| 2  |                                                                                       |
|----|---------------------------------------------------------------------------------------|
| 3  | Throw your body into it:                                                              |
| 4  | Jumping in the salamander Desmognathus ocoee                                          |
| 5  |                                                                                       |
| 6  | William G Ryerson                                                                     |
| 7  |                                                                                       |
| 8  | Department of Integrative Biology, 4202 East Fowler Avenue, SCA 110,                  |
| 9  | University of South Florida, Tampa, Florida, 33620, USA                               |
| 10 |                                                                                       |
| 11 |                                                                                       |
| 12 | Keywords: amphibian, biomechanics, scaling, Plethodontidae                            |
| 13 |                                                                                       |
| 14 |                                                                                       |
| 15 | Correspondence: william.ryerson@uconn.edu                                             |
| 16 |                                                                                       |
| 17 | Current Address: Department of Ecology and Evolutionary Biology, University of        |
| 18 | Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, Connecticut 06269-3043, U.S.A. |
| 19 |                                                                                       |
| 20 | Short title: Jumping in D. ocoee                                                      |

#### 21 Summary

22 Here I describe the kinematics of jumping as seen in the plethodontid salamander, 23 Desmognathus ocoee. Using high-speed video imaging techniques, the kinematics and 24 scaling properties of this behavior are quantified. Unlike most terrestrial vertebrates, 25 which use force generated from the hind limbs to jump, salamanders jump by laterally 26 bending and then rapidly straightening the body, using momentum to carry the individual 27 through the air. This movement is strikingly similar to both the terrestrial escape response 28 of mudskippers and terrestrial blennies, and shares a general pattern of movement with 29 the C-start escape response in several aquatic vertebrates. While the axial musculature 30 appears to be responsible for this behavior, it remains to be seen what role the limbs and 31 tail play. Across a two-fold range in body sizes, only duration of bending was correlated 32 with size. The lack of strong scaling relationships suggests a spring mechanism that 33 allows performance to be maintained despite an increase in size.

34

## 35 Introduction

Predator-prey interactions represent two opposing sides of natural selection. 36 37 Predatory behavior that increases the ability to locate and capture prev is favored, while 38 prey behavior that decreases the likelihood of capture is simultaneously favored (Schall 39 and Pianka, 1980). In vertebrates, there are numerous different passive and active 40 mechanisms by which individuals attempt to escape predation(e.g., C-starts in fishes and 41 aquatic amphibians (Azizi and Landberg, 2002; Domenici and Blake, 1997; Hsieh, 2010), 42 camouflage (Alcock, 2009), and jumping in lizards (Toro et al., 2003; 2004)). 43 Plethodontid salamanders, a diverse group of lungless amphibians, possess a

myriad of defensive mechanisms to deter predation (Brodie, 1977; Brandon et al., 1979).
Individual species exhibit passive mechanisms, including aposematic coloration and
toxins secreted through skin (Brandon et al., 1979). These salamanders will also
incorporate a range of active mechanisms to avoid predation, including coiling, lashing,
writhing or in some cases remaining completely motionless (Brodie, 1977). One species, *Hydromantes platycephalus*, has even been documented rolling itself downhill to escape
(Garcia-Paris and Deban, 1995).

51 This study details a previously undescribed mechanism of jumping in the 52 plethodontid salamander, *Desmognathus ocoee*. This mechanism of movement has been 53 mentioned anecdotally as a defensive behavior (Brodie, 1977; Cochran, 1911; Murphy, 54 1917; O'Reilly et al., 2000), but the mechanics of the movement have yet to be described. 55 In this study high speed imaging was used to describe the mechanism by which the 56 salamanders are able to propel themselves through the air. It is hypothesized that the 57 hind limbs are responsible for providing a pushing-off point, but that the axial muscles 58 are the primary force in jumping, as plethodontid salamanders lack the large limbs 59 common in other taxa whose jumping performance has been measured (e.g. fleas 60 (Bennet-Clark and Lucey, 1967), frogs (Marsh, 1994), kangaroos (Alexander and 61 Vernon, 1973)).

62

### 63 Materials and Methods

64 Twenty individuals of *D. ocoee* representing an ontogenetic series (snout-vent
65 length [SVL] 2.4-5.2 cm) were collected from Highlands, NC, USA, and imaged
66 overhead at 1000 frames/sec using a Photron FastCam high speed camera system

| 67 | (Photron USA Inc., San Diego, CA USA). Image analysis of each jump was conducted            |
|----|---------------------------------------------------------------------------------------------|
| 68 | using MaxTraq software (Innovision Systems Inc., Columbiaville, MI USA) for                 |
| 69 | kinematics. Salamanders were marked with three white paper discs, placed on the dorsal      |
| 70 | surface approximating the pectoral girdle, pelvic girdle, and one point halfway between     |
| 71 | the two girdles (Fig. 1). No glue was required, the moist skin of the salamanders adhered   |
| 72 | the discs to the skin. Individuals were encouraged to jump five times over a 3 cm gap by    |
| 73 | tapping metal forceps directly behind the individual, to simulate an approaching predator.  |
| 74 | Averaged jump values were used for analysis. Seven variables were analyzed for              |
| 75 | kinematics and scaling relationships: (1) direction of body bend, (2) angle of bending, (3) |
| 76 | duration of loading (time to bend), (4) duration of unloading (release of bend during       |
| 77 | initial stages of jump), (5) duration of jump, (6) velocity of bending, and (7) velocity of |
| 78 | unbending. For scaling relationships, angle of bending, durations and velocities were       |
| 79 | regressed against SVL using SigmaPlot software (Systat Software, USA). Slopes were          |
| 80 | compared to zero to determine scaling relationship.                                         |

## 82 **<u>Results</u>**

The salamander *Desmognathus ocoee* utilizes body bending to propel jumping by laterally bending their body along one side, moving the anterior portion of the body towards the tail, and then rapidly straightening the torso (Fig. 2). This rapid movement propels the salamander into the air for total jump duration, from bending to completion, lasting less than 500 milliseconds (Table 1). There was no preference for a bend direction among individuals (n = 20, t = 0.267, p = 0.79). Analysis of the scaling of the kinematic variables found only the relationship between size and duration of loading (slope  $\pm$  95%

| 90 | confidence interval, $0.037 \pm 0.031$ ) to be significant. Across the size range measured       |
|----|--------------------------------------------------------------------------------------------------|
| 91 | unload duration was lower than load duration ( $n = 20$ , $t = 7.35$ , $p < 0.001$ ), and unload |
| 92 | velocity was higher than load velocity (n = 20, t = 7.65, p < $0.001$ , Table 2).                |
| 93 |                                                                                                  |

### 94 **Discussion**

95 Jumping as a mechanism for locomotion and escape has evolved independently in 96 invertebrates (e.g., fleas (Bennet-Clark and Lucey, 1967)) and vertebrates (kangaroos, 97 anoles) and the common trend is enlargement of the hind limbs, which generate the 98 necessary force to jump. Here I document the unusual ability of the salamander 99 Desmognathus ocoee to jump without the use of enlarged hind limbs. The plethodontid 100 salamander *D. ocoee* relies on axial bending to perform a jump, and become airborne. 101 Jumping is accomplished by bending of the body into a U-shape, followed by rapid 102 straightening of the body. This provides the momentum necessary for the salamander to 103 leave the ground and subsequently travel an indeterminate distance in the air, all within 104 the span of less than a second. The role of axial musculature in salamander locomotion is 105 well documented, primarily its use in walking and swimming (Azizi and Horton, 2004; 106 Bennett et al., 2001; Frolich and Biewener, 1992; O'Reilly et al., 2000). Given the 107 layering of salamander axial musculature and the differing fiber angles of each layer 108 (Schilling and Deban, 2010) it remains to be seen which axial muscles are driving the 109 jumping.

Salamander jumping exhibits similarities to the C-start escape mechanism of
aquatic vertebrates. The C-start is a rapid escape reflex, originally described in fish,
resulting from the stimulus of one Mauthner neuron (Eaton et al., 1977). An action

113 potential originating in the Mauthner cell results in contraction of the contralateral 114 musculature. Rapid lateral bending of the body in fishes increases velocity of initial 115 movements and the likelihood of escape (Domenici and Blake, 1997). Similarly to the C-116 start response, the head of the individual is bent towards the tail, while the pelvic girdle 117 serves as the anchor point for this behavior (Hsieh, 2010). Amphibious fish, such as the 118 mudskipper (*Periophthalmus argentilineatus*), also rely on axial musculature to escape 119 predation in the terrestrial environment (Swanson and Gibb, 2004). Mudskippers, lacking 120 hindlimbs, generate thrust with their caudal fin, pushing both laterally and downward 121 (Swanson and Gibb, 2004). Blennies in the genus Alticus, show similar patterns of 122 movement, but have refined this generalized pattern even further in response to an almost 123 entirely terrestrial existence (Hsieh, 2010). The C-start has also been observed as an 124 escape mechanism in the aquatic larval stage of the plethodontid, *Eurycea bislineata* 125 (Azizi and Landberg, 2002), to escape larger predators. Unlike C-starts in fishes, it is still 126 unknown if these movements in the larval stage are triggered by Mauthner neurons, as 127 they are in fish. It is possible then that the adults are utilizing a true C-start to perform 128 this jumping behavior. The presence of Mauthner cells have been confirmed in some 129 larval plethodontids, but their function in presence in adults have yet to be confirmed 130 (Will, 1991).

Scaling properties of jumping revealed only bend duration correlated with size.
Larger salamanders performed at similar levels in other variables despite the longer
duration of loading. Contralateral activation of the axial muscles while the salamander
was bent would allow for maximum tension prior to the jump. Multiple layered axial
muscles activated at different times during jumping may result in the rapid straightening

of the salamander. This would allow larger salamanders to generate sufficient force topropel their bodies through the air, effectively acting as a spring mechanism.

138 Investigation of the scaling patterns of salamanders has provided examples of a lack of

139 ontogenetic changes in kinematics (Deban and O'Reilly, 2005; Reilly, 1995). D. ocoee

140 only change two-fold in size through ontogeny, further testing of this hypothesis would

141 require a species with a greater size range (e.g., *D. quadramaculatus*).

142 Further investigation is needed to elucidate the role of the limbs and tail during143 this behavior, as well how other species of differing body proportions perform.

144 Plethodontidae is a large and diverse family of salamanders with a multitude of body

types and behaviors. It remains to be seen how many members of this family can jump in

146 this manner, and how performance may vary across the family.

147

#### 148 Acknowledgements

149 I would like to thank Chris Anderson and Stephen Deban for assistance with this

150 research. Thanks also to Lisa Whitenack, Chris Anderson, Lauren Jones and Elizabeth

151 Timpe for reviewing drafts of this manuscript. Special thanks go to the Highlands

152 Biological Station for use of laboratory space and equipment. This study was supported

153 by funding from the University of South Florida.

154

## 155 **References**

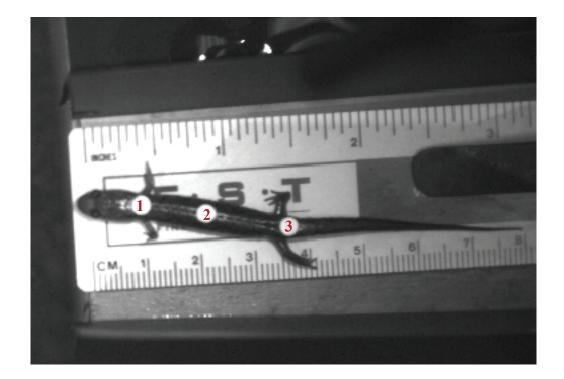
156

Alcock, J. (2009). Animal Behavior: An Evolutionary Approach, Ninth Edition.
 Sinauer Associates, Sunderland, CT, USA.

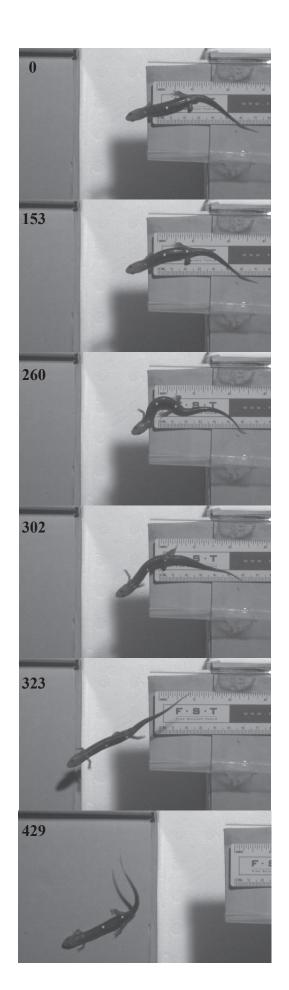
| 159        |    |                                                                                       |
|------------|----|---------------------------------------------------------------------------------------|
| 160        | 2. | Azizi, E. and Horton, J.M. (2004). Patterns of axial and appendicular                 |
| 161        |    | movements during aquatic walking in the salamander Siren lacertina. Zoology.          |
| 162        |    | <b>107,</b> 111-120.                                                                  |
| 163        |    |                                                                                       |
| 164        | 3. | Azizi, E. and Landberg, T. (2002). Effects of metamorphosis on the aquatic            |
| 165        |    | escape response of the two-lined salamander (Eurycea bislineata). J. Exp. Biol,.      |
| 166        |    | <b>205,</b> 841-849.                                                                  |
| 167        |    |                                                                                       |
| 168        | 4. | Bennett, W.O., Simons, R.S. and Brainerd, E.L. (2001). Twisting and bending:          |
| 169        |    | the functional role of salamander hypaxial musculature during locomotion. J. Exp.     |
| 170        |    | <i>Biol.</i> <b>204,</b> 1979-1989.                                                   |
| 171<br>172 | 5. | Bennet-Clark, H. C. and Lucey, E. C. A. (1967). The jump of the flea: a study         |
| 173        |    | of the energetics and a model of the mechanism. J. Exp. Biol. 47,59-76.               |
| 174        |    |                                                                                       |
| 175        | 6. | Brandon, R.A., Labanick, G.M. and Huheey, J.E. (1979). Relative palatability,         |
| 176        |    | defensive behavior, and mimetic relationships of red salamanders (Pseudotriton        |
| 177        |    | ruber), mud salamanders (Pseudotriton montanus), and red efts (Notophthalmus          |
| 178        |    | viridescens). Herpetologica <b>35,</b> 289-303.                                       |
| 179        |    |                                                                                       |
| 180        | 7. | Brodie, E.D.J. (1977). Salamander antipredator postures. <i>Copeia</i> 1977, 523-535. |
| 181        |    |                                                                                       |
| 182        | 8. | Carrier, D.R. (1993). Action of the hypaxial muscles during walking and               |

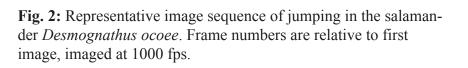
| 183        |     | swimming in the salamander Dicamptodon ensatus. J. Exp. Biol. 180, 75-83.        |
|------------|-----|----------------------------------------------------------------------------------|
| 184        |     |                                                                                  |
| 185        | 9.  | Cochran, M.E. (1911). The biology of the red-backed salamander (Plethodon        |
| 186        |     | cinereus erythronotus Green). Biol. Bull. 20, 332-349.                           |
| 187        |     |                                                                                  |
| 188        | 10. | Deban, S.M. and O'Reilly, J.C. (2005). The ontogeny of feeding kinematics in a   |
| 189        |     | giant salamander Cryptobranchus alleganiensis: does current function or          |
| 190        |     | phylogenetic relatedness predict the scaling patterns of movement? Zoology 108,  |
| 191        |     | 155-167.                                                                         |
| 192        |     |                                                                                  |
| 193        | 11. | Deban, S.M. and Schilling, N. (2009). Activity of trunk muscles during aquatic   |
| 194        |     | and terrestrial locomotion in Ambystoma maculatum. J. Exp. Biol. 212, 2949-2959. |
| 195        |     |                                                                                  |
| 196        | 12. | Domenici, P. and Blake, R. (1997). The kinematics and performance of fish fast-  |
| 197        |     | start swimming. J. Exp. Biol. 200, 1165-1178.                                    |
| 198<br>199 | 12  | Eaton, R.C., Bombardieri, R.A., and Meyer, D.L. (1977). The Mauthner-            |
|            | 13. |                                                                                  |
| 200        |     | initiated startle response in teleost fish. J. Exp. Biol. 66, 65-81.             |
| 201        |     |                                                                                  |
| 202        | 14. | Frolich, L.M. and Biewener, A.A. (1992). Kinematic and electromyographic         |
| 203        |     | analysis of the functional role of the body axis during terrestrial and aquatic  |
| 204        |     | locomotion in the salamander Ambystoma tigrinum. J. Exp. Biol. 162, 107-130.     |
| 205        |     |                                                                                  |
| 206        | 15. | Gans, C. and Parsons, T.S. (1966). On the origin of the jumping mechanism in     |

frogs. Evolution. 20, 92-99.


# 

| 209        | 16. Garcia-Paris, M. and Deban, S.M. (1995). A novel antipredator mechanism in            |
|------------|-------------------------------------------------------------------------------------------|
| 210        | salamanders: rolling escape in Hydromantes platycephalus. J. Herp. 29, 149-151.           |
| 211<br>212 | 17. Hsieh, STT. (2010) A locomotor innovation enables water-land transition in a          |
| 213        | marine fish. PLoS ONE 5(6), e11197. doi:10.1371/journal.pone.0011197                      |
| 214        |                                                                                           |
| 215        | 18. Kolbe, J. J. and Losos, J. B. (2005). Hind-limb length plasticity in Anolis           |
| 216        | carolinensis. J. Herp. <b>39,</b> 674-678.                                                |
| 217        |                                                                                           |
| 218        | 19. Marsh, R. L. (1994). Jumping ability of anurans. In Comparative Vertebrate            |
| 219        | Exercise Physiology (ed. J. H. Jones), pp. 51-111. San Diego: Academic Press.             |
| 220        |                                                                                           |
| 221        | 20. Murphy, R.C. (1917). The jumping ability of <i>Plethodon</i> and its possible bearing |
| 222        | upon the origin of saltation in the ancestors of the Anura. Copeia 1917, 105-106.         |
| 223        |                                                                                           |
| 224        | 21. O'Reilly, J.C., Summers, A.P. and Ritter, D.A. (2000). The evolution of the           |
| 225        | functional role of trunk muscles during locomotion in adult amphibians. Am. Zool.         |
| 226        | <b>40,</b> 123-135.                                                                       |
| 227        |                                                                                           |
| 228        | 22. Reilly, S.M. (1995). The ontogeny of aquatic feeding behavior in Salamandra           |
| 229        | salamandra: stereotypy and isometry in feeding kinematics. J. Exp. Biol. 198,             |
| 230        | 701-708.                                                                                  |
| 231        |                                                                                           |


| 232 | 23. Schilling, N. and Deban, S.M. (2010). Fiber-type distribution of the perivertebral  |
|-----|-----------------------------------------------------------------------------------------|
| 233 | musculature in Ambystoma. J. Morph.271, 200-214.                                        |
| 234 |                                                                                         |
| 235 | 24. Schall, J.J. and Pianka, E.R. (1980). Evolution of escape behavior diversity.       |
| 236 | Am. Nat. 115 (4), 551-566.                                                              |
| 237 |                                                                                         |
| 238 | 25. Swanson, B.O. and Gibb, A.C. (2004). Kinematics of aquatic and terrestrial          |
| 239 | escape responses in mudskippers. J. Exp. Biol. 207, 4037-4044.                          |
| 240 |                                                                                         |
| 241 | 26. Toro, E., Herrel, A., Vanhooydonck, B. and Irschick, D.J. (2003). A                 |
| 242 | biomechanical analysis of intra- and interspecific scaling of jumping and               |
| 243 | morphology in Caribbean Anolis lizards. J. Exp. Biol. 206, 2641-2652.                   |
| 244 |                                                                                         |
| 245 | 27. Toro, E., Herrel, A. and Irschick, D. (2004). The evolution of jumping              |
| 246 | performance in Caribbean Anolis lizards: solutions to biomechanical trade-offs.         |
| 247 | Am. Nat. 163, 844-856.                                                                  |
| 248 |                                                                                         |
| 249 | 28. Will, U. (1991). Amphibian Mauthner cells. Brain Behav. Evol. 37, 317-332.          |
| 250 |                                                                                         |
| 251 | Figure Legends                                                                          |
| 252 | Fig. 1: Individual D. ocoee with landmarks for digital analysis with scale. Point 1     |
| 253 | indicates the pectoral girdle, point 3 is the pelvic girdle, and point 2 is equidistant |
| 254 | between the two girdles.                                                                |
| 255 |                                                                                         |
| 256 | Fig. 2: Representative image sequence of jumping in the salamander D. ocoee. Frame      |


| 259 | Table 1: Means a | nd standard | deviations | of the | kinematic | variables | used to | describe |
|-----|------------------|-------------|------------|--------|-----------|-----------|---------|----------|
|     |                  |             |            |        |           |           |         |          |

- 260 jumping in the salamander *D. ocoee*. Load duration is the time that the
- salamander bends its body prior to jumping, and unload duration is the time
- 262 during which the salamander straightens its body.



**Fig. 1**: Individual *Desmognathus ocoee* with landmarks for digital analysis with scale. Point 1 indicates the pectoral girdle, point 3 is the pelvic girdle, and point 2 is equidistant between the two previous landmarks.





| Variable                | Ν  | Mean    | Std Dev |
|-------------------------|----|---------|---------|
| SVL (cm)                | 20 | 3.3     | 0.87    |
| Load Duration (s)       | 20 | 0.13    | 0.06    |
| Unload Duration (s)     | 20 | 0.04    | 0.01    |
| Jump Duration (s)       | 20 | 0.07    | 0.02    |
| Bend Angle (deg)        | 20 | 41.85   | 13.85   |
| Load Velocity (deg/s)   | 20 | 432.06  | 277.87  |
| Unload Velocity (deg/s) | 20 | 1216.74 | 591.8   |

**Table 1:** Means and standard deviations of the kinematic variables used to describe jumping in the salamander Desmognathus ocoee. Load duration is the time that the salamander bends its body prior to jumping, and unload duration is the time during the which the salamander straightens its body.