Amphibian Physiology

Announcements

- Whoops! Correction: Necturus maculosus belongs in the salamander family Proteidae, NOT Cryptobranchidae (thanks Matt!)
- Should have gotten project proposals returned
- Guidelines and exemplar introduction and methods are posted on the eebedia page

Introduction & Methods Draft

- Draft of the following sections due WEDNESDAY at 11:59pm (I wanted to give you more time with the guidelines)
- Formatting the same: Times New Roman, 12 pt font, 1 inch margins, at minimum 2 double spaced pages

Introduction

- Background: Introduce your scientific question, give background on scientific question
- Study Species: Background on study species and how it can be used to answer your scientific question
- Hypothesis: State your hypothesis (or hypotheses), and predict the answer to your scientific question

· Materials and Methods

- **Field Methods:** State how you will (or how you are) sampling your study species (different sites? different locations within sites? how many?), what you're measuring (counting? SVL? environmental factors?), etc.
- Lab Methods: You can't use lab methods for this project
- **Data Analysis:** Once you've collected your data, you should test it for correlation and/or significance (can I fit a line to my data? can I test for deviation from neutral expectations?)

Literature Cited

- You should be citing your work as you progress
- I don't expect citations to be completed
- Suggested resources: your field guide, DEEP fact sheets posted online, Google Scholar
 - No Wikipedia: try the citations at the bottom of the wiki page, but beware of plagiarism

What is Physiology?

- The study of chemical and physical processes in the organism
- Aspects of the physiology can be informative for understanding organisms in their environment
 - Thermoregulation
 - Water Regulation
 - Development

Thermoregulation

- All amphibians and reptiles are ectotherms
 - Their body temperature is governed by the environment.
- Changes in temperature have cascading effects throughout the body
 - Brain function
 - Muscle function

Optimal functions occur at To

Digestive function

Amphibian Thermoregulation

- Amphibians, for the most part do not bask to warm their bodies
 - Salamanders no evidence
 - Frogs perhaps R. catesbiana?
- However, some amphibians will move to accommodate changes
 - Salamanders Movement between underground (cold nights) and cover objects at the surface (warm days)
 - Frogs Movement between middle of the pond (cold nights) and the shore (warm days)

Amphibian Thermoregulation

- Plethodontids are especially adept for life at cold temperatures
 - Lungless
 - Cold water carries more oxygen (even in moist soils)
 - Specialized feeding structures
 - Gets around the "cold muscle" problem

Overwintering

Moving to Warm Habitat

- Frogs hibernate
 - Terrestrial hibernators (e.g. Bufo, Scaphiopus)
 - Aquatic hibernators (e.g. Rana catesbeiana, Rana clamitans, Rana pipiens, etc.)

- Salamanders reduced activity
 - Underground burrowers (e.g. Plethodon, Ambystoma, N. viridescens red-eft)
 - Active in aquatic habitat (e.g. N. viridescens adults)

Overwintering

Freeze Tolerant Frogs

- Some species are specially adapted to freeze
 - Pseudacris crucifer
 - Hyla versicolor
 - Rana sylvatica
- Possess large carbohydrate stores in their liver, which is converted to glucose or glycerol in the winter, serving as an antifreeze
- Allows a head-start before other frogs come out of hibernation at the bottom of ponds

Water Regulation

- Proper water balance is one of the most critical factors in habitat choice.
- However, the fact that amphibians are "shackled" to the water is largely overblown; there are important...
 - adaptations for very dry conditions
 - adaptations for very wet conditions

Dry Condition Adaptations

- Moist skin is a huge vector for water loss in terrestrial amphibians
 - Habitat choice
 - Skin anatomy
 - Warty skin (*B. americanus*)
 - Mucus (P. glutinosus)
 - Water storage in urinary bladder
- Many amphibians can take up water through the skin
- Adaptations NOT seen in CT:
 - Cocoon frogs
 - "Waterproof" frogs

Wet Condition Adaptations

- Smooth skin makes drinking via skin slower
- Fluctuating blood ion concentrations
 - Keep blood ion concentration low, so water flows out (opposite is true for terrestrial species)
 - Excrete nitrogenous waste via ammonia, which is toxic but very water soluble
- Secreting fungicidal chemicals and antibacterial agents to keep the skin clean and healthy

Development

- Ontogeny is the process of creation and development of an organism; the growth of an organism from embryo to mature adult
 - "Normal development"
 - Regeneration
- Amphibians in CT have four different ontogenies

Ontogeny 1: Egg, Aquatic Larvae, Adult

• All CT salamanders except for *Plethodon* and *Necturus maculosus*

Ontogeny 2: Egg, Aquatic Larvae, Terrestrial Subadult, Aquatic Adult

Notophthalmus viridescens

"Adds another step"

Ontogeny 3: Egg, Terrestrial Subadult, Terrestrial Adult

- Plethodon cinereus and Plethodon glutinosus salamanders
- "Skips aquatic larvae"

Ontogeny 4: Egg, Aquatic Larvae, Sexually Mature Aquatic Larvae

- Necturus maculosus
- "Skips adult stage"

Limb Regeneration

- Salamanders
 - Appear to retain this ability throughout their lifespan
 - Tails
 - Limbs
 - They get everything back, bone, muscle, and nerves!
- Frogs
 - Tadpoles capable of regenerating tail, but adult frogs cannot regenerate
 - Can only regenerate the notochord

Tail regeneration

