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2.

Character coding
Robert W. Scotland

2.1 CHARACTER TYPES

Morphological characters can be of two kinds, either discrete (qualitative) or
continuous (quantitative). This chapter deals exclusively with the coding of
discrete data for qualitative characters. For example, the presence of either two
or four stamens in a group of plants is a qualitative character with two discrete
states. By comparison, the length of corolla tubes for the same group of plants
may vary between 1 cm and 10 cm, with the lengths of individual corollas
overlapping within and between individuals of a population and between species.
These are continuous variables.

The problem with all characters, but particularly with continuous variables,
is the question of whether they are cladistically significant or not, and how they
might be coded into discrete states. The latter subject is not considered here, but
see Pimentel and Riggins (1987), Cranston and Humphries (1988), Chappill
(1989), Felsenstein (1988a), and Stevens (1991) for detailed discussions.

2.2 BINARY CHARACTERS

Consider the simple problem of how to code two plant species in which species
A has four stamens and species B has two stamens. This information can be
coded into simple binary form (Table 2.1), in which the condition in A is
represented by O and that of B by 1. It is important to note that there is no
particular meaning regarding the assignment of O or 1 to a particular stamen
number, as the coding could easily be reversed, i.e. 0 = 2 stamens and 1 = 4
stamens, and retain the same meaning.

Table 2.1 Binary coding for two taxa for the character stamen number
(see text)

Taxa Character Code
A 4 stamens 0
B 2 stamens 1

Transformation between character states 15

2.3 MULTISTATE CHARACTERS

In a similar example, the number of stamens for five taxa A, B, C, D, and E
is 1,2, 3, 4, and 5, respectively, and this can be coded as a multistate character
as shown in Table 2.2. Multistate characters have more than two character states
and are coded by integers equalling the number of character states.

2.4 TRANSFORMATION BETWEEN
CHARACTER STATES

Three plant species A, B, and C with 2, 3, and 4 stamens, respectively, can be
coded as a multistate character (Table 2.3). Characters coded in this way imply
that a character can undergo transformation, i.e. the character of stamen number
has undergone modification from one state to another. For the example given
in Table 2.3, which has three character states, there are nine possible ways in
which the transformation of three character states may be related (Fig. 2.1a—c).
In an analysis incuding a multistate character with three states it is conceivable
to permit all nine transformations, as shown in Fig. 2.la—c, or limit these nine
to fewer options through choices about character order and character polarity,
as discussed below.

Table 2.2 Additive coding for five taxa for the multistate character
stamen number

Taxa Character Code
A 1 stamen 0
B 2 stamens 1
C 3 stamens 2
D 4 stamens 3
E 5 stamens 4

Table 2.3 Additive coding for three taxa for the character stamen
number

Taxa Character Code
A 2 stamens 0
B 3 stamens 1
S 4 stamens 2
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2.5 UNORDERED AND ORDERED CHARACTERS

Consider that the relationships between three character states are known, in the
sense that the intermediate step of the transformation can be determined. For
example, the gain or loss of stamen number may be viewed as incremental and
the gain or loss of two stamens proceeds via the intermediate step of gaining or
losing one stamen. In such a case this additional information can be included in
the analysis by ordering the character.

If the character is treated as unordered, then any state can transform into any
other state with equal cost and any of the nine transformations shown in Fig.
2.1a—c are equally possible.

If treated as an ordered character a choice is made limiting the nine possibil-
ities to a set of three depending upon the determined order. The three possib-
ilities if the order is for incremental stamen gain or loss are shown in Fig. 2.2,
The three possible transformations shown in Fig. 2.2 can be represented in one
form as shown in Fig. 2.3.

Ordering a multistate character a priori determines the relationship of each
character state with every other character state but is silent about the direction
of transformation.

2.6 ADDITIVE BINARY CODING

In addition to coding different states within a column, multi-column coding can
be utilized for character analysis. Additive binary coding is another way of
coding ordered multistate characters, although the actual coding is more tedious
and the output can be difficult to interpret (Swofford 1990). The character
ordered in Table 2.3 as 0-1-2 can be recoded in additive binary form as 00-01-11
(Table 2.4).

* (a)

0 1 2 o0 2 1 1 0 2
(b)
1 »2 »0 1 0 »2 0 < 1 »2
(c)
2 »0 — 1 2 1 0 1 «— 2 »0

Fig. 2.1 The nine possible transformations among three character states.

0 » 1 2 2 1 >0 0 1 2

Fig. 2.2 Imposition of order reduces the nine possibilities of Fig. 2.1 to a set
of 3; the three possibilities if the order is for incremental gain or loss.

Branched character state trees i

2.7 BRANCHED CHARACTER STATE TREES

Although only linear transformed characters have been considered thus far, it
is possible to include ordered branched characters in an analysis. If the trans-
formation between four character states was determined a priori to be that shown
in Fig. 2.4, this information can be included in an analysis. PAUP v.3.0 allows
direct input of ‘character state trees” within the user-defined character types
option. To be used in Hennig86 the branched character (Fig. 2.4) would have
to be recoded in additive binary form (Table 2.5).

0 1 2

Fig. 2.3 The three possible transformations from Fig. 2.2 represented in one
form.

Table 2.4 Coding multistate characters. For stamen number code 1 is
additive, code 2 is additive binary coding

Taxa Character Code 1 Code 2
A 2 stamens 0 00
B 3 stamens 1 10
C 4 stamens 2 11
c
A — B

L >

Fig. 2.4 Transformation between four character states determined prior to
an analysis; the branched character can be coded in additive binary form
(Table 2.5).

Table 2.5 Additive binary coding for the branched character state tree
of Fig. 2.4. Taxa are identified as individual character states (A-D)

Taxa Code
A 000
B 100
C 110
D 101
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2.8 OTHER USER-DEFINED MODELS
OF TRANSFORMATION

Although the tendency in cladistic studies has been to minimize assumptions
built into analyses, increased levels of sophistication with regard to computer
software have led to many ‘user-defined’ options being available for analysis,
especially in PAUP v.3.0. A brief mention of these ‘user-defined’ options will
suffice to introduce two of them. As described in Chapter 1 (Fig. 1.6a,b) certain
cladogram topologies could be compatible with equally parsimonious, but
conflicting, character transformations. The two alternatives in which a trans-
formation is explained either as a parallel gain or as a synapomorphy with
secondary loss are reconsidered here (Fig. 2.5a,b). If, prior to analysis, it is
decided that characters should take the form of secondary loss rather than
parallel gain, then this hypothesis of character transformation can be included
as an integral part of analysis. The Dollo parsimony option in PAUP v.3.0
prohibits parallel gain (Fig. 2.5b) and stipulates that a character must only occur
once on the cladogram and therefore homoplasy always takes the form of
secondary loss.

The default setting for transformations between character states of a multistate
character are treated as having equal cost in terms of the number of steps. A step
matrix enables a separate value to be given to each step of a linear or branched
multistate character. This practice of weighting some transformations over
others is used in molecular systematics for weighting transversions over trans-
itions as the latter occur more frequently (see also Chapters 3 and 7).

2.9 CHARACTER POLARITY

Returning to the example given in Table 2.1, species which have either two or
four stamens can be coded as a binary character. In its most general form this
coding allows the transformation to proceed in either of two directions, from
0— 1 or 1 = 0. If the direction of the transformation is determined, then the
character is said to be polarized and one or other of the two possibilities would

Fig. 2.5 User-defined models of character transformation. The two interpreta-

tions are equally parsimonious. (a) Character distribution interpreted as

parallel gain. (b) Prohibition of parallel gain; character only occurs once on a
cladogram, homoplasy explained as secondary loss.
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be chosen for analysis. The determination of character polarity is particularly
important for determining plesiomorphic and apomorphic characters.

The polarity of multistate characters determines the direction of transforma-
tion but not the order of transformation. Take the example in Fig. 2.3 which
shows an ordered multistate character with three states. To polarize this ordered
character is to determine the initial starting point of the transformation. Con-
sequently, the ordered character sequence 0, 1, and 2 can be polarized in any
of three ways, as shown in Fig. 2.6a—c. The multistate character with three
states can be ordered in three ways and each of these can be polarized in three
different ways, giving nine possibilities to constrain multistate characters with
three states.

It is possible to polarize an unordered multistate character. (Given a binary
character 0 — 1, with a specified direction of transformation, then whether the
character is said to be ordered or polarized is a moot point.) Given an unordered
multistate character which has three character states 0 — 1 — 2, it is possible
to polarize the character in three ways, by choosing 0, 1, or 2 as the starting
point of the transformation, and leaving the other states unordered. This then
results in three possibilities for any one polarity decision as shown in Fig.
2.7a—c.

(a) o > 1 > 2
(b) 0 « 1 < 2
(c) 0 = 1 > 2

Fig. 2.6 Order and character polarity. The ordered character sequence 0, 1
and 2 may be polarized in any of the following three ways. (a) (0) most plesio-
morphic. (b) (2) most plesiomorphic. (c) (1) most plesiomorphic.

(a) 1 < 0 > 2
(b) 0 = 1 > 2
c) 0 = 2 » 1

Fig. 2.7 Three possibilities for polarizing an unordered, 3 state character. (a)
(0) most plesiomorphic. (b) (1) most plesiomorphic. (c) (2) most plesiomorphic.
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2.10 CLADOGRAMS AND ROOTS

The results from analysing a data matrix can either be in the form of an unrooted
tree (network) or a rooted tree (cladogram). Figure 2.8a—c shows all three
possible unrooted solutions for four taxa. To root an unrooted tree involves
imparting polarity onto at least one character transformation, although it is often
the case that all or many characters will be polarized. For four taxa there are
15 possible fully resolved cladograms (Fig. 2.9).

The usual method for rooting a cladogram is outgroup comparison (see Chap-
ters 3 and 6). This method involves choosing the sister group (or another closely
related taxon) of the study group to root the cladogram. Rooting a cladogram
determines the monophyletic groups, reveals paraphyly, and discovers relatively
apomorphic and plesiomorphic characters.

By way of an example, Table 2.6 shows a data matrix for four taxa each with
four binary characters. The study group is comprised of taxa 2, 3, and 4, with
taxon 1 as the sister group. The cladogram shown in Fig. 2.10a is the most parsi-
monious for these taxa. The choice of root (outgroup), polarizes the characters
within the ingroup and determines which states of the binary characters are
apomorphic or plesiomorphic. Rooting on zeros also has the effect of grouping
taxa solely on the presence of characters.

Figure 2.10a shows that characters A(1), B(1), and C(1) are synapomorphic
and D(1) autapomorphic. The cladogram also determines that (3 4) and (2 3 4)
are monophyletic groups. Consider that there may be some disagreement about
the initial ingroup status of (2 3 4) (ingroups should be monophyletic) and that
an alternative interpretation is for (1 2 3) to be monophyletic and 4 the sister
group (Fig. 2.10b). This shows that A(0), B(0), and D(0) are synapomorphic
and C(0) is autapomorphic. Figure 2.10b also shows that group (1 2 3) is
monophyletic. This example illustrates the crucial point that even give the same
data matrix the choice of root for the cladogram is of vital importance as it
determines the status of cladograms and groups.

(a) 1 =—— ——— ]
2 4
(b) 1 =—— — 2
3 4
(c) 1 ——————— ——
[/ Q— |

Fig. 2.8 All three possible unrooted solutions for four taxa.
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Fig. 2.9 All 15 possible fully resolved cladograms for four taxa.

Table 2.6 Binary coding for four taxa (1-4) and four characters (A - D};
data for Fig. 2.10

Taxa ABCD

0000
0010
1110
1111

B W N =

(a) (b

~

wWN e

4
3
1

- s
A(1) B(1) 4 a(0) B(0) 2
D(1)

c(o)

Fig. 2.10 Rooting, apomorphy and monophyly. (a) The most parsimonious

tree taking taxon 1 as the root; characters A(1), B(1) and C(1) are

synapomorphic and D(1) autapomorphic. (b) An alternative interpretation

rooted on taxon 4: taxon (1 2 3) is monophyletic; and characters A(0), B(0) and
D(0) are synapomorphic and C(0) is autapomorphic.
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The determination of
character polarity
Ian J. Kitching

3.1 INTRODUCTION

Swofford (1990) distinguished three properties of characters: direction, order,
and polarity. Unlike the definition of Meacham (1984) in which directed
characters are equivalent to polarized characters, Swofford’s definition of
direction refers to ‘cost’ in terms of tree length of a change between any two
character states. An undirected character is one in which the costs are sym-
metrical; that is, the increase in tree length required by the transformation of
state X to state Y is the same as that required by the change from Y to X. An
example of a directed character is one that is optimized under the Camin—Sokal
parsimony criterion, where reversals to a more plesiomorphic condition are not
permitted. Step matrix characters (Swofford 1990) are directed if the step matrix
is asymmetrical (see also Chapter 4). Character order specifies the type of the
permitted character state transformations and has already been introduced in
Chapter 2,

Polarity refers to the direction of character evolution. A character is said to
be polarized if the state ancestral to all other states is prespecified. Many
methods and criteria for assessing the evolutionary polarity of characters have
been proposed, and have been reviewed by Crisci and Steussy (1980), de Jong
(1980), Stevens (1980), and Arnold (1981). Of these, most can be reduced to
variations of three main themes: the outgroup comparison (the indirect method),
the ontogenetic criterion (the direct method), and criteria based on specific
models.

Nelson (1973a) divided the criteria used to estimate ancestral character states
into two approaches. Indirect arguments (the indirect method) involve taxa other
than those of the study group and rely upon a pre-existing higher-level phylo-
geny to establish character polarity. Farris e al. (1970) demonstrated the funda-
mental importance of parsimony to outgroup comparison, which was therefore
considered by Nelson (1978) to be the only valid indirect method. However, the
higher-level phylogeny itself must be based upon yet more polarized characters,
leading to an infinite regress. Eventually, a method independent of pre-existing
phylogenetic hypotheses must be invoked in order to validate the outgroup
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comparisons (Weston 1988). Of such direct arguments (the direct method),
only ontogenetic character precedence was considered to be valid by Nelson
(1973a).

3.2 OUTGROUP COMPARISON—THE INDIRECT
METHOD

In its simplest form, outgroup comparison has been defined by Watrous and
Wheeler (1981, p. 5) as:

For a given character with 2 or more states within a group, the state occurring in related
groups is assumed to be the plesiomorphic state.

Watrous and Wheeler (1981) then gave a series of operational rules for a
procedure they called the functional ingroup/functional outgroup (FIG/FOG)
method. An initial hypothesis of relationships of outgroups and an unresolved
ingroup is chosen. Characters are then selected and polarized using outgroup
comparison, allowing partial resolution of the ingroup. Functional outgroups
and functional ingroups are then established, which then permit further resolu-
tion. The procedure is repeated until either the ingroup is fully resolved or no
further resolution can be achieved.

The following example, adapted from Mooi (1989), is based on the hypo-
thetical electrophoretic allele data of Swofford and Berlocher (1987) (Table 3.1)
and is optimized using the Fitch (1971) parsimony criterion (see also Chapter
4). Taxon F of the ingroup is established as the functional outgroup to the
remaining ingroup taxa, A—E (Fig. 3.1a), by the presence in F and the out-
group, G, of allele 1c. Clade A—E is thus characterized by either allele 1a or
1b, but at this point in the analysis, a decision cannot be made between them.

Table 3.1 Hypothetical allelic data for seven taxa. (Adapted from
Swofford and Berlocher 1987)

Taxa Characters

1 2 3 4
A b c a C
B b c a C
C b c b a
D a b b a
E a b b a
F c d a a
G c a c b
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Furthermore, because the alleles present in G for characters 2—4 may be aut-
apomorphic for G or plesiomorphic for all taxa, polarity determination for these
must wait.

The second iteration uses F as the FOG to A—E, ignoring the outgroup G.
Alleles 4c and 3b are seen to be synapomorphic for taxa A + B and
C + D + E respectively (Fig. 3.1b). Note that no decision can yet be made
regarding the ambiguous status of alleles la and 1b.

The third iteration uses taxa A and B as the FOG to C + D + E, resulting
in D + E being recognized as a clade, based upon alleles 1a and 2b. The initial
ambiguity is also resolved: allele 1b is interpreted as synapomorphic for taxa
A—E, with a subsequent transformation to allele la in taxon D + E (Fig. 3.1c).
The final cladogram (Fig. 3.1d) shows one possible maximally parsimonious
reconstruction (MPR; see also Chapter 4), in which alleles 1c, 2d, 3a, and 4a
are interpreted as plesiomorphic for the ingroup + outgroup. Other MPRs exist;
for example, alleles 2a, 3c, and 4b may be treated as plesiomorphic, whence
alleles 2d, 3a, and 4a will unite taxon F with the remaining ingroup taxa as a
monophyletic group.

(a) —_— ¢ (b) G
Ff———F H F
A
E B
E C
la/1b D la/1b
C: a/
(c) ¢ (d)
f F
A
4c B
1b
C
D
3b [
la 2bt E

[D
la 2bt E

Fig. 3.1 Functional ingroup -outgroup polarization. (a) Allele 1c establishes

F as the functional outgroup to the functional ingroup, A-E, which is

characterized by either allele 1a or 1b. (b) With F as the functional outgroup,

alleles 3b and 4c characterize (C+D + E) and (A + B) respectively. (c) Using

A +B as the functional outgroup of C+D+E, D+E is recognized as a clade

based on alleles 1a and 2b. Allele 1b is then seen to characterize (A-E)
(d) Final resolution.
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While Watrous and Wheeler’s (1981) formulation is adequate when there is
no variation in state within the outgroups, there are severe difficulties in
applying this rule consistently when the outgroup taxa are heterogeneous.
A number of specific examples of such outgroup variation have been examined
by Arnold (1981) and Farris (1982a), and a comprehensive overview is provided
by Maddison et al. (1984).

Maddison et al. (1984) presented a general algorithm and principles to enable
the most parsimonious hypothesis of an ancestral state to be estimated given
fully resolved and fixed outgroup interrelationships, and then discussed the
effects of uncertainty among those relationships. Such examination of outgroups
ensures that the ingroup cladograms are globally parsimonious. If the ingroup
alone is studied, as in the the procedure of commonality (see below), then the
chosen ingroup cladogram will only be locally parsimonious. Failure to achieve |
global parsimony may also result if outgroup analysis is taken to indicate the
state present in the most recent common ancestor of the ingroup (for example
Wiley 1981) or if the ingroup is first resolved in isolation as an unrooted tree,
without reference to ancestral states and the outgroup subsequently attached, as
in the procedure of ‘Lundberg rooting’ (Lundberg 1972; Swofford 1990).
Similarly, if the state occurring most commonly among the outgroups is
assumed to be plesiomorphic (Arnold 1981), then non-globally parsimonious
solutions may result, depending upon the precise distribution of the character
state and the relationships of the outgroup taxa.

Several terms and conventions were defined by Maddison et al. (1984) to
assist their general discussion. The most recent common ancestor of the ingroup
taxa is called the ingroup node, while the next most distal node, which links the
ingroup to the first outgroup is the outgroup node (Fig. 3.2). Furthermore, they
assumed that the outgroup interrelationships were known and immutable.

The method of Maddison et al. (1984) aims to estimate the character state of
the outgroup node. Such an assignment may be either ‘decisive’, if it can have
only a single value, or ‘equivocal’ if it can have more than one equally parsi-
monious alternative state. They also noted that their results hold whether
cladograms are interpreted as indicating recency of common ancestry (Nelson '
1973¢) or a pattern of nested sets of characters (Nelson and Platnick 1981).

HHOO®

HH

Ingroup node
Outgroup node

Fig. 3.2 [llustration of ingroup and outgroup nodes of Maddison et al. (1984).
I = ingroup taxon, O = outgroup taxon.
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Simple examples can be determined by visual inspection. For example, if
there is only one outgroup with state x, it is more parsimonious to assign state
X to the outgroup node than to assign some other state (Fig. 3.3a; but see below).
Such an assignment is decisive. If the first two outgroups (Fig. 3.3b) differ in
their states, then the assignment to the outgroup node is equivocal. Additional,
more distal, outgroups with the same state as the second outgroup exert no
influence, demonstrating that the assignment is not simply a function of the
relative frequency of the states within the outgroups (but see Arnold 1981).

However, such visual inspections may fail to achieve the most parsimonious
assignment in more complex cases of heterogeneous outgroups and an algo-
rithmic approach is necessary. Maddison ez al. (1984) adapted the methods used
in Wagner and Fitch optimization to outgroup analysis. These methods are
discussed in greater detail in Chapter 4 and only the outgroup comparison using
binary (x/y) characters will be considered here.

A general algorithm for multistate characters was given by Maddison et al.
(1984). First, the terminal outgroup taxa are labelled with their observed states,
x or y (Fig. 3.4). Polymorphic outgroups, if any, are labelled xy. Then, begin-
ning with pairs of terminal outgroups and proceeding towards the outgroup
node, the internal nodes are labelled according to the following rules:

1. If the derivative nodes are both labelled x, or are x and xy, the ancestral node
is labelled x.

(a)

g
X<

—

X<

L’:§

!

I T
. - C - C
: i L
Xy L C
|
Y X

Fig. 3.3 Outgroups and character state assignment at the outgroup node. (a) If

there is only a single outgroup, then the assignment of the character state

of the outgroup to the outgroup node is decisive. (b) If there are multiple

outgroups, then if the first two outgroups disagree in their state assignments,
the character state assignment at the outgroup node is equivocal.
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2. If the derivative nodes are both labelled y, or are y and Xy, the ancestral node
is labelled y.

3. If the derivative nodes are x and y, or both xy, the ancestral node is label-
led xy.

Ignoring the root and proceeding towards the outgroup node simplifies the
procedure by negating the need for a preorder traversal of the tree in order to
determine the MPR (see also Chapter 4).

Two simple rules follow from this procedure that allow for quick and accurate
ancestral character assessment.

1. The first doublet rule (Fig. 3.5a,b). If the first outgroup and the first doublet
(a pair of consecutive outgroups that agree in a state) share the same state,
then that state is the decisive maximally parsimonious reconstruction (MPR).
If they disagree, then the decision is equivocal. Furthermore, if the first two
outgroups form a doublet, then their state is the MPR. A corollary to this
rule is that all outgroup structure beyond the first doublet is irrelevant to the
assessment.

2. The alternating outgroup rule (Fig. 3.6a,b). If there are no doublets, then if
the first and last outgroups agree, this state is the decisive MPR; otherwise
the decision is equivocal. These rules are applied with no regard for the dis-
tribution or composition of the ingroup character states. For example, if
states x and y are found in the ingroup, and states x and z in the outgroup,
both de Jong (1980) and Watrous and Wheeler (1981) suggested that state x
is the ancestral state for the ingroup, because this is the only state to occur
in both ingroup and outgroup. However, Farris (1982a) demonstrated that
ignoring state z in this way may sometimes lead to a non-parsimonious result.

X <X

< X

Fig. 3.4 Illustration of the algorithmic approach of assigning a character state
to the outgroup node in a cladogram with heterogeneous outgroup terminals
(Maddison et al. 1984).
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Whether z, x or xz is the most parsimonious reconstruction will depend upon
the outgroup relationships (Maddison er al. 1984).

A problem arises in the situation in which only one outgroup is used (Fig.
3.3a), for there is no outgroup node for which an MPR can be assessed (the
apparent root of the tree is ignored when the general algorithm is applied).
Maddison er al. (1984) implicitly adopted the convention that the single out-

. group itself forms the outgroup node, and thus whatever state occurs in that
outgroup is automatically considered to be plesiomorphic. But this convention
is properly valid only if the tree is drawn as having no subtending basal branch.
If the tree is so rooted (Fig. 3.7a), and the ingroup resolved (Fig. 3.7b), then

(b)

Xy

Fig. 3.5 Illustration of the first doublet rule for binary characters (see text).

(a} If the character state of the first outgroup agrees with that of the first

doublet, the character state assignment at the outgroup node is decisive. (b) If

the character state of the first outgroup disagrees with that of the first doublet,
the character state at the outgroup node is equivocal.

(a) (b)

F: [—
=; =+
I +E

C_

Fig. 3.6 Illustration of the alternating outgroup rule for binary characters. (a)

If the character states of the first and last outgroups agree, the character state

assignment at the outgroup node is decisive. (b) If the character states of the

first and last outgroups disagree, the character state assignment at the outgroup
node is equivocal.
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a hidden assumption is involved regarding the state present at the base of the
tree, which is that this state agrees with that in the sole outgroup (Fig. 3.7¢).
Then, by the first doublet rule, the state at the outgroup node is a decisive x,
and y can be interpreted as apomorphic within the ingroup. Usually, however,
no evidence is provided to support this assumption (for example Humphries and
Funk 1984, fig. 5). There is an alternative assumption, which is that the base
of the tree possesses state y (Fig. 3.8a). If so, then the outgroup node state is
equivocal and y cannot be decisively assessed as apomorphic (Fig. 3.8b,c). Now
it is true that the tree in Fig. 3.7¢ is more parsimonious than either of those in
Figs. 3.8b and 3.8c, and could thus be chosen as the preferred interpretation on
that basis alone. However, in order to avoid the hidden assumption, it is |
recommended that at least two outgroups be used in an analysis employing | *
outgroup comparison. f
The algorithm of Maddison et al. (1984) produces the globally most parsi-
monious ingroup cladograms, even though the ingroup character state distri-
butions are not taken into account. The procedure is sufficient providing the sole
aim is to resolve the ingroup relationships. However, Maddison er al. (1984)

(a) (b) (c)

Y ==
y

y=

—

y

MO XX
MO XX

L]

Fig. 3.7 Character state assignments for binary characters at the outgroup node

for cladograms with a single outgroup. (a) Rooted cladogram with a single

outgroup and character states assigned to terminals. (b) Cladogram of Fig. 3.1a

with the ingroup resolved. {c) However, the resolution in Fig. 3.1b assumes

that the state at the base of the cladogram is the same as that of the outgroup,
hence the first doublet rule applies.

(a) (b) (c)

Y=

<
KX X
<
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KORX X
%
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X X

Fig. 3.8 Character state assignments for binary characters at the outgroup

node for cladograms with a single outgroup. (a) Rooted cladogram with a

single outgroup and assuming y is the basal state. Assignment at the outgroup

node is equivocal (see text). (b) One possible MPR given the conditions in (a).
(c) Alternative MPR given the conditions in (a).
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noted that if the ancestral state assignments are required for other purposes, such
as the evolutionary modelling of character transformation, then the ingroup
should be resolved as far as possible first and then either Wagner or Fitch
optimization applied to the entire tree.

Problems arise in using the algorithm when the outgroup relationships are
uncertain or are not prespecified. Clearly, if all the outgroups agree in state, then
their interrelationships are irrelevant. However, if they differ, then uncertainty
in outgroup relationships can lead to uncertainty about the ancestral state. The
algorithm could be applied to all possible outgroup resolutions, but this would
be remarkably tedious for more than a very small number of outgroups.
Maddison et al. (1984) gave six rules derived from the outgroup criterion that
could be used to indicate the degree to which differing outgroup relationships
may yield the same MPR. These rules describe situations in which outgroup
uncertainties have no or limited effect. (‘Limited’ is defined as not allowing
changes that will completely shift an assessment; that is (for a binary character),
assessments can change from decisive to equivocal (for example x to xy, or xy
to y) but not from decisive to decisive (x to y). For multistate characters, the
alternative assessments must overlap, that is, they must both contain at least one
state in common.)

1. Uncertainties beyond the first doublet have no effect.
2. If the root is moved within the outgroups, there is no effect on the MPR.

3. If the first outgroup or the basal node of the first subgroup of outgroups has
one state, then the MPR is either decisive or equivocal for that state. The first
outgroup can thus be seen to exert a considerable influence on the MPR.
However, even though this taxon may be highly derived, there is no justifica-
tion in appealing to more distant but supposedly more primitive outgroups.

4. The addition or deletion of one outgroup cannot completely shift an MPR;
at least two additions or deletions are necessary to accomplish this. However,
even the addition of a distant outgroup can affect the MPR (cf. Figs. 3.6a
and 3.6b).

5. Similarly, moving one outgroup cannot completely shift an MPR. Maddison
et al. (1984) demonstrated that this rule held for binary characters but were
unable to prove or disprove it for multistate characters in general.

6. When only one of a number of outgroups possesses a particular state, the
MPR cannot be decisive for that state whatever the outgroup relationships.

When there are alternative ancestral state assignments depending upon altern-
ative outgroup resolutions, there are a number of means by which a cladistic
analysis can proceed. The optimum approach would be first to conduct a higher
level analysis to resolve the outgroup relationships fully. However, this rapidly
leads to an infinite regression of ever higher-level analyses. In the absence of
such analyses, the assessment of ancestral states could be determined under a
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more restrictive parsimony model (for example Dollo parsimony). Alternat-
ively, an appeal could be made to the ‘predominant states method’, i.e. outgroup
commonality (Amold 1981). However, the last approach is not philosophically
justified by a direct parsimony argument and may give non-globally parsi-
monious cladograms.

If full resolution of outgroup relationships is not feasible, then even partial
resolution may reduce the number of uncertain MPRs. It may then be practicable
to examine the influence of all outgroups on the MPR, both singly and in all
allowable combinations (the outgroup substitution approach of Donoghue and
Cantino 1984). The various ingroup resolutions could then be examined for
areas of congruence using the strict consensus tree technique. Clades present in
the consensus tree would be those unaffected by uncertainty in outgroup
relationships. The ingroup could then be further resolved using the func-
tional outgroup/ingroup (FIG/FOG) technique (Watrous and Wheeler 1981).
Maddison er al. (1984) suggested resolving the ingroup cladogram using each
of the possible ancestral states and selecting those cladograms that were most
parsimonious according to the outgroups, ingroups or both.

The above technique can be characterized as a constrained, two-step analysis,
in which the MPR of the outgroup node is first assessed, then followed by
resolution of the ingroup. Clark and Curran (1986) argued that unconstrained,
simultaneous analysis is superior. In this procedure, the most parsimonious
cladogram for both outgroups and ingroups is estimated in one step, with no
constraints placed upon the permitted resolution of either. Clark and Curran
(1986) identified two a priori assumptions required by the constrained analysis
of Maddison et al. (1984).

1. The ingroup is monophyletic, which implies that the root is basal to it.

2. Outgroup structure implies hypotheses of monophyly that are not open to
testing because they are treated as immutable.

Problems can thus arise for characters that show parallel homoplasy between
one or more outgroups and a subset of the ingroup. In Fig. 3.9a, where A—C
are the ingroup and D—F the outgroups, character state 4 is synapomorphic for
the group, A—E. A subsequent transformation to 4— characterizes the clade
A + B. If two further characters are found with the same distribution as
character 4, then either the outgroup formulation of Watrous and Wheeler
(1981) or the general constrained algorithm of Maddison ez al. (1984) will yield
4 most parsimonious tree of nine steps (Fig. 3.9b). However, if all six characters
are analysed without topological constraints, then a very different, and shorter,
cladogram of eight steps is found (Fig. 3.9c), in which the ingroup is not
monophyletic. The lack of global parsimony in Fig. 3.9b is due to the require-
ment of immutability of outgroup relationships.

Clark and Curran (1986) and Farris (19824a) noted that a simultaneous, un-
constrained analysis would never give a less parsimonious result than a two-step,
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constrained analysis. The method is fully consistent with Watrous and Wheeler’s
(1981) ‘operational rule’ for the outgroup criterion. Furthermore, it can be used
where the outgroup relationships are unresolved; indeed, it may help to resolve
them. Therefore, because simultaneous analysis makes the fewest a priori
assumptions, it is the parsimony method of choice using outgroup comparison.

3.3 ONTOGENY —THE DIRECT METHOD

Within cladistics, there are two contrasting viewpoints regarding the role of
ontogenetic information (Eldredge 1979; Williams et al. 1990). The trans-
formational approach, which corresponds closely to Hennig’s (1966) phylo-
genetic systematics, is performed in three stages (Weston 1988): character
transformation series are formulated, which are then polarized and used to
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Fig. 3.9 Outgroup-constrained and outgroup-unconstrained analysis. Taxa
A-C comprise the ingroup and D-F the outgroups. (a) Cladogram with
characters assigned to nodes and outgroup topology predetermined and
constrained. (b) Addition of two further characters (5 and 6) with the same
state distribution as character 4 gives a cladogram of 9 steps with the same
topology as that in Fig. 3.9a. (c) However, if the constraint on outgroup
relationships is removed, a shorter cladogram of eight steps is possible in
which the ingroup is not monophyletic.

Ontogeny — the direct method 33

construct cladograms. This contrasts with the taxic approach, considered to be
embodied within pattern cladistics (Beatty 1982), which uses the distribution of
homologies to hypothesize group membership. Here, character polarity is
derived from the analysis rather than being an a priori assumption (Nelson and
Platnick 1981; Patterson 1982a; Nelson 1985). A comparison of these two
approaches raises the question of whether it is at all possible to determine
character polarity prior to analysis.
Nelson (1978) generalized his direct argument thus:

Given an ontogenetic character transformation, from a character observed to be more
general to a character observed to be less general, the more general character is primitive
and the less general character is advanced.

He explained it using the following example (Fig. 3.10a). Suppose there are two
taxa, A and B, possessing characters x and y respectively. With this information
alone, no decision can be made regarding which character is the more primitive.
However, a study of the ontogeny of the two species reveals that embryos of
both species have character x but that during the subsequent development of
species B, character x transforms into character y. In other words, x is observed
to be more general and y to be less general. Character x is therefore inferred
to be plesiomorphic and character y apomorphic. Both Nelson and Platnick
(1981) and Patterson (1982a) considered that this reformulation of the biogenetic
law was the decisive criterion in determining character polarity.

However, Lundberg (1973) argued that if the ontogenetic transformation is
treated as the character, then both cladograms are equally parsimonious (Fig.
3.10b). The essence of his argument is as follows: if the transformation of x — y
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Fig. 3.10 (a) Nelson’s (1973b) example of polarization using the direct
ontogenetic criterion; state x, occurring in the ontogeny of both species, is the
more general state and is therefore plesiomorphic. (b) Lundberg’s (1973)
counter-example. The gain of the transformation of x—y is regarded as a single
step at the base of the cladogram, rather than two steps (gain of x, followed
by gain of y). The subsequent loss of this transformation in taxon A gives
a cladogram of two steps that is equally parsimonious as the cladogram
in Fig. 3.10a.



