Chemical limnology

Limnology Lecture 8

Outline

- Carbon cycle
- Nutrients
- Toxic chemicals

pН

Measure of hydrogen ion concentration Expressed as 10^{x} moles of hydrogen ions per liter pH = - log10(H+ ions)

```
0.0000001 = 1 \times 10^{-7} moles H+
-log10(1 x 10<sup>-7</sup>)
pH = 7
```

```
pH < 7 acid
pH = 7 neutral (H+ and OH- equal)
pH > 7 basic
```

Sources and forms of carbon in Lakes

Sources

Atmosphere

Rocks (limestone and dolomite) and soils

Detritus – dead organic material

Forms

Dissolved Inorganic Carbon (DIC) – CO_2 Dissolved Organic Carbon (DOC) – methane, humic acids Particulate Organic Carbon (POC) – living, dead organisms, feces

Carbon cycle

• Fig. 10.1

FIGURE 10.1 The carbon cycle for Lawrence Lake, Michigan. POC = particulate organic carbon; DIC = dissolved inorganic carbon; DOC = dissolved organic carbon. The boxes represent various carbon reservoirs in lakes.

- Critical: Photosynthesis
- Highly soluble CO₂ 200x more soluble than O₂

$CO_2 + H_2O \Leftrightarrow H_2CO_3$

Carbonic acid

$CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$

Carbonic acid Bicarbonate

$CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + 2 H^+$

Carbonic acid Bicarbonate

Carbonate

 $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + 2H^+$

Carbonic acid Bicarbonate

Carbonate

Add CO_2 , increase H+, decrease pH

Remove CO_2 , decrease H+, increase pH

Marl Lake (also known as Bench Lake)

$Ca(HCO_3) \Leftrightarrow CaCO_3 + H_2CO_3$

Calcium bicarbonate (highly soluble)

Calcium carbonate (low solubility)

'Marl Lakes' or 'Bench Lakes'

Shallow margin created by Calcium Carbonate deposition over thousands of years

Alkalinity – buffering capacity of water relative to acid input

Alkalinity = $HCO_3^{-} + 2CO_3^{2-} + OH^{-} - H^{+}$

Limiting nutrients

Nitrogen (amino acids) Phosphorus (ATP)

Nitrogen

Forms

Nitrogen gas (N_2) inert, not bio-available Nitrate (NO_3^-) bioavailable Nitrite (NO_2^-) toxic Ammonia $(NH_3$ in water $NH_4^+)$ Nitrogen fixation from bacteria Excretion

Sources of N Fixation by bacteria (e.g., cyanobacteria) Lightning/precipitation Weathering of minerals/runoff Anthropogenic N Denitrification

Phosphorous

Sources of P

Weathering of minerals (deep ocean, coastal sediments) Lake sediment Decomposition and excretion (major source) Anthropogenic P greater than natural inputs of P

Experimental Lakes Area, Lake 227 Experimental addition of P

Nutrients

Phosphorus (ATP) Nitrogen (amino acids)

Redfield ratio: normal ratio in water

oceans \rightarrow 106 C : 16 N : 1 P lakes \rightarrow 400 C : 30 N : 1 P

Phosphorous often limiting (i.e., available in less quantities than required by organisms)? What does this mean practically?

Phosphorus and productivity

K. Shulz

Lake trophic status

Chlorophyll-a (ppb) related to Lake Trophic State

Oligotrophic – low nutrients, high oxygen, low productivity, clear

- Eutrophic high nutrients, anoxic hypolimnion in summer, high productivity, opaque
 - \rightarrow wet meadow (natural)

cultural eutrophication if human

Dystrophic – stained with DOC, low nutrients, low productivity (often small, mtn. lakes in forests)

Oligotrophic – Lake Tahoe

dystrophic – Adirondacks lakes

Eutrophic – Lake Mendota

Lake trophic status

PHOSPHORUS AND CHLOROPHYLL CONCENTRATIONS AND SECCHI DISK DEPTHS CHARACTERISTIC OF THE TROPHIC CLASSIFICATION OF LAKES			
	Oligotrophic	Mesotrophic	Eutrophic
Total Phosphorus (mg/m3) Average	8	26.7	84.4
Chlorophyll a (mg/m3) Average	1.7	4.7	14.3
Secchi Disk Depth (m) Average	9.9	4.2	2.45
Data from Wetzel, 2001 Table 13-18			

Often spring and late fall algal blooms in temperate lakes

Why?

Mixing effects

Lake Washington, Arhonditsis et al. 2004

Ecological stoichiometry

How ratio of different chemical elements affects ecology and vice versa

Certain species favored under certain conditions When N/P is low, favors cyanobacteria

Carbon-rich phytoplankton junk food of the lake (high calorie, no P/N) couch potato zooplankton can't keep up with phytoplankton

Shift from Daphnia to Bosmina with low P

Toxic chemicals

Biomagnification lipophilic chemicals concentrated up food chain

PCB, DDD/T, Mercury

Clear Lake example

which contained about 125 mg PCB kg⁻¹ wet weight. See figure 10.11 for the chemical structure of a typical polychlori-

nated biphenyl.

Toxic chemicals

Mercury in CT most fish with Hg statewide consumption advisory

Vokoun & Perkins 2008

Deformities

Amphibian deformities reported in many ponds in 90s

Parasitic infections in limb nodes Nutrients increase snails \rightarrow increases infection by trematode Case closed? But high deformities in VT and no trematodes

Deformities

Amphibian males grow female ova producing cells Atrazine (common herbicide) Case closed? EPA panel reviews experiments and finds faults Results not repeated . . .

Sex and suburban frogs

