Light and oxygen in lakes

Limnology
Lecture 7

Outline

- Light
- Diffusion
- Oxygen gradients

Vertical Gradients in Lakes

Properties of Properties of Lake
Water — Basins

Vertical Gradients

- •Light
- •Heat
- Dissolved gases
- Dissolved nutrients

Light and Water

• Reflection

• Absorption

Light and Water

- Reflection
 - Surface
 - Scatter
- Absorption
 - Heat
 - Potential Energy
 - Stored in chemical bonds via Photosynthesis

Light and Water

Attenuation equation

$$I_z = I_0 e^{-kz}$$

where $e = natural logarithm$
 $k = \underline{attenuation coefficient}$

characteristic for each water body and each wavelength

$$K = K_{water} + K_{dissolved organics} + K_{particulates}$$

Light Gradients in Water

K_{dissolved organics} - humic acids absorb short wavelengths (blue, UV)

Dunham Pond

Dunham Pond

Why is deep water blue?

K_{water} – pure water absorbs long wavelengths
Blue absorbed the least, scattered the most

Water decreases light and changes colors

K_{water} – pure water absorbs long low energy wavelengths

Solar Radiation as a Spectrum

Electromagnetic Spectrum

Light Gradients and aquatic coloration

Light and habitat

Secchi disk ~ 10% of surface light Photic zone – light is > 1% of surface value

Light Gradients in Water

Lake	k	Secchi Depth	Euphotic
Crater Lake (OR)	0.06—0.12	25— 45	>120
Lake Baikal	0.2	5— 40	15—75
Lake Erie	0.2 - 1.2	2—10	12—26
Dunham Pond	3.5	?	?

Dunham Pond

Light and habitat

Light and habitat

Compensation depth – where photosynthesis = respiration in plants

Littoral – From shore to aphotic zone

- emergent and benthic plants

Limnetic – aphotic zone on benthos

Light Gradients in Water

Pelagic – open water in limnetic zone

Compensation depth – where net photosynthesis = 0

photosynthetic production = respiration

photic or euphotic/aphotic

Light Gradients in Water

Oxygen and temperature

Diffusion Equilibrium

Henry's Law:

$$C_s = K_H P_t$$

 C_s = amount of gas dissolved

K_H = solubility coefficient for a given temperature

 P_t = partial pressure of gas in atmosphere

Oxygen in water

Diffusion from atmosphere O_2 partial pressure = 0.203 atm $K_H(20C) = 1.39 \text{ mmol } O_2/\text{kg H}_2O \text{ x atm}$

$$C_s = K_H P_t$$
 $O_2 (20C) = 1.39 * 0.20$
 $= 0.28 \text{ mmol/kg}$
 $= 9.03 \text{ mg/L}$

Oxygen and species survival

Species	DO limit (mg/L)
Trout	7-8
Bass	5
Sunfish	4.7
Carp	4
Amphibian larvae	1-2
Amphipods	2
Chironomids	1
Worms	0.7

Oxygen Gradients in Dimictic Lake

Biological oxygen demand

-Rate of oxygen uptake by aquatic organisms

From: Wetzel 1975

Thermocline effects

Dunham oxygen

Oxygen Gradients in Dimictic Lake

Positive heterograde

Algae sit on density "shelf" More nutrients

Negative heterograde

Respiration of algae, zoop, decomposition of detritus rain on "shelf"

Fig. NAM-24-5 Seasonal isopleths of dissolved oxygen [mg l⁻¹] in Gravenhurst Bay based on weekly measurements, May-October 1969, 1973 and 1974 (10).

Fish Kills (low O₂)

Occur often in small ponds in winter under ice cover – why?

Fig. 15. Dissolved oxygen and snow cover, Green Lake, Station 1, 1940-41 and 1942-43.

Fish Kills (low O₂)

Also occur often in large lakes in late summer – why?

Late summer

Fig. NAM-24-5 Seasonal isopleths of dissolved oxygen [mg l⁻¹] in Gravenhurst Bay based on weekly measurements, May-October 1969, 1973 and 1974 (10).

Fish Kills (low O₂)

Also occur most often at dawn – why?

At dawn

Eutrophic Timber Ridge Pond in OK, Freimuth and Bass 1994

Fish Kills (low O_2)

Also occur often after summer storm – why?

Storm disruption of stratification

Fig. 2. Distribution of temperature (——) and oxygen (---) in Winter Haven lakes before and after hurricane "Donna."