### Lake Ecosystems

Limnology Lecture 12

# Raymond Lindeman & Cedar Creek Bog



### Ecosystem defined

Biotic + abiotic components

Energy and chemical flows between living and non-living elements

Mass-balance

Box/arrow diagrams

#### **Types of Questions**

Biogeochemistry –

fluxes, transformations, and interactions of carbon, nutrients, and energy black box organisms (ooze)

Ecosystem ecology –

how energy and nutrient fluxes affect biota ~ named organisms

#### **Types of Questions**

#### In lakes

Sources and fate of primary production Autocthonous (from within) Allocthonous (from outside)

Energy transfers

Nutrient stoichiometry

Manipulations of entire systems

# Food chain

# Trophic structure





#### Complicates things?

Is omnivory important in aquatic systems?

### Omnivory



Feeding depends on "ontogeny" = development of organisms through time

Copepod immature  $\rightarrow$  herbivores Copepod adults  $\rightarrow$  carnivores

Trout fingerlings  $\rightarrow$  planktivores Trout adults  $\rightarrow$  piscivores



Small green frog tadpoles  $\rightarrow$  grazers Large green frog tadpoles  $\rightarrow$  omnivores 1<sup>st</sup> Law of thermodynamics: energy is neither created nor destroyed, only transformed

2<sup>nd</sup> Law of thermodynamics: internal losses during energy transfer (waste heat)

# Energy pyramid





# Microbial loop





# Fish production





Demonstration of top-down or bottom-up? Change in composition  $\rightarrow$  lack of O<sub>2</sub>

# Not necessarily biomass pyramid



#### Measuring net primary productivity

Net PP = Gross PP - Respiration



#### Measuring net primary productivity

![](_page_15_Figure_1.jpeg)

# Experimental ecosystem ecology

Manipulate entire ecosystem

Control and treatment

#### Large-Scale Experiment Resolves Debate about P

#### Experimental Lakes Area, Ontario Canada

![](_page_17_Figure_2.jpeg)

Lake 226

#### David Schindler and Colleagues

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

Arthur Hasler: Lakes are too complex to study in the lab

Arthur Hasler's Hypothesis: Lake productivity in humic lakes is limited by low light

> Add lime: increase pH, precipitate brown humic colloids increase transparency increase primary production

![](_page_18_Figure_3.jpeg)

![](_page_19_Picture_0.jpeg)

Arthur Hasler's Hypothesis: Lake productivity in dark-stained lakes is limited by low light

#### Permanent Dike

![](_page_19_Picture_3.jpeg)

Biotic changes

Water clear

Large, easily seen pulex replaced by cryptic rosea

![](_page_20_Figure_3.jpeg)

Fig. 4. Relative abundance of pelagic zooplankton microfossils. Fish zones as in Fig. 3.

#### Leavitt et al. 1989

# Experimental ecosystem ecology

Manipulate entire ecosystem

Pros?

Cons?