Key factors in streams 1

Limnology Lecture 17

Erosion and Deposition

FIGURE 1.10 A meandering reach, showing the line of maximum velocity and the separation of flow that produces areas of deposition and erosion. Cross-sections show the lateral movements of water at the bends. (Redrawn from Morisawa, 1968.)

Abiotic frame = habitat templet

- Physical and chemical characteristics of an environment
- Varies in space and time
- Species differ in their abilities to live & reproduce in different abiotic environments "niche"

Landscape filters

Traits

Regional species pool

Dispersal

Abiotic

Biotic interactions

Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. *JNABS*. 16(2): 391-409.

Key Factors in Lakes

- Light
- Permanence
- Temperature
- Chemistry
- Water Density

Organizing principle: Depth gradients

Ecological
patterns
(e.g. the niche)

Key Factors in Lakes Rivers

Flow

Substrate

- Inght
- Permanence
- Temperature
- Chemistry
- Water Density

Organizing principle: Deptregradients

Directional flow

Ecological
patterns
(e.g. the niche)

Physical Factors: Flow

Water velocity tied to

- Substrate
- Food, nutrient and oxygen availability
- Waste product removal
- Physical force

Recall the Reynold's Number

U = m s-1 = relative speed

D = Channel depth

v = kinematic viscosity

FIGURE 3.3 Reynolds number conditions for the occurrence of laminar, transitional and turbulent flow in stream channels. Note that turbulent conditions are the norm. (Redrawn from Davis and Barmuta (1989), after Smith (1975).)

Froude number

Fr = Gravitational forces

$$= \frac{V}{\sqrt{gd}}$$

Measures potential for turbulent stream flow

Fr < 1 subcritical, slow and tranquil

Fr > 1 supercritical, fast, turbulent

~ water moves faster than wave

V = average velocity

g = gravitational acceleration

d = water depth

Boundary layer

FIGURE 3.4 Depth of viscous sublayer (δ) in turbulent flow over a smooth surface. The central continuous line is for a water depth of 50 cm and the dashed lines correspond to 15 cm and 1.5 m. (From Silvester and Sleigh, 1985.)

= Viscous sublayer of low flow

Effect of friction on localized flow

Dead zones behind sediment

Boundary layer

FIGURE 3.5 Lines of equal flow (iso-vels) around a dead mayfly nymph glued to a surface in a laboratory flume, measured using a flow visualization technique. Note that all iso-vels are compressed over the mayfly's dorsal surface.
(a) Maximum velocity 16 cm s⁻¹, (b) 32 cm s⁻¹. (After Statzner and Holm, 1982.)

Substrate also affects turbulence

(and vice-versa)

1. Size of particles

2. Spacing of particles

Adaptations to flow

Sculpin

Salmon

Bluegill

Adaptations to flow

Black fly larvae

Zebra mussel

Stonefly

Adaptations to flow

Periphyton = attached algae

Not much phytoplankton

Rooted macrophytes

Human effects on flow

FIGURE 14.2 Monthly means and ranges of discharge in the Colorado River at Lees Ferry before (1944-1962; ----) and after (1963-1977; ----) impoundment of Lake Powell. (From Paulson and Baker, 1981.)

Glen Canyon Dam

Lake effect on streams Changes in suspended particles

Rapid change in community composition

Near-lake communities: high biomass high competition

Permanence: perennial vs. intermittent

Figure 3. Box-plots of significantly different invertebrate community indices for intermittent and perennial springs (n = 42) from the White Peak at intermediate discharge: (a) number of taxa; (b) Shannon diversity index; (c) Simpson diversity index; (d) Log-abundance; and (e) Berger-Parker dominance index. 1 = intermittent springs; 2 = perennial springs; and O = outliers.

Key Factors in Rivers

- Flow
- Permanence
- Substrate
- Temperature
- Chemistry

Organizing principle: Directional flow

Ecological
patterns
(e.g. the niche)

Substrate

Size distribution determines

Resilience to flow disturbance freq.

Flow characteristics e.g., riffle vs. run

Habitat
directly
indirectly thru chem.

Organic substrate

Large woody debris
Coarse particulate organic material (CPOM)
Fine particulate organic matter (FPOM)
Dissolved organic matter (DOM)

> 1 mm

Creating dam and scour pools

Providing habitat

Substrate

Mean substrate decreases as you move downstream

Why?

