. Ecol. Syst.

Question: How does fertilization ability differ in hybrid crosses between close vs distant species?

- Breeds of dogs?
- Wolf vs. dog or coyote?
- Dog vs. cat?

Hawaiian *Echinometra* sea urchins

Exception to the rule:

- In most sea urchins, the more distantly related are two species, the lower the percentage of hybrid zygotes.
- In Hawaii, two very closely related species live in same environment and show complete reproductive isolation. What is the cause of this isolation?

Selection at the bindin locus varies across genera of Sea Urchins

- Positive selection is indicated at the active site of bindin in *Echinometra* and *Stronglyocentrotus*
- No evidence of selection in four species of Arbacia. Bindin sequences conserved across species. Why?
 - One hypothesis, these four spp. are all allopatric.
 - Alternatively, bindin in Arbacia species may be under increased functional constraint.

Arbacia lixula

Stronglyocentrotus purpuratus

Echinometra mathaei

Reasons for Post-mating incompatibility with increasing genetic distance:

- allele combinations are not ideal (breakdown of coadapted allele complexes)
- b) genes or gene products don't work well together (mtDNA x nuc DNA incompatibility; or mismatch between regulatory protein and target protein)
- chromosomes contain translocations, inversions, or differ in number. Can't pair properly.

End Lecture 21

To be continued next time...