HARDY WEINBERG THEOREM DERIVATION

In a population with two alleles " A " and " a "...

Let proportion of $A A=D$ (dominant genotype);

$$
\begin{aligned}
& \mathbf{A a}=\mathbf{H} \text { (heterozygote genotype) } \\
& \mathbf{a a}=\mathbf{R} \text { (recessive genotype) }
\end{aligned}
$$

Then $\mathbf{D}+\mathbf{H}+\mathbf{R}=\mathbf{1}$
Let $p=$ allele frequency of " A " $\& q=$ allele freq. of " a " $p=D+1 / 2 H ; q=R+1 / 2 H$

m		f	Freq. mating	AA	Progeny Aa	aa
AA	x	AA	DD	D^{2}		
AA	X	Aa	DH	DH/2	DH/2	
Aa	X	AA	HD	DH/2	DH/2	
AA	x	aa	DR		DR	
aa	X	AA	RD		DR	
Aa	X	Aa	HH	$\mathrm{H}^{2} / 4$	$\mathbf{H}^{2} / 2$	$\mathbf{H}^{2} / 4$
aa	X	Aa	RH		HR/2	HR/2
Aa	x	aa	HR		HR/2	HR/2
aa	X	aa	RR			\mathbf{R}^{2}

Totals: $\quad \mathbf{D}^{\mathbf{2}}+\mathbf{D H}+\mathbf{1 / 4} \mathbf{H}^{\mathbf{2}}$

$$
\begin{aligned}
& =(\mathrm{D}+1 / 2 \mathrm{H})^{2} \\
& =\mathrm{p}^{2} \\
& \begin{aligned}
& \mathrm{DH}+\mathbf{2} \mathrm{DR}+\mathbf{H R}+\mathbf{H}^{2} / \mathbf{2} \\
&=\mathbf{2 (D}+\mathbf{1} / \mathbf{2} \mathbf{H})(\mathbf{1} / \mathbf{2} \mathbf{H}+\mathbf{R}) \\
&= \mathbf{2 p q}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{1 / 4} \mathbf{H}^{2}+\mathbf{H R}+\mathbf{R}^{2} \\
& =(\mathbf{1} / 2 \mathbf{H}+\mathbf{R})^{2} \\
& =\mathbf{q}^{2}
\end{aligned}
$$

