Lake organisms \&
 Populations in lakes

Limnology
Lecture 9

Outline

- Adaptations in lake organisms to
- Low oxygen
- Predation
- Seasonal disturbance
- Populations in lakes
- Exponential
- Logistic
- Metapopulation

Low Oxygen Tolerance

Hemoglobin type pigments

"Anoxibiosis" inactive, low metabolic rates

Chironomid (midge larvae)

Chaoborus

Low Oxygen Tolerance: snorkels and air tanks

Breathing tubes

Rat-tailed fly (Eristalomyia)
"physical lung"

Diving beetles (Dytiscidae)

Induced defenses

Requires reliable cue
Kairomones - chemical signals produced by predators that affect prey defenses
-- Why do predators create cues?
Assumes fitness cost to trait (trade-off)
Either cost of maintaining plasticity or expressing wrong trait in wrong env. Why?

Very common in aquatic systems Why?

Cyclomorphosis: seasonally varying plasticity in morphology

Figure 2. Helmet height in Daphnia as a function of the time of year. This figure is redrawn from Woltereck (1909). The adults were collected at different times of the year and belong to different generations: from left to right, 3 July, 28 July, 30 August, 15 September, 18 October, and 3 January.

Brachionus rotifer - induced spines

Induced neckteeth in Daphnia
A

Reliable indicator of predation leads to altered prey traits

Seasonal disturbance

Diapause: Physiological state with suspended metabolism
Seed or egg bank in lake bottom - can help populations get through tough seasons or many years

Ephippium [Gr. "saddle"] - molted carapace containing 2 sexual eggs - resists drying, freezing, digestion

Disturbance: diapause

Hairston \& Kearns 2002

"Resurrection" ecology

Recreate past communities
Search for evolution

Populations in Lakes

Populations in Lakes

Population - group of conspecifics living in same place*

* birth/death dynamics determined by local mechanisms rather than immigration
- source and sink populations
- a sink becomes extirpated if you remove emigration
- sub-population part of meta-population

Lake populations very dynamic

FIGURE 6.3 A graph of number of the calanoid copepod (Diaptomus ashlandi, an aquatic population with high variance in
bers over time, with a strong annual component to the variation, Lake Washington. Source: Data from Edmondson \& Litt, 1982
Fig. 6.3

Often spring bloom

Decrease in summer and winter

Sometimes fall bloom

Populations sometimes cycle over longer periods

Cohort effects - strong recruitment
Cannibalism then leads to small future size classes

FIGURE 6.4 The number of yellow perch in Crystal Lake, Wisconsin showed cyclic population dynamics over a period of 10 years (annual size-frequency distributions). The year is indi10 years (annual size-frequency distributions). The year is indi-
cated on the right-hand y-axis. The numbers along the left y-axis indicate relative fish abundance for each year. Source: data from Sanderson et al., 1999.

Population dynamics

Critical goal in ecology and fisheries management
Create simple to complex models to predict numbers, and sustainable exploitation

Exponential increase is most basic

If a hydra population starts with 1 individual and doubles in size every two days, after 90 days the number of hydra will be:
A. 90
B. 180
C. approximately 9,000
D. approximately 2.5 million
E. approximately 35 trillion

Nile perch introduced to Lake Victoria in 1950s

$>400 \mathrm{lbs}$
> 6 ft long
One of world's 100 worst invasive species

Nile perch expansion and its ecological effects

Nile perch drove many cichlid species to extinction

Exponential growth

Differential Equation

$$
\mathrm{dN} / \mathrm{dt}=\mathrm{rN}
$$

$\mathrm{N}=$ population size
$\mathrm{r}=$ intrinsic rate of natural increase
= (b-d) per capita birth rate - per capita death rate

What does per capita mean?

Exponential growth

Geometric growth (seasonal births)

$$
\begin{aligned}
\mathrm{N}_{\mathrm{t}} & =\mathrm{N}_{0} \mathrm{e}^{\mathrm{rt}} \\
\mathrm{~N}_{\mathrm{t}} & =\mathrm{N}_{0} \lambda^{\mathrm{t}} \\
\lambda & =\mathrm{e}^{\mathrm{r}} \\
\mathrm{r} & =0, \lambda=1
\end{aligned}
$$

What values for r mean a decreasing pop.?
What values for λ mean a decreasing pop.?

Exponential growth

Geometric growth (seasonal births)

$$
\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{\mathrm{rt}}
$$

Doubling time
$\mathrm{N}_{\mathrm{t}} / \mathrm{N}_{\mathrm{o}}=2=\mathrm{e}^{\mathrm{rt}}$
$\ln (2)=0.69=r t$
$t_{\text {doubling }} \sim 0.7 / r$
~ 70/r*100

Nile perch

Big assumption

Birth and death rates do not vary with age

\rightarrow Matrix models

$2^{\text {nd }}$ Big assumption

Birth and death rates remain constant

regardless of population density

Beginning with 1 Hydra

99 days to span across equator

Any organism growing exponentially would soon take over the Earth

What is population regulation?

- Density-dependent control of population size
- Birth/death rates depend on population size
- Due to intraspecific competition for limited resources

(a) A Paramecium population in laboratory culture

Copyright 9 Pearson Education, Inc. publishing

Density dependent vital rates

Population size (N)

The logistic equation describes the growth of a regulated population

Population size N

Logistic growth

Differential Equation
$\mathrm{dN} / \mathrm{dt}=\mathrm{rN}(1-\mathrm{N} / \mathrm{K})$
$\mathrm{N}=$ population size $\mathrm{r}=$ intrinsic rate of natural increase
K = carrying capacity

The logistic equation

$\mathrm{dN} / \mathrm{dt}=\mathrm{rN}(1-\mathrm{N} / \mathrm{K})$

Time

Factors affecting population size

- Density-dependent factors
- competition for resources
- predation (generalist)
- Allee effects (positive)
- Density-independent factors
- climate
- disturbance
- predation (specialist)

Predation

FIGURE 6.6 An idealized interpretation of a Daphnia population studied by Hall (1964). The top graph shows the generalized pattern of population dynamics of the algae population and Daphnia galeata mendotae in Base Line Lake, Michigan. The Daphnia galeata mows the expected Daphnia birthrate (the solid lower graph shows the expected Daphnia birthrate (the solid
line, correlated with algae density in the upper graph) and the acline, correlated with algae density in the upper graph) and the ac-
tual observed rate estimated from the algae and temperature tual observed rate estimated from the algae and temperature
model (dotted line). Hall's surprise was that something besides food appeared to be controlling Daphnia birthrate during the summer months.

Hall's work on Daphnia
Expected higher densities and birth rates during summer

Solution: Predators capture all extra births and control daphnia

Algae, zoop, predator seasonal cycles

Nile perch today

