Selecting models of evolution
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10.1 Models of evolution and phylogeny reconstruction
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Phylogenetic reconstruction is a problem of statistical inference. Since statistical
inferences cannot be drawn in the absence of probabilities, the use of a model
of nucleotide substitution or amino acid replacement ~ a model of evolution —
becomes indispensable when using DNA or protein sequences to estimate phylo-
genetic relationships among taxa. Models of evolution are sets of assumptions
about the process of nucleotide or amino acid substitution (see Chapters 4 and 9).
They describe the different probabilities of change from one nucleotide or amino
acid to another along a phylogenetic tree, allowing us to choose among different
phylogenetic hypotheses to explain the data at hand. Comprehensive reviews of
models of evolution are offered elsewhere (Swofford et al., 1996; Lid & Goldman,
1998).

As discussed in the previous chapters, phylogenetic methods are based on a
number of assumptions about the evolutionary process. Such assumptions can be
implicit, like in parsimony methods (see Chapter 8), or explicit, like in distance or
maximum likelihood methods (see Chapters 5 and 6, respectively). The advantage
of making a model explicit is that the parameters of the model can be estimated.
Distance methods can only estimate the number of substitutions per site. However,
maximum likelihood methods can estimate all the relevant parameters of the
model of evolution. Parameters estimated via maximum likelihood have desirable
statistical properties: as sample sizes get large, they converge to the true value and
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have the smallest possible variance among all estimates with the same expected
value.

It is well known that the use of one model of evolution or another may change
the results of a phylogenetic analysis (Sullivan & Joyce, 2005). When the model
assumed is wrong, branch lengths, transition/transversion ratio, and divergence
may be underestimated, while the strength of rate variation among sites may be
overestimated. Simple models tend to suggest that a clade is significantly supported
when it cannot be, and tests of evolutionary hypotheses (e.g. of the molecular clock,
see Chapter 11) can become conservative. In general, phylogenetic methods may be
less accurate (recover an incorrect tree more often), or may be inconsistent {con-
verge to an incorrect tree with increased amounts of data) when the assumed model
of evolution is wrong. Cases where the use of wrong models increases phylogenetic
performance are the exception, and they rather represent a bias towards the true
tree due to violated assumptions. Indeed, models are not important just because of
their consequences in the phylogenetic analysis, but because the characterization
of the evolutionary process at the molecular level is itself relevant.

Models of evolution make assumptions to make complex problems computa-
tionally tractable. A model becomes a powerful tool when, despite its simplified
assumptions, it can fit the data and make accurate predictions about the problem
at hand. The performance of a method is maximized when its assumptions are
satisfied, and some indication of the fit of the data to the phylogenetic model is
necessary. If the model used may influence the results of the analysis, it becomes
crucial to decide which is the most appropriate model to work with.

Before proceeding further, a word of caution should be said when selecting best-
fit models for heterogeneous data, for example, when joining different genes for the
phylogenetic analysis, or coding and non-coding regions. Since different genomic
regions are subjected to different selective pressures and evolutionary constraints, a

“ single model of evolution may not fit well with all the data. Nowadays, some options

exist for a combined analysis in which each data partition (e.g. different genes) has
its own model (Nylander et al,, 2004). In addition, mixture models consider the
possibility of the model varying in different parts of the alignment (Pagel & Meade,
2004).

10.2 Model fit

In general, models that are more complex will fit the data better than simpler
ones just because they have more parameters. An a priori attractive procedure
to select a model of evolution would be the arbitrary use of the most complex,
parameter-rich model available. However, when using complex models a large
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number of parameters need to be estimated, and this has several disadvantages.
First, the analysis becomes computationally difficult, and requires a large amount
of time. Second, as more parameters need to be estimated from the same amount
of data, more error is included in each estimate. Ideally, it would be advisable to
incorporate as much complexity as needed, i.e. to choose a model that is intricate
enough to explain the data, but not that complicated that requires impractical long
computations or large data sets to obtain accurate estimates.

The best-fit model of evolution for a particular data set can be selected using
sound statistical techniques. During the last few years different approaches have
been proposed, to select the best-fit model of evolution within a collection of can-
didate models, like hierarchical likelihood ratio tests (hLRTs), information criteria,
Bayesian, or performance-based approaches. In addition, although not considered
here, the overall adequacy of a particular model can also be evaluated using different
procedures (Goldman, 1993; Bollback, 2002).

Regardless of the model selection strategy chosen, the fit of a model can be
measured through the likelihood function. The likelihood is proportional to the
probability of the data (D) given a model of evolution (M), a vector of K model
parameters (6), a tree topology (7), and a vector of branch lengths (v):

L=P(D|M60,t,v) (10.1)

When the goal is to compute the likelihood of a model, the parameter values and
the tree affect the calculations, but they are not really what we want to infer (they
are nuisance parameters). A standard strategy to “remove” nuisance parameters is
to utilize their maximum likelihood estimates (MLEs), which are the values that
make the likelihood function as large as possible:

6,%,0 = max L(6, T,v) (10.2)

o,t,v

Note that, to facilitate the computation, we usually work with the maximized log
likelihood:

¢=InP(D|M, 0,2, 0) (10.3)

Alternatively, in a Bayesian setting we can integrate the nuisance parameters out
and obtain the marginal probability of the data given only the model (P(DIM), also
called model likelihoods), typically using computationally intensive techniques like
Markov chain Monte Carlo (MCMC). Integrating out the tree, branch lengths,
and model parameters to obtain P(DIM) is represented by:

P(DIM)—_—/// P(D|M,0,7,v)P(B,t,vIM)dodrdv (10.4)
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10.3 Hierarchical likelihood ratio tests (hLRTs)

* A standard way of comparing the fit of two models is to contrast their log likelihoods
using the likelihood ratio test (LRT) statistic:

LRT =2(¢, — &) (10.5)

where £, 1s the maximum log likelihood under the more parameter-rich, complex
model (alternative hypothesis) and £; is the maximum log likelihood under the
less parameter-rich simple model (null hypothesis). The value of this statistic is
always equal to, or greater than, zero, even if the simple model is closest to the
true model, simply because the superfluous parameters in the complex model
provide a better explanation of the stochastic variation in the data than the simpler
model. When the models compared are nested (i.e. the null hypothesis is a special
case of the alternative hypothesis) and the null hypothesis is correct, this statistic
is asymptotically distributed as a x* distribution with a number of degrees of
freedom equal to the difference in number of free parameters between the two
models. When the value of the LRT is significantly large, the conclusion is that the
inclusion of additional parameters in the alternative model increases the likelihood
of the data significantly, and consequently the use of the more complex model is
favored. On the other hand, a small difference in the log likelihoods indicates that
the alternative hypothesis does not explain the data significantly better than the
null hypothesis. '

That two models are nested means that one model (null model or constrained
model) is equivalent to a restriction of the possible values that one or more param-
eters can take in the other model (alternative, unconstrained or full model). For
example, the Jukes—Cantor model (JC) (1969) and the Felsenstein (F81) (1981)
models are nested. This is because the JC model is a special case of the F81, where
the base frequencies are set to be equal (0.25), while in the F81 model these fre-
quencies can be different. When comparing two different nested models through an
LRT, we are testing hypotheses about the data. The hypotheses tested are those rep-
resented by the difference in the assumptions among the models compared. Several
hypotheses can be tested hierarchically to select the best-fit model for the data set at
hand among a set of possible models. Are the base frequencies equal? Is there a tran-
sition/transversion bias? Are all transition rates equal? Are there invariable sites? Is
there rate homogeneity among sites? And so on. For example, testing the equal base
frequencies hypothesis can be done with a LRT comparing JC vs. F81, as these mod-
els only differ in the fact that F81 allows for unequal base frequencies (alternative
hypothesis), while JC assumes equal base frequencies (null hypothesis). Indeed,
the same hypothesis could also have been evaluated by comparing JC + T vs.
F81 + I', or K80 + I vs. HKY + I, or SYM vs. GTR. An example of such a
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hierarchical LRT procedure (hLRT) for 24 models is shown in Fig. 10.1. The hLRTs
can be easily accomplished by using the program MoDELTEST (Posada & Crandall,
1998) for a set of 56 candidate models (see the practice section in this chapter).

10.3.1 Potential problems with the hLRTs

We should be aware that there are some potential problems derived from the use of
pairwise LRTs for model selection (Posada & Buckley, 2004). The x* distribution
approximation for the LRT statistic may not be appropriate when the null model
is equivalent to fixing some parameter at the boundary of its possible values
(Whelan & Goldman, 1999). An example of this situation is the invariable sites test.
In this case, the alternative hypothesis postulates that the proportion of invariable
sites could range from 0 to 1. The null hypothesis (no invariable sites) is a special
case of the alternative hypothesis, with the proportion of invariable sites fixed to 0,
which is at the boundary of the range of the parameter in the alternative model. In
this case, the use of a mixed x? distribution (50% x¢ and 50% x} ) is appropriate.
However, even after using the most appropriate x* distribution, obtaining correct
P-values for the LRT statistics can be difficult, because LRTs implicitly assume that
at least one of the models compared is correct. Moreover, when the two competing
hypotheses are not nested the x* approximation may perform poorly when the data
include very short sequences relative to the number of parameters to be estimated.
In these cases, the null distribution of the LRT statistic can be approximated by
Monte Carlo simulation.

In addition, which model comparison is used to compare which hypothesis
depends on the starting model of the hierarchy, and on the order in which different
hypotheses are performed. For example, it could be possible to start with the simple
JC or with the most-complex GTR + I + I'. In the same way;, a test for equal base
frequencies could be performed first followed by a test for rate heterogeneity among
sites, or vice versa. Many hierarchies of LRTs are possible, and they can result in
different models being selected (Posada & Crandall, 2001; Posada & Buckley, 2004),
and in some cases they can even lead to the estimation of different trees (Pol, 2004).

10.4 Information criteria

A different approach for model selection is the simultaneous comparison of all
competing models. The idea again is to include as much complexity in the model
as needed. To do that, the likelihood of each model is penalized by a function
of the number of free parameters in the model (K); the more parameters, the
bigger the penalty. The Akaike Information Criterion or AIC (Akaike, 1974) is an
asymptotically unbiased estimator of the Kullback-Leibler information quantity
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(Kullback & Leibler, 1951), which measures the expected distance between the true
model and the estimated model:

AIC = —-2{ 42K (10.6)

We can think of the AIC as the amount of information lost when we use, say
HKY85, to approximate the real process of molecular evolution. Hence, the model
with the smallest AIC is preferred. If branch lengths are estimated de novo for
every model, as is usually the case, K will include the number of branches (twice
the number of taxa minus three). An advantage of the AIC is that it can be used
to compare both nested and non-nested models. When sample size (n) is small
compared with the number of parameters (n/K < 40) a corrected version of the
AIC 1s recommended:

AIC, = AIC+ KK+ (10.7)
n—K-—1

Note that sample size is usually approximated by the total number of characters

in the alignment, although what is the sample size of an alignment is still an

open question. The AIC and AIC, calculations are implemented in the programs

MoDELTEST and PROTTEST (Abascal et al, 2005) for DNA and protein sequences,

respectively.

10.5 Bayesian approaches

Model selection can be implemented in a Bayesian setting using Bayes factors,
posterior probabilities or the Bayesian Information Criterion. Bayes factors are
similar to the LRTs in that they compare the evidence (here, the model likelihoods)
for two competing models:

;= DLD1M) (10.8)
P(D|M;)

In this case, evidence for M; is considered very strong if By > 150, strong if
12 < B; < 150, positive if3 < B < 12, barely worth mentioning if 1 < Bj; <3, and
negative (supports M;} if B; < 1. Bayes factors for models of molecular evolution
can be calculated using reversible jump MCMC (Huelsenbeck et al., 2004) (see also
Chapter 7).

In addition, when multiple models are considered, it is possible to choose the
model with the highest posterior probability (Raftery, 1996). For R candidate
models, the posterior probability of the ith model is:

P(D|M;)P(M;)
3L P(DIM)P(M,)
where P(M) are the model prior probabilities.

P(M;|D) = (10.9)
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Both Bayes factors and model posterior probabilities can be difficult to compute.
The Bayesian Information Criterion (BIC) (Schwarz, 1978) provides an approxi-
mate solution to the natural log of the Bayes factor:

BIC = —2£+ Klogn (10.10)

The smaller the BIC, the better the fit of the model to the data. Given equal priors
for all competing models, choosing the model with the smallest BIC is equivalent
to selecting the model with the maximum posterior probability. Because with
standard alignments the natural log of # is usually >2, the BIC tends to choose
simpler models than the AIC. Like the AIC, the BIC can be used to compare nested
and non-nested models. The BIC calculation is implemented in the progr.ams
MODELTEST and PROTTEST.

10.6 Performance-based selection

Arguing that there is no guarantee that the best-fit models will produce the best
estimates of phylogeny, Minin et al. (2003) developed a novel approach that selects
models on the basis of their phylogenetic performance, measured as the expected
error on branch lengths estimates weighted by their BIC. Under this decision the-
oretic framework (DT) the best model is the one with that minimizes the risk

function:
XR: X R | e—BICi/2
C; ~ B; — B; R (10.11)
P ijl e~ BICi/2
where
, 2t-3
B —B,]| = Z (By— Bjp)? (10.12)

=1

and where tis the number of taxa.

Indeed, simulations suggested that models selected with this criterion result in
slightly more accurate branch length estimates than those obtained under models
selected by the hLRTs (Minin et al., 2003; Abdo et al., 2005).

10.7 Model selection uncertainty

One big advantage of the AIC, Bayesian, and DT methods over the hLRTs is that
they can rank models, allowing us to assess how confident we are in the model
selected. Indeed, models could be ranked according to posterior probabilities, and
credible intervals could easily be constructed by summing these probabilities. For



353

Selecting models of evolution: theory

other relative measures like the AIC or BIC, we could present their differences (A).
For example, for the ith model, the AIC (or BIC) difference is:

AAIC; = AIC; — min AIC (10.13)

where min AIC is the smallest AIC value among all candidate models.
Very conveniently, we can use these differences to obtain the relative weight (w;)
of each model:

exp(—1/24A;)
ZrR:1 exp(—1/2A,)

Note that the weights for every model add to 1, so it is easy to establish a 95%

(10.14)

;=

confidence set of models for the best models by summing the weights from largest
to smallest from largest to smallest until the sum is just 0.95 (or similar).

10.8 Model averaging

Very interestingly, the model weights (or the posterior probabilities) allow us
to obtain a model-averaged estimate (also called a multimodel estimate) of any
parameter (Raftery, 1996; Wasserman, 2000; Burnham & Anderson, 2003; Hoeting
et al., 1999; Madigan & Raftery, 1994). For example, a model-averaged estimate of
the relative substitution rate between adenine and cytosine {¢ 4_¢) using the model
weights (w) for R candidate models would be:

ZiR:[wi Iy, (M)oa_c,

bac= , 10.15)

Va-c w+ (Qa-c) (
where

R

Wt (@ac) =) wily, (M), (10.16)

and
1 if@s_cisi del M;,
I (M) = if 4_c isin mode (10.17)

0 otherwise

Remarkably, it is possible to construct a model-averaged estimate of the phy-
logeny itself. Also, note that some parameters do not have the same interpretation
across different models. For example, the shape of the gamma distribution (,
commonly used to describe among-site rate variation) in a + I' model is not the
same parameter as « in a + I + I model.

Furthermore, if we sum up the weights of the models that contain a given param-
eter we will get an estimate of the relative importance of that parameter (ranging
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from 0 to 1). For example, the relative importance of the relative substitution
rate between adenine and cytosine is simply the w + (ga—c) coefficient above.
Because we usually do not explore all the possible combinations of parameters in
the set of candidate models, the relative importance of some parameters can be

correlated.



