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Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 2 ABSTRACT:  1 MaxEnt is a program for modelling species distributions from presence-only species records. This 2 paper is written for ecologists and describes the MaxEnt model from a statistical perspective, 3 making explicit links between the structure of the model, decisions required in producing a 4 modelled distribution, and knowledge about the species and the data that might affect those 5 decisions. To begin we discuss the characteristics of presence-only data, highlighting implications 6 for modelling distributions. We particularly focus on the problems of sample bias and lack of 7 information on species prevalence. The keystone of the paper is a new statistical explanation of 8 MaxEnt  which shows that the model minimizes the relative entropy between two probability 9 densities (one estimated from the presence data and one, from the landscape) defined in covariate 10 space. For many users, this viewpoint is likely to be a more accessible way to understand the model 11 than previous ones that rely on machine learning concepts. We then step through a detailed 12 explanation of MaxEnt describing key components (e.g. covariates and features, and definition of 13 the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and 14 regularization) and outputs. Using case studies for a Banksia species native to south-west Australia 15 and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result 16 and what this means. The fish example illustrates use of the model with vector data for linear river 17 segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected 18 data, locally restricted species, and predicting to environments outside the range of the training 19 data are demonstrated, and new capabilities discussed. Online appendices include additional details 20 of the model and the mathematical links between previous explanations and this one, example code 21 and data, and further information on the case studies.  22 INTRODUCTION 23 Species distribution models (SDMs) estimate the relationship between species records at sites and 24 the environmental and/or spatial characteristics of those sites (Franklin, 2009).  They are widely 25 used for many purposes in biogeography, conservation biology and ecology (Elith & Leathwick, 26 2009a; Table 1).  In the last two decades there have been many developments in the field of species 27 distribution modelling, and multiple methods are now available.  A major distinction among 28 methods is the kind of species data they use. Where species data have been collected systematically 29 – for instance, in formal biological surveys in which a set of sites are surveyed and the 30 presence/absence or abundance of species at each site are recorded -  regression methods  familiar 31 to most ecologists (e.g. generalized linear or additive models, GLMs or GAMs; or ensembles of 32 regression trees: random forests or boosted regression trees, BRT) are used.  33  34 However for most regions systematic biological survey data tend to be sparse and/or limited in 35 coverage. Species records are available, though, in the form of presence-only records in herbarium 36 and museum databases.  Many of these databases represent well over a century of public and 37 private investment in biological science and are a hugely important resource of species occurrence 38 data. The desire to maximize the utility of such resources has spawned an array of SDM methods for 39 modelling presence-only data. MaxEnt (Phillips et al., 2006; Phillips & Dudík, 2008) is one such 40 method and is the focus of this paper. 41  42 MaxEnt’s predictive performance is consistently competitive with the highest performing methods 43 (Elith et al., 2006). Since becoming available in 2004, it has been utilized extensively for modelling 44 species distributions. Published examples cover diverse aims (finding correlates of species 45 occurrences, mapping current distributions, and predicting to new times and places) across many 46 ecological, evolutionary, conservation and biosecurity applications (Table 1). Government and non-47 government organisations have also adopted MaxEnt for large-scale, real-world biodiversity 48 mapping applications, including the Point Reyes Bird Observatory online application 49 (http://www.prbo.org/) and the Atlas of Living Australia (http://www.ala.org.au/). JE and SJP’s 50 involvement in such programs identified a need for an ecologically-accessible explanation of 51 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 3 MaxEnt. Existing descriptions include concepts from machine learning that tend to be outside the 52 common experience of many ecologists. 53  54 In this paper we explain the MaxEnt modelling method with emphases on a statistical explanation 55 of the method, on what it assumes, and on the impacts of choices made in the modelling process. 56 We use two case studies to examine the effects of background selection and model settings, and to 57 illustrate the applicability of the model for exploring ecological relationships with fine-scale, vector-58 based environmental data. Our aim is to promote understanding of the method and recommend 59 useful approaches to data preparation and model fitting and interpretation.  60 PREAMBLE: WHAT IS SPECIAL ABOUT THE PRESENCE-ONLY CASE? 61 Expanding use of presence-only data for modelling species distributions has prompted wide 62 discussion about the sorts of distributions (e.g., potential vs realized) that can be modelled with 63 presence-only data in contrast to presence-absence data (e.g., Soberón & Peterson, 2005; Chefaoui 64 & Lobo, 2007; Hirzel & Le Lay, 2008; Jiménez-Valverde et al., 2008; Soberón & Nakamura, 2009; 65 Lobo et al., 2010). As mentioned in several of these papers, the subject is complex due to the 66 interplay of data quality (amount and accuracy of species data; ecological relevance of predictor 67 variables; availability of information on disturbances, dispersal limitations and biotic interactions), 68 modelling method and scale of analysis. A comprehensive review of the issues would be useful, but 69 here we restrict ourselves to key points important for this paper.  70  71 Some of the published discussion suggests that presence-only data in some sense release us from 72 the problems of unreliable absence records (e.g., Jiménez-Valverde et al., 2008), particularly 73 emphasising that absences bear such strong imprints of biotic interactions, dispersal constraints 74 and disturbances that they may preclude modelling of potential distributions (sensu Svenning & 75 Skov, 2004).  However, the presence records are also imprinted by many of the factors affecting 76 absences. If a species is absent from an environmentally suitable area because, say, past 77 disturbances have caused local extinctions, the signal of that absence will be found in the 78 distribution of presence records: there will be no presence records in the disturbed area. 79 Regardless of whether absences are used in modelling, the pattern in the presence records will 80 suggest the area is unsuitable, and the model will be affected by this patterning. Similarly, if the 81 detectability of a particular species varies from site to site, then not only does this result in some 82 false absences in presence-absence data, it also affects the pattern of presences in presence-only 83 data. This leads naturally to the conclusion that dispensing with absences does not address the 84 limitations often attributed to absence data, such as the fact that species are not perfectly 85 detectable and may not occupy all suitable habitat. This thinking means that we will approach the 86 description of the presence-only modelling problem as one that is trying to model the same 87 quantity that is modelled with presence-absence data, that is: the probability of presence of a 88 species (to be defined more carefully below).  89  90 From here on, we assume that the data available to the modeler are presence-only, i.e. a set of 91 locations within L, the landscape of interest, where the species has been observed. Let y=1 denote 92 presence, y=0 denote absence, z denote a vector of environmental covariates, and background be 93 defined as all locations within L (or a random sample thereof). Assume the environmental variables 94 or covariates  z (representing environmental conditions) are available landscape wide. Define f(z) 95 to be the probability density of covariates across L, f1(z) to be the probability density of covariates 96 across locations within L where the species is present, and similarly, f0(z) where the species is 97 absent. (Densities – or probability density functions - describe the relative likelihood of random 98 variables over their range, and can be univariate or multivariate). The quantity that we wish to 99 estimate is, as with presence-absence data, the probability of presence of the species, conditioned 100 on environment: Pr(y=1|z). Strictly presence-only data only allows us to model f1(z), which on its 101 own cannot approximate probability of presence. Presence/background data allows us to model 102 both f1(z) and f(z), and this gets to within a constant of Pr(y=1|z), because Bayes’ rule gives: 103 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 4  104 Pr(y=1|z)  =  f1(z)Pr(y=1) / f(z).                               ……………………… (1) 105 The only quantity that is lacking is the second term, Pr(y=1), i.e. the prevalence of the species 106 (proportion of occupied sites) in the landscape.  Formally, we say that prevalence is not identifiable 107 from presence-only data (Ward et al.  2009).  This means that it cannot be exactly determined, 108 regardless of the sample size; this is a fundamental limitation of presence-only data.  As an aside we 109 note, however, that absence data are plagued by issues of detection probability (Wintle et al., 2004; 110 MacKenzie, 2005) so that even presence-absence data may not yield a good estimate of prevalence.  111 A second fundamental limitation of presence-only data is that sample selection bias (whereby some 112 areas in the landscape are sampled more intensively than others) has a much stronger effect on 113 presence-only models than on presence-absence models (Phillips et al., 2009).  Imagine that f1(z) is 114 contaminated by a sample selection bias s(z). This bias will most commonly occur in geographic 115 space (e.g. close to roads) but could be environmentally based (e.g. visiting wet gullies) but, 116 regardless, will map into covariate space.  Under biased sampling, a presence-only model gives an 117 estimate of f1(z)s(z) rather than f1(z). That is, we get a model that combines the species distribution 118 with the distribution of sampling effort (Soberón & Nakamura, 2009).  In contrast, for presence-119 absence models, sample selection bias affects both presence and absence records, and the effect of 120 the bias cancels out (under reasonable assumptions, see Zadrozny, 2004). 121  122 So far we have treated presence or absence as a binary event, but in reality defining the response 123 variable is not straightforward, and in this regard presence-only data are quite different from 124 presence-absence data (Pearce & Boyce, 2006).  Presence or absence of a species is dependent on 125 the time frame and spatial scale -- for example, a vagile species (such as a bird) may be present at 126 some times but not others, while a plant species will be more likely to be found in a large plot with 127 given environmental conditions than in a small plot with the same conditions.  Absence of a plant 128 species from a 1km2 quadrat around a point implies absence in a 1m2 quadrat around that point, 129 but not vice versa.  With presence-absence data, it is not hard to incorporate these complexities  in 130 the formulation of the response variable ( i.e., the specification of what constitutes a sample), or via 131 sampling covariates in the model, provided survey details are available (Leathwick, 1998; 132 MacKenzie & Royle, 2005; Schulman et al., 2007; Ward, 2007b).  However, with presence-only data, 133 we typically have occurrence data that do not have any associated temporal or spatial scale. The 134 record is usually simply a record of the species at a location, with no information on search area or 135 time.  136  137 With presence-absence data, the definition of the response variable should naturally be consistent 138 with the sampling method:  for example, if the available data are surveys of 1m2 quadrats, then y=1 139 should correspond to the species being present in a 1m2 quadrat.  With presence-only data, the 140 available data do not usually describe the survey method, so the modeller has considerable leeway 141 in defining the response variable.  A common approach is to implicitly assume a sampling unit of 142 size equal to the grain size of available environmental data (see Elith & Leathwick 2009a for 143 discussion of grain). 144  145 To summarize, we posit that with presence and background data, we can model the same quantity 146 as with presence-absence data, up to the constant Pr(y=1).  However, if presence-absence survey 147 data are available, we believe it is generally advisable to use a presence-absence modelling method, 148 since in that case the models are less susceptible to problems of sample selection bias, the survey 149 method will often be known and can be used to appropriately define the response variable for 150 modelling, and we take advantage of all information in the data. In particular, presence-absence 151 data give us much better information about prevalence than presence-only, because – even though 152 there may be some difficulties due to  imperfect detection -  they solve the major problem of non-153 identifiability. We will come back to this when we discuss the logistic output of MaxEnt. 154  155 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 5 EXPLANATION OF MAXENT 156 Here for the first time we describe MaxEnt using statistical terminology and notation, providing a 157 break from the machine learning terminology in previous papers. As we describe the model we will 158 highlight possibilities for – and implications of - modelling choices and defaults, and consider how 159 MaxEnt addresses the limitations of presence-only data identified above. We relegate the more 160 technical considerations to boxes and online appendices, to avoid interrupting the flow of the 161 explanation. 162 COVARIATES AND FEATURES 163 Most ecologists, following the statistical literature, call the independent variables in a model the 164 covariates, predictors or inputs. In SDMs these include environmental factors that are relevant to 165 habitat suitability (e.g. estimates of climate, topography, and soil for plants; temperature, salinity 166 and prey abundance for marine fishes). Since species' responses to these tend to be complex, it is 167 usually desirable to fit non-linear functions (Austin, 2002). In regression, this can be achieved by 168 applying transformations to the covariates – for instance, creating basis functions for polynomials 169 and splines, including piecewise linear functions.  Complex models are fitted as linear combinations 170 of these basis functions in methods including GLMs and GAMs (Hastie et al.  2009, Chapter 5). In 171 machine learning, basis functions and other transformations of available data are termed features –172 i.e., features are an expanded set of transformations of the original covariates.  173  174  In MaxEnt selected features are formed “behind the scenes”, in the same way as in regression, 175 where the model matrix is augmented by terms specified in the model (e.g. polynomials, 176 interactions). The MaxEnt fitted function is usually defined over many features, meaning that in 177 most models there will be more features than covariates. MaxEnt currently has six feature classes: 178 linear, product, quadratic, hinge, threshold and categorical (further details in Online Appendix 1). 179 Products are products of all possible pair-wise combinations of covariates, allowing simple 180 interactions to be fitted. Threshold features allow a "step" in the fitted function; hinge features are 181 similar except they allow a change in gradient of the response. Many threshold or hinge features 182 can be fitted for one covariate, giving a potentially complex function. Hinge features (which are 183 basis functions for piecewise linear splines), if used alone, allow a model rather like a generalized 184 additive model (GAM): an additive model, with non-linear fitted functions of varying complexity but 185 without the sudden steps of the threshold features. MaxEnt’s default is to allow all feature types 186 (conditional on sufficient species data being available), but it is worth considering simpler models, 187 as discussed later under implications for modelling.   188 THE MAXENT MODEL – A SHORT OVERVIEW 189 Previous papers have described MaxEnt as estimating a distribution across geographic space 190 (Phillips et al., 2006; Phillips & Dudík, 2008). Here we give a different (but equivalent) 191 characterization that focuses on comparing probability densities in covariate space (Figure 1). In 192 doing so we rely strongly on the PhD research of TH's past student, Gill Ward (Ward, 2007b), and 193 acknowledge her contribution.  Equation 1 shows that if we know the conditional density of the 194 covariates at the presence sites, f1(z), and the marginal (i.e. unconditional) density of covariates 195 across the study area f(z), we then only need knowledge of the prevalence Pr(y=1), to calculate 196 conditional probability of occurrence. MaxEnt first makes an estimate of the ratio f1(z)/ f(z), 197 referred to as MaxEnt’s “raw” output. This is the core of the MaxEnt model output, giving insight 198 about what features are important, and estimating the relative suitability of one place vs another. 199 Because the required information on prevalence is not available for calculating conditional 200 probability of occurrence, a work-around has been implemented (termed MaxEnt’s “logistic” 201 output). This treats the log of the output ---  ŋ(z)=log(f1(z)/f(z))  --- as a logit score, and calibrates 202 the intercept so that the implied probability of presence at sites with "typical" conditions for the 203 species (i.e. where ŋ(z) = the average value of ŋ(z) under f1) is a parameter τ. Knowledge of τ would 204 solve the non-identifiability of prevalence, and in the absence of that knowledge MaxEnt arbitrarily 205 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 6 sets τ to equal 0.5. This logistic transformation  is monotone (order preserving) with the raw 206 output. We work through each part of the MaxEnt model in the following sections, showing how the 207 choice of landscape, species data, and selected settings influence the results. 208 THE LANDSCAPE AND SPECIES RECORDS 209 The landscape of interest (L) is a geographic area suggested by the problem and defined by the 210 ecologist. It might, for instance, be limited by geographic boundaries, or by an understanding of 211 how far the focal species could have dispersed. We then define L1 as the subset of L where the 212 species is present.  213  214 The distribution of covariates in the landscape is conveyed by a finite sample – a collection of points 215 from L with associated covariates, typically called a background sample.  These data may be 216 supplied in the form of grids of covariates covering a pixelation of the landscape; as a default 217 MaxEnt randomly samples 10,000 background locations from covariate grids, but the background 218 data points can also be specified (see Yates et al., 2010, and case studies below) and grids are not 219 essential (case study 2).  Note that the background sample does not take any account of the 220 presence locations – it is simply a sample of L, and could by chance include presence locations. 221 Using a random background sample implies a belief that the sample of presence records is also a 222 random sample from L1. We deal later with the case of biased samples. 223 DESCRIPTION OF THE MODEL 224 MaxEnt uses the covariate data from the occurrence records and the background sample to 225 estimate the ratio f1(z)/ f(z). It does this by making an estimate of f1(z) that is consistent with the 226 occurrence data; many such distributions are possible, but it chooses the one that is closest to f(z).  227 Minimizing distance from f(z) is sensible, because f(z) is a null model for f1(z):  without any 228 occurrence data, we would have no reason to expect the species to prefer any particular 229 environmental conditions over any others, so we could do no better than predict that the species 230 occupies environmental conditions proportionally to their availability in the landscape.  In MaxEnt, 231 this distance from f(z) is taken to be the relative entropy of f1(z) with respect to f(z) (also known as 232 the Kullback-Leibler divergence). 233 Using background data informs the model about f(z), the density of covariates in the region, and 234 provides the basis for comparison with the density of covariates occupied by the species – i.e. f1(z).  235 Constraints are imposed so that the solution is one that reflects information from the presence 236 records. For example, if one covariate is summer rainfall, then constraints ensure that the mean 237 summer rainfall for the estimate of f1(z) is close to its mean across the locations with observed 238 presences. The species’ distribution is thus estimated by minimizing the distance between f1(z) and 239 
f(z) subject to constraining the mean summer rainfall estimated by f1 (and the means of other 240 covariates) to be close to the mean across presence locations. 241  242 We note that previous papers describing MaxEnt focused on a location-based definition over a finite 243 landscape (typically a grid of pixels).  We will call this a definition based in geographic space, and 244 compare it with our new description, which focuses on environmental (covariate) space. Note, 245 though, that we are not implying by this wording that in either definition there is any consideration 246 of the geographic proximity of locations unless geographic predictors are used. In the original 247 definition (Phillips et al. 2006), the target was π(x) = p(x|y=1), which was a probability distribution 248 over pixels (or locations) x. This was called the “raw” distribution (Phillips et al.  2006), and gave 249 the probability, given the species is present, that it is found at pixel x. Maximising the entropy of the 250 raw distribution is equivalent to minimizing the relative entropy of f1(z) relative to f(z), so the two 251 formulations are equivalent (see online Appendix 2 for equations showing the transition from the 252 geographic to environmental definitions).  The null model for the raw distribution was the uniform 253 distribution over the landscape, since without any data we would have no reason to think the 254 species would prefer any location to any other.  In environmental space the equivalent null model 255 for z  is f(z), since without any data, we have no reason to think the species prefers any particular 256 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 7 environmental conditions, and therefore occupies environmental conditions in proportion to how 257 prevalent they are in the landscape. 258  259 Constraints were described above in reference to covariates, but – as explained in the section on 260 covariates and  features - MaxEnt actually fits the model on features that are transformations of the 261 covariates. These allow potentially complex relationships to be modelled. The constraints are 262 extended from being constraints on the means of covariates to being constraints on the means of 263 the features. We will call the vector of features h(z) and the vector of coefficients β (note, this 264 notation is different to previous papers: Table 2). As explained in Phillips et al.  (2006), minimizing 265 relative entropy results in a Gibbs distribution (Della Pietra et al., 1997) which is an exponential-266 family model: 267  268 
f1(z) = f(z) eŋ(z)                      ................................ (2) 269 where ŋ(z) = α + β∙h(z)      270 and α is a normalizing constant that ensures that f1(z) integrates (sums) to 1 271  272 From this it is clear that the target of a MaxEnt model is ŋ(z), which estimates the ratio f1(z)/f(z). It 273 is a log-linear model, similar in form to a GLM, and depends on both the presence samples and the 274 background samples that are used in forming the estimate. Hence the definition of the landscape is 275 intimately linked to the solution that is given.  276 MECHANICS OF THE SOLUTION 277 In coming to a solution MaxEnt needs to find coefficients (betas) that will result in the constraints 278 being satisfied but not match them so closely that it overfits and produces a model with limited 279 generalization. MaxEnt handles the issue by setting an error bound, or maximum allowed deviation 280 from the sample (empirical) feature means. MaxEnt first automatically rescales all features to have 281 the range 0 to 1. Then an error bound (λj in equation 3) is calculated for each feature (again note the 282 change in notation from previous papers, Table 2). It will reflect the variation in sample values for 283 that feature, adjusted by a tuned (pre-set) parameter for the feature class (Phillips and Dudík 2008, 284 and equation 3). MaxEnt could estimate feature error bounds only from the data, for example using 285 cross-validation, but to simplify model fitting and because the data are often biased, it uses feature 286 class-specific tuned parameters based on a large international data set (Phillips & Dudík, 2008). 287 That dataset covers 226 species, 6 regions of the world, sample sizes ranging from 2 to 5822, and 288 11-13 predictors per region (Elith et al. 2006). It is possible that the tuning may not work well for 289 very different datasets – e.g. if there are many more predictors. The tuned parameters can be 290 changed by the user if desired. The pre-tuning also includes restrictions to the set of feature classes 291 that will be considered for small samples.  292  293 λjൌ λටs2ሾ௛ೕሿm      .............. (3) 294 where  λj is the regularization parameter for feature hj . This feature's variance is s2 over the 295 
m presence sites, and its feature class has a tuning parameter λ. Conceptually λ j 296 corresponds to the width of the confidence interval, therefore it takes the form of the 297 standard error (the square root expression) multiplied by the parameter λ according to the 298 desired confidence level.     299  300 The lambdas in equation 3 allow regularization – i.e. smoothing the distribution, making it more 301 regular. These error bounds are a specific form of regularization called L1-regularization 302 (Tibshirani, 1996) that gives sparse solutions (ones with many zeros, i.e. many features removed).  303 Regularization is not specific to MaxEnt; it is a common modern approach to model selection. It can 304 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 8 be thought of as a way of shrinking the coefficients (the betas) – i.e. penalizing them - to values that 305 balance fit and complexity, allowing both accurate prediction and generality. In MaxEnt, the fit of 306 the model is measured at the occurrence sites, using a log likelihood (Box 1).  A highly complex 307 model will have a high log likelihood, but may not generalize well. The aim of regularization is to 308 trade off model fit (the first term in equation 4 below) and model complexity (the second term in 309 equation 4). In this sense MaxEnt  fits a penalized maximum likelihood model (Phillips and Dudík 310 2008; equation 4) closely related to other penalties for complexity such as Akaike's Information 311 Criterion (AIC, Akaike, 1974). Maximising the penalized log likelihood is equivalent to minimising 312 the relative entropy subject to the error bound constraints.   313  314 maxఈ,ఉ 1݉ ෍ ln൫݂ሺݖ௜ሻ݁ŋሺ௭೔ሻ൯ െ  ෍ ௝ห௡௝ୀଵ௠௜ୀଵߚ௝หߣ  
……………  equation 4 315 subject to    ׬ ݂ሺݖሻ݁ఎሺ௭ሻ݀ݖ ൌ 1௅                  316  317 Where zi is the feature vector for  occurrence point i of m sites,   318 and for j = 1 … n features 319  320 

------------ Box 1 - Log likelihood ------------- 321 In statistics a log likelihood describes the log of the probability of an observed outcome. It 322 varies from 0 [ln(1)] to negative infinity [ln(0)].  If the space of outcomes is continuous, we 323 measure the probability density at the observed outcome, rather than probability. With 324 presence-only data the only known outcomes are presences, so when measuring 325 likelihoods, the calculation is simply done at the presence sites (in comparison to logistic 326 regression where they are calculated at presence and absence sites). For a set of 327 observations the average log likelihood is estimated.  When fitting a MaxEnt model from the 328 software interface, a gain bar is shown that reports the improvement in penalized average 329 log likelihood compared to a null model.   330 
--------------- end of Box 1 ---------------------  331 

 332  333 MAXENT’S  LOGISTIC OUTPUT 334 MaxEnt (from version 3 onwards) gives a logistic output as its default. It is an attempt to get as 335 close as we can to an estimate of the probability that the species is present, given the environment,   336 Pr(y = 1|z). This is a post-transformation of the MaxEnt raw output that makes certain assumptions 337 about prevalence and sampling effort (Box 2 and Online Appendix 3). These two output types of 338 MaxEnt (raw and logistic) are monotonically related, so if the purpose of a study is to rank sites 339 according to suitability, it does not matter which type is used – both will yield identical ranking and 340 hence identical rank-based measures (e.g., AUC values). MaxEnt's logistic transformation is not a 341 commonly used statistical procedure, so here we explain the background and the issues.  342  343 From Eqn. 1 we see that a simple  approach to estimate Pr(y=1|z) would be to simply multiply  eŋ(z) 344 by a constant that estimates prevalence; this approach has the disadvantage that eŋ(z) can be 345 arbitrarily large,  which implies that we may get an estimate of Pr(y = 1|z) that exceeds 1 (Keating & 346 Cherry, 2004; Ward, 2007b). Exponential models can be especially badly behaved when applied to 347 new data, for instance, when extrapolating to new environments. To avoid these problems, and to 348 side-step the non-identifiability of the species prevalence, Pr(y=1), MaxEnt’s logistic output 349 transforms the model from an exponential family model (Eqn. 2) to a logistic model: 350 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 9  351    Pr(y = 1|z) =  τe ŋ(z)−r / (1-τ + τe ŋ(z)−r)               … Equation 5 352 where ŋ(z) is the linear score from Eqn. 2, r is  the relative entropy of MaxEnt’s estimate of f1(z) 353 from f(z), and τ is the probability of presence at sites with "typical" conditions for the species (i.e. 354 where ŋ(z) = the average value of ŋ(z) under f1).  The default value for τ is arbitrarily set at 0.5. 355 Equation 5 is derived using a “minimax” or robust Bayes approach (details in Online Appendix 3).  356 In unsuitable areas, the logistic output's denominator is close to 1-τ, so the result is just a linear 357 scaling of raw output.  For more suitable areas, the effect of the denominator is mainly to bound 358 model output below 1. The logistic output with τ = 0.5 empirically gives a better calibrated estimate 359 of Pr(y = 1|z) than the untransformed raw values (Phillips and Dudík, 2008).   360  361 Because the species prevalence, Pr(y=1), is not identifiable from occurrence data, the prevalence 362 Pr(y=1) implied by the logistic output will not converge to the true prevalence, even given ample 363 occurrence data.  On the other hand, the true prevalence depends on the definition of the response 364 variable y, which itself depends on the sampling method - often unknown for presence-only data 365 (see Preamble).  Further, if additional information is available that could be used to estimate τ, 366 prevalence will be identifiable. We therefore offer guidance for interpretation of MaxEnt’s logistic 367 output in relation to sampling effort and τ (Box 2). 368  369 ------- Box 2: Consider the jaguar: reconciling logistic output and sampling effort ----------- 370 The jaguar (Panthera onca) and the collared peccary (Pecari tajacu) have very similar 371 ranges in South and Central America, and MaxEnt models for the two species would 372 therefore be similar using the default τ. However, the jaguar is much rarer than the peccary, 373 so how can the outputs be compared? The answer is that probability of presence is only 374 defined relative to a given definition of presence/absence (i.e., the temporal and spatial 375 scale of a sample; see Preamble). For instance, for a rare species like the jaguar a presence 376 record is likely to derive from sampling over a longer time and/or larger area (e.g. using 377 camera traps over months) than it would for the peccary, which is fairly common and easier 378 to observe.  Since with presence-only data there is usually no information on sampling 379 effort, this elasticity in definition is largely conceptual – it explains how to think about the  380 meaning of the probabilities across species, when τ is 0.5.  When τ is 0.5 typical presence 381 sites will have a logistic output near 0.5. This is reasonable as long as we can interpret 382 logistic output as corresponding to a temporal and spatial scale of sampling that results in a 383 50% chance of the species being present in suitable areas.  See Online Appendix 3 for more 384 information. 385 Alternatively, if  the value of τ  is available for a given level of sampling effort, it could be 386 used instead of the default, and then the predictions for the two species would be directly 387 comparable.  Tau measures a form of rarity (Rabinowitz et al. 1986).  The jaguar has very 388 low local abundance even in suitable areas within its range, so a very small value τ is 389 appropriate for all but the most intensive sampling schemes.  The estimate of τ could come 390 from expert knowledge or targeted surveys.  While τ is determined by prevalence, and vice 391 versa, τ is arguably more ecologically intuitive, as it is more a property of the species while 392 prevalence strongly depends on the choice of study area. 393 -------------------------- end of Box 2 ----------------------- 394 IMPLICATIONS FOR MODELLING  395 These properties of the MaxEnt model have several implications for how it should be used. 396 MaxEnt  relies on an unbiased sample (as do all species modelling methods), so efforts in collecting 397 a comprehensive set of presence records (cleaned for duplicates and errors) and dealing with 398 biases are critical (Newbold, 2010). Methods are implemented for dealing with biased species data 399 (see case study 1, and Dudík et al., 2006; Phillips et al., 2009; Elith et al., 2010 in press). The main 400 alternatives are to provide background data with similar biases to those in the presence data (e.g. 401 by using sites surveyed for other species in the same biological group), or to use a bias grid that 402 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 10 indicates the biases in the survey data (see tutorial provided with MaxEnt for an example). All the 403 values in this grid should be positive (or specified as no data), and should be scaled to represent 404 relative survey effort across the landscape L. There is one additional important consideration. If the 405 covariate grids are unprojected (i.e. latitude and longitude in degrees, for instance WorldClim data  406 - http://www.worldclim.org/), any region covering a non-trivial range in latitude (say, more than 407 200km, especially away from the equator) will have grid cells of varying area. For instance, in 408 Australia cells in the north are approximately 1.3 times the area of cells in the south. MaxEnt 409 randomly samples cells, implicitly assuming equal area cells. Solutions are to project the grids to an 410 equal area projection, create a grid showing the variations in cell area, that can then be used as a 411 bias grid, or create your own background sample with appropriate sampling weights (case study 1).   412  413 The MaxEnt solution is affected by the landscape (region) used for the background sample, as 414 demonstrated by VanDerWal et al.  (2009). Conceptually, that landscape should include the full 415 environmental range of the species, and exclude areas that definitely have not been searched 416 (unless the reason for no searching is that there is unambiguous knowledge that the species does 417 not occur there). A local endemic that is, for instance, likely to be geographically restricted due to 418 barriers to dispersal, should be modelled with background selected from areas into which it might 419 have dispersed. Cleared areas that would not be surveyed because there is no remaining habitat for 420 the species should be excluded. Excluding areas from the background sample can be achieved 421 through use of masks, as explained in the online tutorial for MaxEnt (and see Table 2). Predictions 422 can still be made to excluded areas, if required, by using the projection facilities. We will discuss 423 some caveats to these general concepts for background selection in the first case study. 424  425 MaxEnt includes a range of feature types, and subsets of these can be used to simplify the solution. 426 By default, the program restricts the model to simple features if few samples are available (linear is 427 always used; quadratic with at least 10 samples; hinge with at least 15; threshold and product with 428 at least 80) because – as for any modelling method – few samples provide limited information for 429 determining the relationships between the species and its environment (Barry & Elith, 2006; 430 Pearson et al., 2007). In such cases, it is also a good idea to first reduce the candidate predictor set 431 using ecological understanding of the species (Elith & Leathwick, 2009b). Hinge features tend to 432 make linear and threshold features redundant, and one way to form a model with relatively smooth 433 fitted functions, more like a GAM, is to use only hinge features (e.g. Elith et al., 2010 in press, and 434 case study 1). Excluding product features creates an additive model that is easier to interpret, 435 though less able to model complex interactions. 436  437 MaxEnt has an inbuilt method for regularization (L1-regularization) that is reliable and known to 438 perform well (Hastie et al., 2009). It implicitly deals with feature selection (relegating some 439 coefficients to zero) and is unlikely to be improved - and more likely, degraded - by procedures that 440 use other modelling methods to pre-select variables (e.g. Wollan et al., 2008).  In particular, it is 441 more stable in the face of correlated variables than stepwise regression, so  there is less need to 442 remove correlated variables (unless some of them are known to be ecologically irrelevant), or 443 preprocess covariates by using PCA and selecting a few dominant axes. Note, though, that since 444 there are often many variables available, some expert pre-selection of a candidate set is often a 445 good idea; Elith and Leathwick 2009b. Selecting proximal variables is likely to be particularly 446 important when models are to be used in different regions or climates.  If smoother models are 447 required, regularization parameters can be increased by the user (e.g., see Elith et al. 2010 in 448 press).   449  450 If comparing models for different species some care is needed in use of the logistic outputs because 451 probability of presence is only defined relative to a given level of sampling effort, which as a default 452 is assumed to be one that results in a 50% chance of observing the species in suitable areas (Box 2).  453 The implied sampling effort therefore depends on the species. This presents some challenges for 454 cross-species comparisons of habitable areas, but these are a direct result of using presence-only 455 data, and is not a unique problem to MaxEnt. Some users may in fact see the species-specific scaling 456 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 11 as an opportunity, since the literature on favourability functions (e.g., Real et al., 2006) claims that 457 probability of presence is itself hard to work with. 458 USING MAXENT 459 CASE STUDY 1: MODELLING CURRENT AND FUTURE DISTRIBUTIONS OF A PLANT 460 This analysis predicts the current distribution of Banksia prionotes, then uses the model to identify 461 where suitable environments for the species are likely to occur under climate change. In it we 462 highlight the importance of choice of landscape and dealing with survey bias, debiasing background 463 samples from unprojected grids, use of a reduced set of feature types for a smoother model, and 464 tools for assessing the environments in new times or places.  465 
B. prionotes is a woody shrub to small tree native to south west Western Australia (WA). It is widely 466 distributed across its range, and shows a preference for deep sandy soils. Often a dominant plant in 467 scrubland and low woodlands, it is an important nectar source for honeyeaters, and an outstanding 468 ornamental species for cut flowers.    469  470 Methods: Here we use species data from the Banksia Atlas (Taylor & Hopper, 1988; Yates et al., 471 2010), with 361 records for B. prionotes from the 4631 sites across the South West Australia 472 Floristic Region (SWAFR) that were surveyed for Banksia and for which we had complete 473 environmental data. The atlas is the result of a community science project, and records could either 474 be interpreted as presence-only or presence-absence data, depending on what assumptions are 475 made about the search patterns of contributors. Here we treat them as presence-only data, but use 476 the full set of locations as one “background” treatment. To demonstrate the effect of this choice, two 477 alternative backgrounds (i.e. landscape definitions) were evaluated: a sample of 10000 sites within 478 the SWAFR (Yates et al. 2010, and Figure 2), and a sample of 20000 sites across the whole of 479 Australia. The larger number of sites across Australia was used to ensure good representation of all 480 environments, based on previous tests of the effects of background sample size on model structure 481 for these predictors (Elith unpubl.). Because the covariate data for this study are unprojected, these 482 samples were weighted according to cell area (see methods in Online Appendix 4) but otherwise 483 random. 484  485 Using random sites within the floristic region implies that the presence records are a random 486 sample from all locations where the species is present in the region which is unlikely because 487 records were from extant vegetation patches in likely suitable environments (the region has been 488 extensively cleared for agriculture, and some of the more inland areas are too arid for many Banksia 489 species). Using random sites across Australia implies the species could have dispersed anywhere 490 across the continent, and the whole continent considered available for sampling. This is 491 questionable because the desert areas to the north and east of the inhabited area are likely barriers 492 to dispersal. We will come back to implications of this later. 493  494 Yates et al.  (2010) identified important climatic drivers for plants of southwest Western Australia. 495 We base our candidate set of predictors on their study, but use a different data source so we can 496 train and predict over the whole of Australia. Described in online Appendix 4, our covariates (all 497 unprojected, at 0.01 degree or ~ 1km grid resolution) included five climate variables: isothermality 498 (ISOTHERM), mean temperature of the wettest quarter (TEMPWETQ), mean temperature of the 499 warmest quarter (TEMPWARMQ), annual precipitation (RAIN) and precipitation of the driest 500 quarter (RAINDRYQ), and an estimate of the solum plant-available water holding capacity (solwhc). 501 We present this as a demonstration study only, and recognize that, for rigorous application in this 502 region, better soils data and predictors representing land transformation are needed for more 503 precise predictions (Yates et al.  2010). The future environment was represented by changes 504 predicted under the A1FI scenario for 2070 estimated over the ensemble of 23 GCMs in IPCC AR4 505 (Solomon et al. 2007); the solwhc was assumed to remain as it is now.  506 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 12 Models were fitted and projected to both current and future climates (Figure 3) using only hinge 507 features, with default regularization parameters (see Appendix 5 for model details, and for a 508 comparison with models fitted with all feature types).  We fitted all models on the full data sets but 509 also used 10-fold cross validation to estimate errors around fitted functions and predictive 510 performance on held-out data. The latter is a good test for each model but – given the different 511 backgrounds – not comparable across models. Note also that the AUC in this case is calculated on 512 presence vs background data (Phillips et al. 2006). We also divided the atlas data into training and 513 testing sets for a manual 5-fold cross-validation, testing each model on identical withheld data via 514 two test statistics  (area under the receiver operating characteristic curve (AUC), and correlation, 515 COR; details in online Appendix 4). Example code for running such analyses are available online 516 (Appendix 4). 517  518 Results: Atlas background (model 1) produced a mapped distribution in the inhabited region with 519 more of an eastward emphasis compared with other background treatments (Figure 3). The 520 coastward (westerly) bias in the distribution of survey sites (Figure 2) affected the distributions 521 predicted by models 2 and 3 (random background across SWAFR or Australia) but was factored out 522 by using atlas background (model 1). The more easterly distribution is more consistent with the 523 known ecology of the species, and with the observed distribution (Taylor and Hopper 1988). 524 Variable importance varies with data set, with TEMPWETQ being much more prominent when 525 using an all-Australia background than when restricted to the south-west. Similarly, shapes of fitted 526 functions vary across data sets (Appendix 5). This is to be expected, because each data set implies a 527 different modelling question (e.g. the all-Australia background asks: why is this species only in 528 environments occurring in the southwest?).  529  530 An increasing number of SDM applications involve prediction to new environments (e.g. to new 531 places or times; Elith & Leathwick, 2009a). These are contentious applications, making strong 532 assumptions (Dormann, 2007) and usually requiring prediction to environments not sampled by 533 the training data. MaxEnt has been extended to include new capabilities to inform users about 534 predicting to novel environments (Elith et al., 2010 in press).  MaxEnt already provides mapped 535 information on the effect of model "clamping" – i.e. the process by which features are constrained to 536 remain within the range of values in the training data. This identifies locations where predictions 537 are uncertain due to the method of extrapolation, by showing where clamping substantially affects 538 the predicted value. We feel that extreme care should be taken whenever extrapolating outside the 539 training, so new calculations ("MESS maps", i.e. multivariate environmental similarity surfaces) 540 display differences between the training and prediction environments (Figure 3). In this case they 541 show that, compared with environments at the atlas sites, the northern parts of the SWAFR will 542 experience novel climates in 2070 (Figure 3 model #1). Models based on random background 543 across SWAFR or the continent (models 2 and 3) require less extrapolation (because wider 544 sampling of background points brings with it wider sampling of environments) but, given the 545 problems with the realism of these treatments, we do not view the result as a necessary advantage 546 for future predictions.   547  548 Online Appendices 5 and 6 include further information on how these models predict across the 549 continent, for both current and future climates. They provide interesting insights into model 550 variation across scales, regions, and datasets, and emphasize the importance of choice of 551 background (see commentary, Appendix 5). In particular, it is interesting that model 3 restricts 552 predictions to the correct general area, and has the highest 10-fold cross-validated AUC (Table 3), 553 yet has the poorest ecological justification for its choice of background and is least likely to be 554 useful for managing the species locally.  The advantage of limiting background to local, reachable 555 areas (models 1 and 2) is that contrasts between occupied and unoccupied environments in the 556 local area are the model focus, and – particularly with fine-scale environmental data – 557 differentiation useful at the management scale might be achievable. It is also likely to be the most 558 ecologically realistic choice for many locally restricted species. On the other hand, if models are to 559 be projected well outside the local geographic area, use of local backgrounds brings with it the 560 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 13 penalty that prediction to other areas is likely to involve considerable extrapolation. Some trade-off 561 is clearly required.  562 CASE STUDY 2: MODELLING THE DISTRIBUTIONS OF FISH IN RIVERS. 563 This analysis predicts the current distribution of Gadopsis bispinosus, the  two-spined blackfish, in 564 rivers of south-eastern Australia. In the preamble we make a case that with presence and 565 background data, we can model the same quantity as with presence-absence data, up to the 566 constant Pr(y=1).  One implication of that is that we should be able to use the same types of data, 567 including fine-scale, detailed information, to model ecological relationships – i.e. we need not be 568 restricted to coarse grid cells and basic climate variables. Here we use detailed ecological 569 information at the river segment scale to model the distribution of a native fish species. To our 570 knowledge it is the first example using MaxEnt with vector (river segment) data.  571  572 
G. bispinosus is a native freshwater fish endemic to south-eastern Australia. It occurs in cool, clear 573 upland or montane streams with abundant in-stream cover.  It is most common in medium to large 574 streams that are deep enough for reduced stream velocities, and in forested catchments with 575 relatively small sediment inputs (Lintermans 2000).   576  577 Methods:  578 The species data are from surveys (described further in online Appendix 7) of the inland-draining 579 rivers of northwest Victoria, Australia. In this area there are ten major river systems grouped into 580 four regions that start in hilly to mountainous terrain and drain northwards. G. bispinosus was 581 recorded at 255 sites. We use covariate data from the 255 capture sites as our sample of L1 and a 582 random sample of 10000 of the ~240000 river segments for our sample of L , the background data. 583  584 The candidate predictor set comprised 20 variables summarizing information across three 585 hierarchically nested spatial scales (segment, immediate watershed and entire upstream catchment 586 area) and also downstream to the large river system draining to the ocean. The environmental 587 variables estimate climate, river slope, riparian vegetation and catchment characteristics (Online 588 Appendix Table S7.1). River system was also included to quantify spatial variation in land 589 characteristics and disturbances not covered by the environmental predictor set.  590  591 These segment-based (non-gridded) data are modelled using the SWD (samples-with-data) format 592 in MaxEnt – this involves presenting spreadsheet-like summaries of environments at both presence 593 and background sites. All environmental variables were continuous except the categorical river 594 system covariate. Default settings for features and regularization were used for model training, and 595 10-fold cross-validation used to obtain out-of-sample estimates of predictive performance and 596 estimates of uncertainty around fitted functions.  For mapping, the model was projected to a 597 selected area in the Goulburn-Broken catchment.  Technically, this was achieved by projecting to 598 SWD format data, then linking the predictions to the relevant river segments in a GIS. Online 599 Appendix 8 includes data and code for replicating this case study, including information on how to 600 run MaxEnt from batch files.  601  602 Results: Consistent with ecological knowledge about the species, the model predicts G. bispinosus 603 will most frequently occur in the larger streams of montane areas (Figure 4). These locations are 604 identified as those whose upstream catchments have relatively more precipitation in the warmest 605 quarter and steeper maximum stream slopes. Amongst these, emphasis on segments with warmer 606 summer maximum temperatures served to exclude the higher elevation cold streams (Figure 5).  607 Jackknife tests of variable importance help to identify those with important individual effects; the 608 three most important single predictors were the summed length of all upstream links 609 (TOTLENGTH_UCA), the upstream maximum slope (US_MAXSLOPE) and the amount of riparian 610 tree cover upstream (UC_RIP_TRECOV);  and the predictor with the most information not present in 611 the other variables is the segment-based maximum temperature of the warmest month 612 



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 14 (MAXWARMP_TEMP).  Many predictors had small to minimal impacts in the final model. The model 613 shows strong discrimination on held out data, with a cross-validated AUC of 0.97.  614  615 Extensions / alternatives: Since records on one river system might share a more similar 616 environment than those on different systems, an alternative approach to cross-validation would be 617 to test the predictions iteratively on held-out rivers. We chose not to do it in this case, because 618 presence records were concentrated in relatively few river systems, so the training sets would be 619 substantially reduced, and the test sets, relatively few. 620 CONCLUSIONS 621 Here we have described MaxEnt from a statistical viewpoint, showing that the model minimizes the 622 relative entropy between two probability densities defined in feature space.  An understanding of 623 the model leads naturally to recommendations for implementation, and ours included the 624 importance of providing appropriate background samples, of dealing with sample biases, and of 625 tuning the model – through feature type selection and regularization settings - to suit the data and 626 application.  Presence-only data are a valuable resource and potentially can be used to model the 627 same ecological relationships as with presence-absence data, provided that biases can be dealt with 628 and except for the non-identifiability of prevalence. 629  630 MaxEnt is regularly updated, usually to include new capabilities to suit the expanding applications, 631 and also sometimes to change the program defaults to those most often used in practice. Recent 632 new capabilities include the cross-validation and MESS maps (i.e. estimates of how the 633 environmental space in predicted times and places compares with that of the training data) 634 demonstrated in case study 1. In addition, new clickable maps allow users to interrogate 635 predictions spatially, providing information for any grid cell on the components of the prediction 636 (i.e. what contributes to its particular value) and where the environmental conditions “sit” on the 637 fitted functions. Maps of limiting factors show the variable most influencing the prediction for every 638 grid cell. For further details see Elith et al. (2010 in press) and the most recent online tutorial 639 (http://www.cs.princeton.edu/~schapire/maxent/). SDMs can provide useful information for 640 exploring and predicting species distributions, and we are keen to see their continued development 641 and use for learning about and conserving the world's biodiversity.  642 ACKNOWLEDGEMENTS 643 JE was supported by an Australian Research Council grant, FT0991640 and by an early consultancy 644 that raised the question of how to explain MaxEnt to end-users (Jeff Tranter, Environmental 645 Resources Information Network,  Canberra, AUS). TH was partially supported by grant DMS-646 1007719 from the U.S. National Science Foundation. Simon Ferrier, John Baumgartner and Tord 647 Snäll provided useful feedback on ideas and/or the manuscript. Robert Hijmans provided the 648 method for taking samples proportional to area. Thanks to the three reviewers including Mark 649 Robertson and Janet Franklin for generous and constructive comments and good ideas.  650 1 
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Table 1 – Examples of published studies using MaxEnt, showing variation in purpose, scale 
and organism Primary purpose Scales Organisms RefsPredict current distributions as input for conservation planning, risk assessments or IUCN listing, or new surveys 

Andes  Global  
Humming-birds  Stony corals seamounts 

Tinoco et al.  (2009)   Tittensor et al.  (2009) Understand environmental correlates of species occurrences, groups of species, or other  
Norway Portugal Macrofungi European wildcat 

Wollan et al.  (2008)  Monterroso et al.  (2009) Predict potential distributions for invasive species, or explore expanding distributions New Zealand China Ants Nematode Ward (2007a)  Wang et al.  (2007) Predict species richness or diversity California  Brazil 
Amphibians and reptiles  Myrtaceae 19 species 

Graham and Hijmans (2006)  Murray-Smith et al.  (2009) Predict current distributions for understanding morphological / genetic diversity (“phylogeography”, “phyloclimatic studies”), endemism  and evolutionary niche dynamics 

Global Andes  Madagascar 
Seaweeds Birds  Bats 

Verbruggen et al.  (2009) Young et al.  (2009)  Lamb et al.  (2008) 
Hindcast distributions to understand patterns of endemism, vicariance etc NW Europe Brazilian coast 

Pond snails Forests Cordelier and Pfenninger (2009) Carnaval and Moritz (2008)  Forecast distributions to understand changes with climate change / land transformation; includes retrospective studies 
Mediterr’n + surrounds  Regional  W. Australia  Canada 

Cyclamen  Banksia   Butterflies 

Yesson and Culham (2006)  Yates et al.  (2010)   Kharouba et al.  (2009) Test model performance against other methods Patagonia Local region in California  Regional to national 

Insects Rare plants   Many species 
Tognelli et al.  (2009)  Williams et al.  (2009)   Elith  et al.  (2006)  

  



Elith et al. 2011. A statistical explanation of MaxEnt ..........................Page 16 
Table 2: Terminology used in this paper 
Item / concept Definition Notation Background A sample of points from the landscape  Entropy A measure of disperdness. Previous papers1 described the model as maximizing entropy in geographic space; this paper focuses on minimizing relative entropy in covariate space. 

 
Features An expanded set of transformations of the original covariates  Mask A gridded layer of 1 / no data used to indicate areas to be included in background sampling (=1) and those to be excluded (=no data). To be included as a predictor. For projecting to the whole region, a grid called mask, but containing any values – say, 1 across the whole region of interest – should be supplied along with all other covariate grids. 

 

MESS map Multivariate Environmental Similarity Surface –measures the similarity of any given point to a reference set of points, with respect to the chosen predictor variables. It reports the closeness of the point to the distribution of reference points, gives negative values for dissimilar points and maps these values across the whole prediction region (Elith et al. 2010 in press) 

 

Prevalence is not identifiable  Prevalence cannot be exactly determinedfrom presence-only data in isolation, regardless of the sample size. This is a fundamental limitation of presence-only data. 
 

Probability density functions Describe the relative likelihood of random variables over their range; can be univariate or multivariate.  

Regularization (tuning) parameters Regularization refers to smoothing the model, making it more regular, so as to avoid fitting too complex a model. In MaxEnt the regularization parameters can be changed if required.  
β in previous papers1,  λ in this paper 

Sampling bias Some areas in the landscape are sampled more intensively than others. Usually occurs in geographic space but could be environmentally based. 
s(z) 

Weights or coefficients These are the parameters of the model that weight the contribution of each feature. λ  in previous papers1,  β in this paper 1 Phillips et al. (2006), Phillips & Dudík (2008)  
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Table 3. Variable importance and evaluation statistics for case study 1. Variable names and abbreviations for evaluation statistics are consistent with the text. Model (background) Variable importance AUC (10fold CV but varying data sets) 

AUC; COR(5fold CV on atlas data) RAIN DRYQ RAIN TEMP-
 

WARM
Q 

TEMP-
 

WETQ ISO- THERM
 

SOL- PWHC 1 (atlas) 57.9 30.7 7.9 0.4 1.1 2.0 0.92 0.96; 0.622 (southwest) 45.3 35.4 4.7 3.4 9.9 1.4 0.90 0.93; 0.523 (Australia) 19.7 17.7 5.3 54.0 3.0 0.3 0.99 0.91; 0.45   
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  Figure 1 – A diagrammatic representation of the probability densities relevant to our statistical explanation, using data presented in case study 1. The maps on the left are two example mapped covariates (temperature and precipitation). In the centre are the locations of the presence and background samples. The density estimates on the right are not in geographic (map) space, but show the distributions of values in covariate space for the presence (top right) and background (bottom right) samples. These could represent the densities f1(z) and f(z) for a simple model with linear features.  
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 Figure 2: All banksia atlas sites (black) with occurrences of B. prionotes in grey circles.
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 Figure 3. Model results for case study 1, showing for the three data sets (in rows): predicted current and future distributions, and extent of extrapolation compared with the training data. Predicted distributions are logistic outputs, from low values (white, 0 to 0.2) through orange, yellow, green to blue (0.8 to 1.0). For extrapolation maps, warm colours indicate extrapolation is occurring, with orange the most extreme. Grey indicates the ocean.  
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 Figure 4 – Predicted distribution of Gadopsis bispinosus, showing logistic output predictions from MaxEnt.  Legend: predictions in equal intervals from 0 to 1, from blue (low) through green – yellow –orange (high).  Scale: east to west the rivers map spans 45km.  The star on the inset shows location.    
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 45% 18% 8% 6% Figure 5: Partial dependence plots showing the marginal response of Gadopsis bispinosus to the four most important variables (i.e., for constant values of the other variables), with variable importance below each graph. The y axes indicates logistic output.   
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