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12.1 Introduction
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Throughout the book a number of approaches have been exemplified to assess and
compare various aspects of evolutionary trees and models.

To check the reliability of branches in a certain tree, one can use (non-
parametric) bootstrapping or jackknifing, combining alignment subsampling
and consensus trees to get support values on branches (Chapter 5). Furthermore,
other methods that generate or sample sets of plausible trees can be used to get
support values, like Bayesian MCMC sampling (Chapter 7) or quartet puzzling
(Chapter 6).

Various approaches have been devised to determine a best-suited evolutionary
model (Chapter 10). Such approaches are often based on the maximum likeli-
hood values obtained for the models in question. Different measures are applied
like Akaike Information Criterion (AIC), Bayesian Infomation Criterion (BIC),
Akaike Weights, and other model selection techniques (refer to Johnson & Omland,
2004, for review) to correct for the additional parameters in the more complex mod-
els. Such techniques are also implemented in programs like MODELTEST to select
the most useful model of evolution (see Posada & Buckley, 2004 and Chapter 10
for details).

In this chapter we will briefly review different techniques and tests to compare |
contradicting and, hence, non-nested tree topologies using their likelihood values.
Since a large variation of testing approaches can be applied (see, e.g. Goldman
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et al., 2000), we will restrict ourselves to review a number of common tests for
which easily accessible software implementations exist. We will briefly describe the
different approaches, the hypotheses they test, and discuss possible problems and
pitfalls.

12.2 Some definitions for distributions and testing

In the current context we are usually interested in whether the difference between
two values, e.g. the likelihoods of two models or trees, are significantly different or
could be explained by random effects.

To perform a test, we first have to state a null hypothesis Hy. The null hypothesis
is the hypothesis of no difference and is usually the negation of the question we are
interested in (Siegel & Castellan, 1988, p. 7). This null hypothesis has to be precise,
since the test of significance is based on its rejection (Fisher, 1971). If the tested null
hypothesis is rejected, the alternative hypothesis Hy is supported which typically
reflects our question, like “are two likelihoods significantly different?”

There are two types of possible errors when testing the null hypothesis Hg.
First, the null hypothesis is rejected when it is actually true (type I error). This
result is also called a false positive. Second, an erroneous null hypothesis is failed
to be rejected (type II error), also called false negative. The probability of a type
[ error is denoted by @. We set « to the largest probability of a type I error we
are willing to accept; the significance level, typically @ = 0.05 (i.e. 5% error). This
corresponds to a confidence limit of (1 — a) = 0.95 or 95% (e.g. Siegel & Castellan,
1988; Zarkikh & Li, 1995).

Given a sampling distribution that reflects the probability of every possible
sample value if drawn randomly, the null hypothesis (of no difference from expec-
tation) can be tested. If the observed value g is in the region of rejection, i.e.
outside the 95% confidence interval or acceptance region, the null hypothesis H is
rejected and the alternative hypothesis is supported. If that value falls inside the
acceptance region, Hy cannot be rejected at the chosen level of confidence (see
Fig. 12.1a).

If we have prior knowledge about the direction of the effect of the alternative
hypothesis, then a one-sided test is used. Note, that one-sided and two-sided tests
do not differ in the size but in the location of the rejection region, lLe. in the
one-sided test the region is entirely at one tail of the sample distribution (see
Fig. 12.1b).

The significance level « has to be set in advance and determines the critical
value below or above which the null hypothesis is rejected. The p-value, on the
other hand, denotes the probability of obtaining a result equal or more extreme
(with respect to the null hypothesis) than the observed value 1 and can only be
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Testing tree topologies: theory

[ap)]
.
2.5% 97.5%
I I

-4 -2 0 2 4

(a)

0.5

0.4

Density

0.2

0.1

0.0

~2(InL, - InLg)

m
2 4
_ 95%
T

-4 -2 0 2 4

0.4

Density

0.2

0.1

0.0

-2(InLy — InLy)

Normal distributions for (a) a two-sided and (b) a one-sided test. An observed value o
is (a) significantly different from the expectation . if it is in one of the two shaded tails
covering each 2.5% of the surface below the curve on either side or (b) significantly larger
if it is above the upper 95% quantile. The null hypothesis cannot be rejected if u falls into
the (unshaded) 95% confidence interval. These decisions depend on the significance level
« = 0.05. )



384

Heiko A. Schmidt

determined after the test (Goodman, 1999). If the null hypothesis is rejected, the
p-value is also necessarily less than .

When testing tree topologies, there is a big difference whether the trees are
selected a priori or a posteriori.

A priori means that the trees have been selected without knowledge about their
support by the data or any optimizing analysis involved. Such trees might just
be derived as logical alternative scenarios or, for example, from a Markov chain
without prior knowledge about their likelihood values or probabilities. Hence, each
of the trees of interest might be the one with the highest likelihood.

If the trees of interest are selected from an analysis to test whether, for example,
the second, third, etc. tree is significantly worse than the best tree, that is the tree
yielding the best maximum likelihood value called the ML tree (cf. Chapter 6), the

trees are chosen a posteriori.

12.3 Likelihood ratio tests for nested models

If the two evolutionary models of interest are nested, meaning that the more
parameter-rich model can be restricted to the simpler one by restricting its param-
eters, then likelihood ratio tests are straightforward to compare the likelihoods Ly
and L; of the two models based on a (single) tree. For convenience I, denotes the
log-likelihood In L, in the following. The likelihood ratio test (LRT) statistic

L
A:—2lnigz2(11~lo) : (12.1)
1

follows approximately a x* distribution for the respective degrees of freedom, that
is, the number of additional parameters in the more parameter-rich model. L, is
the likelihood of the alternative (more parameter-rich) model and L that of the
less parameter-rich null model. If their A value computed from (12.1) is located
in the rejection area of the x? distribution (the shaded area in Fig. 12.2) beyond
the 95%-quantile (if a significance level of 5% is assumed), the null hypothesis is
rejected and the alternative model is said to give a significantly higher likelihood L,
compared to the null model. (Likelihood ratio tests of nested models are discussed
in detail in Chapter 10.)

Although this methodology is straightforward for nested models, it is generally
not applicable to compare different tree topologies. The problem with trees is
that tree topologies cannot be interpreted as a single statistical parameter and,
furthermore, it remains unclear how many parameters a tree represents with its
possible groupings and branch lengths (Yang et al., 1995; Huelsenbeck & Crandall,
1997).
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Fig. 122 x2 distribution for 2 and 4 degrees of freedom. An LRT is assumed significant, i.e. the more

parameter-rich has a significantly higher likelihood L ,, if the A value is in the shaded 95%
quantile.

If the tested models are not nested, the distribution of A is Gaussian,
that means, according to a normal distribution (Cox, 1961, 1962). The shape of
a normal distribution (i, o) is determined by its mean value u and standard
deviation o.

Thus, the x? distribution does not apply, and different steps must be taken to
find the distribution that can be used to test the difference between two likelihoods.

12.4 How to get the distribution of likelihood ratios

Most of the methods we will be concerned with, will use a likelihood ratio statistic

Lq

§=1In = InL,/InLy =1, —1Ip (12.2)

b

to compare the difference of the log-likelihoods 1, and I, for two trees T, and
T,. These likelihoods are obtained by maximum likelihood optimization of model
parameters, branch lengths, etc. on a given sequence data set D, as described in
Section 6.3 (Chapter 6).
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To judge whether the obtained likelihoods are significantly different, we need
information on how the “real” distribution of likelihood differences under the null
hypothesis looks like.

In the ideal case one would like to draw further samples from the process that
generated our data. Unfortunately, we cannot re-run the process of evolution, as
we would be able to by tossing a coin or roll dice a couple of additional times.
Usually, we only have a limited data set, the alignment, where each column is
usually regarded as an independent sample from the “true” process of evolution,
to determine the desired distribution.

A common way to determine such distributions from limited data sets if further
samples from the original process cannot be obtained are bootstrap re-sampling
methods (Efron, 1979; Efron & Tibshirani, 1994; Goldman, 1993).

12.4.1 Non-parametric bootstrap

The non-parametric bootstrap has been mentioned in various chapters of this
book. This bootstrap randomly re-samples columns from the alignment D with
replacement to produce a number of pseudo-samples D) from the processes
of evolution. In each of these pseudo-samples some columns might be included
several times, while others have not been chosen at all (Felsenstein, 1985; Efron
etal., 1996). Each generated pseudo-sample D) is then used to compute the values
of interest and to determine their distribution.

Here, based on each pseudo-sample alignment D) the maximum log-likelihood
values I!") of each tree Ty in the set of M trees 7 of interest are computed by complete
optimization of branch lengths and model parameters.

For the use of bootstrap in a hypothesis testing scenario it is necessary for
the values computed via the bootstrap to reflect the assumed null-distribution,
although the pseudo-sample data might not. Several steps available to ensure this
null-hypothesis conformity have been described (Hall & Wilson, 1991; Westfall &
Young, 1993). The method of choice to adjust the log-likelihood values is the
so-called centering, where each log-likelihood value /¥ of each tree T on pseudo-
sample D' is shifted by the mean value I, = £ 37  1{ leading to a centered log-
likelihood I = I{? — I,.. From the centered log-likelihoods I\ the log-likelihood
differences 8! are computed between pairs of trees according to (12.2) for each
sample D'V. The obtained values 8¢ are then used to infer the mean u and the
standard deviation o of the respective normal (sample) distribution to test the
observed ratio §.

The re-optimization of the likelihood values for all the bootstrap samples is
computationally very intense. Hence, Kishino et al. (1990) suggested resampling
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estimated log-likelihoods (RELL), a variant of the non-parametric bootstrap, that
is computationally less demanding but not necessarily as accurate. We have seen
in Chapter 6 that the likelihood values are computed by multiplying the site-
likelihoods of each column D; (6.12) or the log-likelihood as the sum of all site-
log-likelihoods (6.18). Kishino et al. (1990) keep the site-log-likelihoods fixed and
only “bootstrap” the pre-estimated site-log-likelihoods. This RELL method saves
the time-consuming likelihood re-estimation, but it assumes some asymptotic
conditions such as sufficiently large data and correctly specified models of evolution
to produce valid results.

12.4.2 Parametric bootstrap

A different way to infer the distribution of 8 is the parametric bootstrap (also
called Monte Carlo simulation). Here, the bootstrap samples are not drawn from
the alignment but simulated along a tree with branch lengths and model param-
eters. That means, a tree with branch lengths and model parameters has to be
inferred first from the original alignment D which then serve as input for Monte-
Carlo simulation performed by sequence generation programs such as SEQ-GEN
(Rambaut & Grassly, 1997). From the simulated bootstrap samples, one again
estimates trees and their likelihoods which are, in turn, used to determine the
distribution of 5.

Differently to non-parametric bootstrapping no adjustment step like centering
(Section 12.4.1) is necessary, since the given tree, model, and parameters act as null-
model according to which the bootstrap samples are generated by Monte-Carlo
simulation.

For detailed descriptions of parametric bootstrap approaches refer to Goldman
(1993) and Huelsenbeck and Crandall (1997).

12.5 Testing tree topologies

A large number of test variants exist by combining different approaches in the
various steps of a test, like different bootstrap methods to generate the samples,
the amount of optimization to compute the likelihoods, the choice of the trees of
interest, or the assumptions made on the kind of normal distribution. To get an
extensive overview on such variants, discussions about the possible ways, problems,
and pitfalls of tree topology testing, we recommend Goldman et al. (2000) and
Huelsenbeck and Crandall (1997) and references therein.

We only review a limited number of tests which are commonly used. To that
end, we will mostly use the same notation as Goldman et al. (2000).
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12.5.1 Tree tests — a general structure
First, the null hypothesis H, and the alternative hypothesis H4 have to be stated,
since they determine the results of the test and also determine whether a test is
applicable at all for the available data and the question a researcher is asking.
Second, testing trees with likelihoods follows a global structure:

(1) Compute the log-likelihood values I, for all trees T, € 7 by fully optimizing all
parameters. Also, all site-likelihoods are kept for bootstrapping.

(ii) Generate many (B > 1000) bootstrap samples D' (i = 1... B). Re-estimate the
log-likelihood values 1" (with optimization) for each tree T, and each bootstrap
sample D',

(iii) Adjust for each tree topology T all log-likelihoods lii) to conform to the null
hypothesis, if the bootstrap samples have been generated by non-parametric
bootstrap or RELL. This is typically done by centering the log-likelihoods with the

mean log-likelihood 7;’) =3 21'321 1) across all bootstrap samples i:

-1 -1

(12.3)
Refer to Hall and Wilson (1991) for more details on the necessity of centering:

(iv) Compute the log-likelihood differences 6§07 = I — I'"' between the relevant
pair(s) of trees T, and Tj. Use the §' values to determine their distribution.

Note, that the number and specification of the relevant pairs of trees depend

on the respective null hypothesis H; (see following sections).

(v) Use the distribution of 8"/ to test whether the null hypothesis is to be rejected.
Obtain the p-value for the observed é. '

12.5.2 The original Kishino—-Hasegawa (KH) test
Kishino and Hasegawa (1989) devised a test based on the RELL method to compare
two a priori selected trees T, and Ty, e.g. produced by a Markov chain.
The null and alternative hypotheses to be compared are (two-sided test):

Hy: The two trees are equally supported, i.e. the expected value E[8] = u =0
Hy: The two trees are not supported equally, i.e. the expected value E[§] = u # 0

The KH test itself follows the following procedure (see also Fig. 12.3):

(i) Infer thelog-likelihood values I, and I for trees T, and T;,. Compute § = 190 — l,gi).

(ii) Generate many (B > 1000) bootstrap samples i and the respective log-likelihood
values I{) and léi) with the RELL method.

(iii) Center the obtained likelihood values of each tree with the mean log-likelihood
T:) across all samples 7, as [{) = [{) — 75;).

(iv) Determine the distribution of differences 6 = Jio

(v) Use the distribution inferred from 8 to test whether your trees are equally
supported in a two-sided test. Obtain the p-value for the observed 8.

7(1)
~ 1,
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Fig. 123  Sketch of the Kishino—Hasegawa test. For both trees 7, and T, the log-likelihoods /; are
computed for each bootstrap sample D). The log-likelihoods are subsequently “centered”
by the trees mean log-likelihood 7, across the bootstrap samples. The log-likelihood differ-
ence 8’ between 7 and 7§ is computed. Finally, the distribution of §-values is determined
and used to determine the p-value of the observed §-value.

Since the two trees T, and Tj, are selected a priori both have an equal chance to
gain the higher log-likelihood and, hence, § might be positive or negative. Thus a
two-sided test is applied as in Fig. 12.1a.

12.5.3 One-sided Kishino—Hasegawa test
Although the KH test was devised for a priori selected trees, in the majority of its
applications it is (mis-)used to test whether sets of suboptimal trees are equally
supported or significantly worse than the best tree, or to compare all trees against
the one having the highest likelihood among all a priori selected trees.

The problem arises that, if T, is the maximum likelihood tree or the tree with
highest likelihood in the set and all trees in 7 are tested against this one tree Ty,
then 8 = I — I, can hardly be negative. The above hypotheses are thus not tested
properly by the original KH approach. However, the KH test has often been applied
this way (see Goldman er al., 2000 and Shimodaira & Hasagawa, 1999 for extensive
discussion).

The only way to adjust the KH test to some extent to this scenario would be to
use a one-sided test as indicated in Fig. 12.1b (cf. Goldman et al., 2000). However,
the null hypothesis E[§] = 0 might still be violated.

Many published conclusions based on wrongly applied KH tests might not be
valid. Goldman et al. (2000) stated that the only possible adjustment to correct
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for this mistake might be to adjust the p-value to p/2. This has a similar effect as
having performed a one-sided test instead.

12.5.4 Shimodaira—Hasegawa (SH) test
Shimodaira and Hasegawa (1999) devised a valid test to assess a set of a pos-
teriori selected trees when the maximum likelihood tree is among the tested
trees.
The null and alternative hypotheses tested by the Shimodaira—Hasegawa (SH)
test Jook different in this case:

Hy: All trees T, € T (including the ML tree Ty ) are equally good explanations of
the data.
Hy:  Someor all trees T, € T are not equally good explanations of the data.

The test itself follows the following procedure (see also Fig. 12.4):

(i) Estimate the log-likelihood values Iy and [, for all trees T, € 7. Compute all

8y = g — 1.

(if) Generate many (B > 1000) bootstrap samples i and compute the respective log-
likelihood values 1)) and I{” (using the RELL method).

(iii) For each tree Ty, center the log-likelihood values with the mean log-likelihood ii')
across all samples 7, as Il = I{) — 75:).

(iv) For each bootstrap sample i, find the maximal log-likelihood i,(\ff)L over all trees
T, € T and compute the differences §{) = lﬂ} — 1,

(v) For each tree T, separately test whether the obtained §, value is in the rejection
area beyond 95%. If so, reject the null hypothesis for T. If not, Hy cannot be
rejected. Obtain the p-value for the observed 8,.

The one-sided test is appropriate here, since the log-likelihood I\ of any tree T,
can only be smaller or equal to Z}%

When applying the SH test, one has to keep in mind that the maximum likelihood
tree is required to be among the tested trees, otherwise the estimated significance
levels will be inaccurate (Goldman et al., 2000 and Westfall & Young, 1993, p. 48).

Furthermore, it has been pointed out by Strimmer and Rambaut (2002) that the
number of trees selected in the SH test is strongly correlated with the number of
tested input trees, meaning, the more tree topologies are included in the test, the
more trees are accepted. This conservative behavior makes the use of the SH test
problematic for large sets of trees.

12.5.5 Weighted test variants
Shimodaira and Hasegawa (1999, comment 4) have suggested weighted variants of
the SH and also the KH test, namely WSH and WKH, for cases where one wants
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Fig. 12.4  Sketch of the Shimodaira—Hasegawa test. Log-likelihoods /7 are computed for each tree

T, and each bootstrap sample D¢ and subsequently “centered” by the trees mean log-

likelihood 7, across the bootstrap samples. For each bootstrap sample D@ the tree with

maximal log-likelihood 7{) is determined. Then log-likelihood difference s{ between 1)

and the corresponding 7% is computed. Finally, the distribution of §-values is determined
and used to determine the p-value of the corresponding trees’ observed s-values.

to be less conservative. In these variants the likelihood ratio I, — I, is weighted by
the square root of its of variance o%(l, — I,).

This is straightforward for the KH test in step (i) and (iv). In the SH test, however,
all instances of 6, = Iy, — I, (step (i)) have to be substituted by

I, — I,
5x =max| —=——=—< (124)
e \o (1)
while 8;‘7 = ly}L — l~)(ci> (step (iv)) is replaced by

, i
Si’) = max a

atx \ o (Tff) _ Ti”)

) _
x (12.5)
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Note, due to the weighting the maximal §-value is not necessarily gained between
the current tree and the ML tree, which is the case in the unweighted test. By
weighting the likelihood ratio depending on its variance, the tests are less conser-
vative. Although this compensates for some of the above-mentioned conservative
behavior of the SH test, it does not completely correct for it (Shimodaira, 2002).
Furthermore, both the WSH and WKH tests rely on the same assumptions like the
presence or absence of the ML trees in the set of compared trees as their un-weighted

counterparts.

12.5.6 The approximately unbiased (AU) test

Shimodaira (2002) explains the correlation of the number of input trees and the
size of the confidence set returned by the SH test by the fact that the SH test is
heavily biased. On the one hand, SH is very good in controlling its type I error, but
it overestimates the selection bias and, thus, acts more conservative as the number
of input trees grows.

Zharkikh and Li (1995) have suggested a method that is based on a complete, as
well as a partial, bootstrap to enable the inference of the selection bias. Shimodaira
(2002) later devised an approximately unbiased (AU) test based on a multiscale
bootstrap to be able to better correct for the selection bias. The multiscale bootstrap
works as follows.

From our input alignment D of length N, the multiscale bootstrap draws boot-
strap replicates for a number of different lengths N;. Some are smaller but also
some are larger than the original sequence length N. For each length N,, many
bootstrap samples are drawn (B > 10000). The log-likelihood I{* obtained by
the RELL method for the sequence length Ny are scaled with the factor N/ N to
the same virtual length N:

0 = (12.6)
Using the results from the different sequence lengths N;, the method is able to infer
the unknown curvature of the selection bias needed for a proper correction. Thus,
the AU test is approximately unbiased if an appropriate set of sequence lengths is
used (see Shimodaira, 2002, for details).

According to Shimodaira (2002), the AU test tests for each tree T, € 7 the
following null hypothesis.

Hy(T,): theexpected value E[I,] of T; is larger or equal to the expected values E[Ly],
forall T, € T.

Although the AU test is not susceptible to the increase of trees, one has to be
careful if many of the best trees are almost equally well supported — one might
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miss the true tree, since there is over-confidence in the wrong trees (Shimodaira,
2002). Furthermore, the method might be computationally infeasible if the tree set
7 contains several thousand trees. Shimodaira (2002) suggests a prefiltering with
the KH test using a very conservative significance value (e.g. & = 0.001) to reduce
the tree set before applying the AU test.

12.5.7 Swofford-Olsen-Waddell-Hillis (SOWH) test

Swofford et al. (1996) suggested an approach (SOWH test) which — different from
the above tests —applies parametric bootstrapping to compare the trees. The SOWH
test tests the following hypotheses {cf. Goldman et al., 2000):

Hy: The tree T, is the true topology.
Hu:  Some other topology is the true one.

To test each tree T, from a set 7 the SOWH test proceeds as follows:

(i) Estimate the log-likelthood values lyy and I, and compute the test statistic § =
I — Lo

(ii) Generate parametric bootstrap samples with Monte Carlo simulation along tree
T, with the ML parameters 0, estimated for tree T.

(iii) For each bootstrap sample, re-estimate the model parameters 6" and the log-
likelihood value lfl") for tree T, (under the null hypothesis).

(iv) For each bootstrap sample, also re-estimate the model parameters 6\) and the
log-likelihood value I{) for all other trees T, € 7 to find the ML log-likelihood
ll(\/lI)L for this bootstrap sample.

(v) Compute the difference values 8 = I\ — I{ which are interpreted as samples
according to the distribution of § under the null hypothesis Hy. Due to this
assumption, no estimation of distribution parameters is performed.

(vi) Obtain the border of the rejection area directly from the generated distribution
of 8 values. To this end, empirically sum the 8 values in ascending order until
you have passed 95% of all ' values. Use this 8 value as the critical value
beyond which the null hypothesis is rejected.

(vii) Repeat this procedure for all different trees 1, € 7.

The SOWH test utilizes the same test statistic § as the KH and the SH test. Due
to using the ML tree in the computation of 8, the assumption of E{8] = 0 would
be inappropriate, however. Therefore, a one-sided test is used.

The repeated parametric bootstrap based on the respective T, produces data
conforming to the null hypothesis. Hence, no centering is necessary.

The main problem with tests based on parametric bootstrap is that they are
computationally very demanding, often making extensive tests unfeasible. Fur-
thermore, no straightforward implementation of the SOWH test seems avail-
able. Yet Goldman et al. (2000) give some advice at http://www.ebi.ac.uk/
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goldman/tests/ how to implement SOWH tests using Paup” (see Chapter 8) and
SEQ-GEN (Rambaut & Grassly, 1997).

12.6 Confidence sets based on likelihood weights

Strimmer and Rambaut (2002) approach the problem of comparing trees from a
different perspective. Instead of significance testing, they devised a method that
generates a confidence set of trees based on expected likelihood weights (ELW).
They define a confidence set as the smallest subset of models — here trees — which
together obtain a pre-defined probability C to be selected based on some random
data set D (with length N) drawn from the true distribution of the evolutionary
process. Note that this concept is related to credible sets of trees in Chapter 7.
Given the likelihoods L, of each tree T, € 7, the likelihood weight w, of a single
tree T, is computed as the fraction of the total likelihood summed over all trees
T.eT:
L a

B ZxLX

with all likelihood weights w, adding up to 1.0. One way of constructing a confi-

(12.7)

Wa

dence set would be to collect all trees T, in descending order of their weights until
the sum of collected weights meets the pre-defined threshold value C, typically
0.95. This view is related to significance testing (see above) where the 1 — o confi-
dence region corresponds to the coverage of our confidence set by the cumulative
level of confidence C.

To compute the precise selection probability, the expected likelihood weight
E[w,], the true model has to be known which is hardly ever the case in reality.
Hence, estimating the expected weights is based on a non-parametric bootstrap as
in the previous sections (Fig. 12.5):

(i) Generate B bootstrap samples D”). Estimate the corresponding likelihood values
Lg) for each tree T, € 7 (e.g. with the RELL method).
(ii) Compute the likelihood weights w, (i) for all T, € 7 according to (12.7), within
each bootstrap sample separately.
(iii) For each tree Ty derive its expected likelihood weight E [w,] by averaging over all
bootstrap samples, assuming E[w,] ~ W,:

B
_ 1 ;
We =% ; wi) (12.8)

(iv) Construct the confidence set by selecting trees T, in descending orders of their
(inferred) expected weights w, until their accumulated sum meets the pre-set
level of confidence C = 0.95.
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Fig. 12.5  Sketch of the confidence set generation from expected likelihood weights. From the boot-

strap samples D .. D® [ikelihoods L{" ... 1Y are computed for each tree T;...Ty.
Based on each bootstrap sample, each likelihood L is converted to a likelihood weight
wﬁ’b). From these weights, the expected likelihood weight w, for each tree T, across the
corresponding bootstrap samples is computed. The trees are sorted by their expected like-
lihood weights w,. The confidence set collects trees in descending order such that the
cumulative expected weights >°3_; w,, just contains the fraction 1 — .

This method for selecting a confidence set seems not to be affected by the
problem of SH, i.e. extending the constructed confidence set as more and more
trees are added as input (Strimmer & Rambaut, 2002). It is also independent
of whether or not the true best tree is among the input trees. Nevertheless, the
simplifications made need long sequence data sets D to correct for possible model
mis-specification, and large enough numbers of bootstrap samples to get valid
estimates from the parametric bootstrap (especially if the RELL method is used).
The impact of model mis-specification with data sets, however, remains unclear.

12.7 Conclusions

All methods we have examined above provide us with a kind of confidence set of
trees, a subset from our input set 7. The trees within this confidence set cannot
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be classified statistically as significantly better, worse, or different (depending on
the hypotheses tested) by the means of their likelihood values. That means, when
two trees are selected for the confidence set, we cannot discuss their differences as
significant even though their likelihoods might differ and their topologies might
substantially contradict each other.

The trees in the confidence set are usually assumed to be close to the true tree.
This conclusion is difficult to confirm, however, since the true tree might not be
among those tested. Furthermore, model mis-specifications and violations of basic
assumptions might render the test results invalid.

We have seen that it is of utmost importance to take into account the hypotheses
and assumptions a test is based on. Knowing these limitations allows us to draw
valid conclusions from tests we apply and, vice versa, to determine what tests are
appropriate to answer certain questions we want to ask about our data.



