Hydrology and water properties

Limnology

Lecture 4

Outline

- Hydrology
- Properties of Water

Hydrological cycle

Lake water balance

Mass balance

Input

Direct precipitation to lake surface
Watershed run-off
surface and subsurface flows
Groundwater infiltration

Output

Drainage (stream)
Evaporation and evapotranspiration
Seepage into groundwater

Lake water balance

FIGURE 11.9 (a) A model of the annual water budget for Lake Wingra, Wisconsin. (b) A model of the annual water budget for Lake Mendota, Wisconsin. The percent of input and output are on an annual basis. **Source:** Data from IES, 1999 and Brock, 1985.

Lake water balance

Open vs. closed lakes

Closed = evaporation only escape of water

Open = stream outlet or seepage

Depends on landscape location and local topography e.g., closed lakes often in between mountain ranges

affects chemistry and biology → salinity high in closed lakes

Vadose zone – non-saturated top surface water kept here by adhesion and capillary action

Saturation zone

Base flow – relatively constant groundwater input to streams

Groundwater Recharge – flow to surface waters

Groundwater Discharge – flow to groundwater

Does depth predict drying in temporary ponds?

Drying times for study ponds

Water-level decline, 1864-1980, in feet Ground-water divide WISCONSIN Milwaukee Chicago ILLIN:018 Plaines IMDIANA 50 Miles 100 Kilometers

Human effects

Depleting groundwater

leads to lowered water tables

subsidence

saltwater intrusion along coasts (LI)

Depleting surface water

Human effects

Depleting surface water E.g., Mono Lake, CA

Since 1941 water diverted ~ 250 miles to LA

1976 - water dropped 39 feet
Undergrad study galvanizes interest

Current target – 6392 feet

Human effects

Increase in evaporation irrigation, canals and reservoirs account for ~10% of continental evaporation → 50%

Wonderful water

Properties of water

Bipolar – positive and negative sides of molecule

- → associate with one another
- → dissolve many substances

Thermal Features of Water

- Thermal buffering
 - High Specific Heat
 - Takes much energy to warm water
 - Only exceeded by ammonia and liquid hydrogen
 - High Latent Heat
 - Retains heat well
 - Large lakes freeze later and maybe not at all

Surface Effects

- Surface tension (high cohesion)
 - Very high due to hydrogen bonds
 - Highest except for mercury
- Adhesion (binds to surfaces)
 - Hydrophilic (high)
 - Hydrophobic (low)

Viscosity

- Resistance to flow
- Internal friction
- Depends on
 - Temperature
 - Solutes
- Measurement unit
 - = Pascal Second (PaS)
 - $= 1 \text{ kg m}^{-1} \text{ s}^{-1}$
 - = force needed to move 1 kg liquid 1 m in 1 s

Viscosity → Laminar vs. Turbulent Flow

Turbulent
– individual
particles
follow
irregular
paths

Laminar

- Particle move in parallel tracks

Viscosity → Laminar vs. Turbulent Flow

Turbulent

Laminar

Reynolds number < ~1

Reynolds Number

inertial forces
$$\frac{\delta U1}{\text{viscous forces}} = Re = \frac{\delta U1}{\mu} = \frac{U1}{\nu}$$
 dU1: u

$$U = m/s = relative speed$$

l = length in direction of flow

Key variables for living organisms

$$\delta$$
 = density of water (depends on temp)

$$\mu = viscosity$$

$$v = \text{kinematic viscosity} = \frac{\mu}{\delta}$$
 (water = 1 x 10⁻⁶ m²/s @ 20 C)

Reynolds Numbers

Density (δ)

Size (1)

Viscosity (µ)

Reynolds Numbers

Whale	150,000,000
-------	-------------

Mike Phelps 5,000,000 R_e is large,

Trout 400,000 turbulence prevails

Daphnia 25

Protist 0.1 R_e is small,

Filtering setae 0.001 laminar flow

Biotic importance: Reynolds Numbers

Small organisms surrounded by boundary layer diffusion needed to transport slow, limiting process

Turbulence effective transporter

Today:

Hydrology of lakes
Human effects on hydrology
Water has many properties conducive to aquatic living
Reynold's numbers

NO CLASS TUESDAY

Thursday: Physical and chemical limnology

Lab – Room 179, zooplankton ID Bring laptops with wireless