Notes on Hardy-Weinberg

Example data

Genotype	MM	MN	MN
No. observed	363	634	282

Frequency calculations

Genotype frequency	=	Count of genotypes in sample	
Genotype nequency		Number of individuals in sample	
$\operatorname{Freq}(MM)$	=	363	
		$\overline{363 + 634 + 282}$	
	=	0.28	
Allele frequecy	=	Count of alleles in sample	
		Number of alleles in sample	
$\operatorname{Freq}(M)$	=	2(363) + 634	
		$\overline{2(363) + 2(634) + 2(282)}$	
	=	0.53	

Symbolic calculations

Genotype	MM	MN	NN
Frequency	u	v	w
No. observed	uN	vN	wN
Sample size		Ν	

u, v, and w are symbols for the genotype frequencies of MM, MN, and NN, respectively. Let's use p to symbolize Freq(M). Then

$$p = \frac{2(uN) + vN}{2(uN) + 2(vN) + 2(wN)}$$
$$= \frac{2u + v}{2(u + v + w)}$$
$$= u + \frac{v}{2}$$

Mating table

	Offspring genotype		
Frequency	MM	MN	NN
u^2	1		0
uv	$\frac{1}{2}$	$\frac{1}{2}$	0
uw	Õ	$\tilde{1}$	0
vu	$\frac{1}{2}$	$\frac{1}{2}$	0
v^2	$\frac{\tilde{1}}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
vw	ů ů	$\frac{1}{2}$	$\frac{\frac{1}{4}}{\frac{1}{2}}$
wu	0	1^2	$\tilde{0}$
wv	0	$\frac{1}{2}$	$\frac{1}{2}$
w^2	0	$\overset{2}{0}$	1^2
	$\begin{array}{c} u^2 \\ uv \\ uw \\ uw \\ vu \\ v^2 \\ vw \\ wu \\ wv \end{array}$	$\begin{array}{ccc} {\rm Frequency} & MM \\ \hline u^2 & 1 \\ uv & \frac{1}{2} \\ uw & 0 \\ vu & \frac{1}{2} \\ v^2 & \frac{1}{4} \\ vw & 0 \\ wu & 0 \\ wu & 0 \\ wv & 0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Let's use u' to symbolize the frequency of the MM genotype in the offspring. If we assume that the four conditions necessary for Hardy-Weinberg apply, we can calculate u' as follows:

$$u' = u^{2}(1) + uv_{\frac{1}{2}} + vu\left(\frac{1}{2}\right) + v^{2}\left(\frac{1}{4}\right)$$
$$= u^{2} + uv + \frac{v^{2}}{4}$$
$$= \left(u + \frac{v}{2}\right)^{2}$$
$$= p^{2}$$

An application

Theodosius Dobzhansky studied variation in *Drosophila pseudoobscura*. In one sample from southern California, he found the following genotypes:

Genotype	ST/S	ST	ST/CH	CH/CH
No. observed	57	,	164	29
$\operatorname{Freq}(ST) = p$ $\operatorname{Freq}(CH) = q$	=	0.44	÷)+2(29)

If genotypes were in Hardy-Weinberg proportions we would expect to see

Genotype	ST/ST	ST/CH	CH/CH
No. expected	$(0.44^2)(250)$	2(0.44)(0.56)(250)	$(0.56^2)(250)$
	78	124	48

There are *more* heterozygotes observed than expected, suggesting that heterozygotes may be more likely to survive than homozygotes.