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Tree and Branch Confidence

* Trees and/or clades are hypotheses
- without measures of reliability trees are just summaries of
data at hand

* trees or clades are hypotheses and must be viewed with
caution, esp. if there is appreciable homoplasy

* with only four bases convergence is a certainty
* or too little data

* data correction isa bestguessi we donot really
happened



ree and Branch Confidence

* Every tree dependent on the
- algorithm used
- taxon sampling
- outgroup selection
- gene/data selection
- homology/alignment decisions (and gap models)
- data exclusion decisions
- model choice (and fit with data)
- analysis decisions (e.g., partitions)
- etc.

* Uncertainty necessitates measures of reliability



Tree and Branch Reliability

(1) Consistency and Retention Indices

(2) Decay Indices

(3) Nonparametric Bootstrapping

(4) Parametric Bootstrapping (see also comparing
trees lecture)

(5) Jackknifing

(6) Bayesian Posterior Probabilities

(7) Data Exploration/Sensitivity Analyses



Consistency Index

* for character = minimum # changes/observ. # changes
e.g., if two-state character evolves three times on a tree
c.l. will be 1/3=0.333;

e.g., If two-state character evolves fives times on a tree
c.i. will be 1/5=0.2

* morphologists (subconsciously) evaluating c.i. during their
character selection (jettison characters with low cis)

* c.l1. for cladogram tree = ensemble c.i.

minimum # steps for all characters

# observed steps for all characters



Problems with Consistency Indices

1) Upper bound is 1.0 (when there is no homoplasy)
- but lower bound is undefined
2) C.l.s are correlated with numbers of characters
as well as numbers of terminal taxa
- greater numbers introduce chances for
character conflict
- thus c.I. falls off in larger data sets
3) canot compare c¢c.I1 . ac
4) redundancy In taxa or characters inflates c.l.
5) autapomorphic characters inflate the c.l.

I
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Retention Index
(Farris 1989)

* measures amount of synapomorphy

*1.1. = (g-s)/(g-m)

*where g = maximum homoplasy possible (on star tree)
s = observed change (in a given tree)
m = minimum amount of change possible
* measure homoplasy as a fraction of the maximum possible
homoplasy

ensemble r.i. (of tree) calculated in an analogous fashion
R =S (g-s)/(g-m)



Retention Index

* retention index scales to zero

* Imagine a data set with 100 taxa and a binary character
that is present in 10 of the 100 and it evolve 3 times:
c.l. =1/3=.33;r.1.=10-3/10-1 =7/9 = 0.777

* But in smaller data set the r.i. would be smaller
- character that changed three times among ten taxa
would have a ci = 0.33
- but r.i. would now fall to 3-3/3-1 =0/2=0
* Excludes autapomorphies
- because with autapomorphies: g, s, and m are all 0
*r.1. also tends to fall off monotonically with data set size
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Bremer Support or Decay Index
(Bremer 1995)

Bremer support value = the # of extra steps needed to lose a
branch in the consensus tree of all most parsimonious trees

stated differently: difference in length between the most
parsimonious tree(s) and the shortest trees in which the
branch of interest is not resolved (Schuh and Brower 2009)

Watch for branch loss among strict consensus trees as steps are
added to the tree lengths.



Bremer Support

* Goal: to eliminate support for a branch that could be due to
homoplasy
- because homoplastic characters will map on a tree in
many ways, by considering trees that are one or two steps
longer, groups held together by homoplasies will disappear
early in a decay analysis

* Think of them as successively relaxed parsimony

* PAUP calculates by constraining tree and counting number
of extra steps required for clade (autodecay/treerot option)

* Bremer support (decay indices) and bootstraps values
often plotted together along a given branch
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Bremer Support

* |ssues: meaning vague; not comparable
- tend to be very large in molecular data sets

* commonly used in parsimony analyses, esp. for
morphological data (because of fewer numbers of
characters)



Non-parametric Bootstrap
(Felsenstein 1985)

* bootstrapping is a statistical technique used to estimate the
variability of a statistic when the underlying distribution is
unknown. . .It gets i1 ts name f
by the bootstraps in a statistically difficult situation

* pasically trying to estimate unknown mean and variance of
a sample or population by random resampling of data
* youore forced to resample vy
* a matter of taking pseudosamples to estimate the true
mean
* widely used "reliability" measure, esp. for molecular data
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Non-parametric Bootstrap Method
(Felsenstein 1985)

(1) characters are randomly sampled from data set with replacement
until data set of equal size is obtained
* make pseudoreplicate by randomly sampling columns from your

data matrix to make new sample of equal size

* some characters sampled more than once, others not at all

(2) generate tree from each pseudoreplicate

(3) repeat process, I.e., resample data and generate tree from each
pseudoreplicate100 to 1000 times

(4) generate majority rule consensus tree

(5) record fraction of times each branch was recovered:
e.g., if 760 trees out of a 1000 bootstraps had a given clade
bootstrap value for clade = 76



Bootstrap values are not confidence intervals

*theyareameasure of i nternal br
rel i abil i tyo

* they measure not whether a branch is real but the
probability of getting this same branch if more data were

collected

* systematic error in data (or analysis) could result in high
bootstrap value as more data is collected but the node

(grouping) could be wrong



* another way to think about bootstrap branch
estimates:

* 1-P = probability of getting that much evidence
If the group, in fact, did not exist

* Thus, if a branch comes up supported 93% of the
time: 1-93%=7%
- 7% of the time you can expect to see this branch (this
well) supported when in fact the group does not exist)



Non-parametric Bootstrap

*In a (statistical) bootstrap every character is supposed to
be independent and identically distributed, they are not Iin
phylogenetics, but we still use them (meaningfully)

* If multiple comparisons are being made (i.e., branch
lengths being evaluated) one should employ Bonferroni
correction (see Felsenstein 2004)

- e.g., If you care about the monophyly and branch support
for twenty nodes on your tree, statistically you should expect
1 of the 20 to be well supported by chance alone

* low bootstrap values (ca. under 70%) tend to be
overestimates of signal; and high bootstrap values (ca. over
70%) tend to be low estimates of phylogenetic signal (Hillis
and Bull 1993; Zharkikh and Li 1995, Li and Zharkikh 1995)



Parametric Bootstrap

(Efron 1985; Huelsenbeck et al. 1996)

* a hybrid between simulation and bootstrapping

* with parametric (an non-parametric) bootstrapping the goal
IS to mimic the variability one would get if you were
taking independent phylogenetic estimates of the true
tree (mean)

* I'n parametri c bootstrappi ng
generate estimates I n the Vv
same (statistical) model of evolution to generate
simulated data matrices A trees



Parametric Bootstrap Method
(Efron 1985; Huelsenbeck et al. 1996)

1) build best tree

2) generate simulated data sets using estimated branch
lengths and other parameters (e.g., alpha and
substitution model) (from tree/data)

3) build new tree for simulated data set
4) replicate 100 to 1000 times

5) generate majority rule consensus or tally fraction of the
trees that come out with each topology



Parametric Bootstrap

+German_Neanderthal

- Russian_Meanderthal

< Eurapean_Human

< Chimp_Troglodytes

< Chimp_Schweinfurthii

< Chimp_Verus

Use tree branches
and model to simulate
new data matrices

Simulation 1

Germ Neand CCTGGCATAA ATCGCATACG

Rus Neand
Europ. Hum
Chimp trog

CCTGGCATAA ATCGCATACG
CCTGGCATTA ATCGCATTCG
ACTGGCTTTA ATCGCATTCG

Chimp Schw ACTGGCTTTA ATCGCATTCG
Chimp venus ACTGGCATTA ATCGCATTCG

Germ Neand
Rus Neand
Europ. Hum
Chimp trog
Chimp Schw
Chimp venus

Simulation 2
ACAGGCATAA ATCGCATACG
ACAGGCATAA ATCGCATACG
ACAGGCATTA ATCGCATTCG
ACTGGCTTTA ATCGCATTCG
ACTGGCTTTA ATCGCATTCG
ACTGGCATTA ATCGCATTCG

Simulation 3

Germ Neand ACAGGCATAA ATCGCATACG

Rus Neand
Europ. Hum
Chimp trog

ACAGGCATAA ATCGCATACG
ACAGGCATTA ATCGCATTCG
ACTGGCTTTA ATCGCATTCG

Chimp Schw ACTGGCTTTA ATCGCATTCG

Chimp venu

s ACTGGCATTA ATCGCATTCG

To n replicates

_>T1

T,

_>T3



(a) Assumed tree (b) Frequency of each tree recovered
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Fig. 6.38 Parametric bootstrapping. Three alternative trees for 18S rRNA sequences from a
bird, mammal, crocodile and lizard are shown on the left. For each tree 1000 artificial data
sets of the same length as the original 18S rRNA data were generated using parameters
derived from that tree. On the right is shown the proportion of times each tree was the
most parsimonious tree for the data sets derived from each tree. Note that no matter
which tree was used to generate the data, tree 1 is most often recovered as the most
parsimonious tree. After Huelsenbeck ef al. (1996).




Jackknifing

* a resampling procedure without replacement

* trees built from smaller data sets

* compares trees built from random subsets of the
data
- can delete characters or
- other delete taxa



Jackknifing

Method:

1) delete portion of characters (or taxa) and generate tree
- half jackknife deletes half the characters

2) replace characters (or taxa) then repeat step 1, n times

3) construct majority rule consensus and plot number of
times a clade is supported on each node
- again, clades that appear less than 70% of the time
should be viewed with a bit of caution



Bayesian Posterior Probabilities

* sample tree space, changing one parameter at a time,
build a tree, then change another parameter, build a
tree, and so forth (tweak and build)

* algorithm encouraged to find most likely tree given the
data (and a model of evolution)

* Bayesian approach yields a set of trees that is most
likely to be explained by the sequences, or formally,
rthe probability of the hypothesis being correct
giventhedatao ( P[ H| D] )



Bayesian Posterior Probabilities

* save a tree each time one of the parameters in the
model is changed, i.e., at every interval determined by
Asampl efreqgo command

* common to generate 5-10 million trees, and
save/sample one tree every 1000 generations

* makes a tree file from sampled trees

* builds a majority rule consensus tree

* number tells us what proportion of the trees had a
given clade

* unlike bootstraps Bayes posterior probabilities will be
an estimate of the true probabilities of that clade






