Complications to phylogenetic inference
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“Hard” problemsin phylogenetics

o Long branch attraction

o Differential gene loss of paralogs

o Incomplete lineage sorting (hemiplasy)

o Horizontal gene transfer (Thursday lecture)
Coalescent theory

Statistical inconsistency of concatenation

Coalescent phylogeneticprograms
o Those based on resolved gene trees

o Those based on concurrent estimation of gene and species trees
o Site-pattern methods

Problems with coalescent methods and statistical binning
Using coalescent theoryfor species delimitation



Phylogenies straight forward?

e |f all sites evolved at the same rate within molecules and throughout the
history of lineages, if all nucleotides were in equal proportion, ifany
nucleotide oramino acid evolved to any other with equal probability, if all
taxa could be sampled,

then phylogenetictree buildingwould be easy--butit’s not.

e Stillwould have at least four “hard” problems:
o Long branch attraction (homoplasy overwriting true signal)
Those related to gene trees having inconsistent histories with species trees
o Gene duplication/extinction or paralogous sampling
o Incomplete lineage sorting or deep coalescence (hemiplasy)

o Reticulation (horizontal gene transfer, sex, recombination and hybridization)



Long branch attraction

Two lineages with high substitutionrates are falsely reconstructed to be
sisters to each other dueto incorrect inference

Because of only four states that rate of convergence is relatively high

Maximum likelihood is more robust to reconstruction artifacts butis still
susceptiblein difficult cases

How to fix?

o Not a real way, but removing both potential taxa and rerunning the analysis
to look for the same (highly supported) relationships is commonly used.

o Canadd in taxa to break up branches if possible



Differential gene loss of paralogs

® Gene lisduplicatedat
base of tree
o 1A retained in circle and
triangle (not sister groups)
and 1B lost twice

o 1B retained in square and
1A lost

® Accurate phylogeny of
gene 1 isthatsquareis
sister to circle + triangle

® But speciation historyis
different

Reconciled Tree Reconciled Tree
(Full Representation) (Simple Representation)
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Altenhoff, A. M., & Dessimoz, C. (2012). Inferring orthology and paralogy. In Evolutionary
genomics (pp. 259-279). HumanaPress, Totowa, NJ.



Incomplete lineage sorting

Paraphyletic species (ancestrally) 2 C and D alleles are sister groups
What synapomorphy would you use to group (ABC)? :
Incomplete .
lineage sorting :
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James H. Degnan, Noah A. Rosenberg
Gene tree discordance, phylogenetic inference and the multispecies coalescent

Trendsin Ecology & Evolution, Volume 24,Issue 6, 2009,332 - 340
http://dx.doi.org/10.1016/j.tree.2009.01.009



Can species be paraphyletic?

Certain members of one species are more closely related to another
group than to other members of its own species

One hypothetical example

o Almost worldwide species colonizes a new island and rapidly adapts and is
reproductively isolated from founder population

o Founder population is paraphyletic with respect to this new species until
panmictic mating causes coalescence within this nearly global population
(dependent on effective population size which is very large )

o If additional speciation events occur within this time period before
reciprocal monophyly, then called incomplete lineage sorting/deep
coalescence



Coalescent theory in population genetics

® JohnKingmanin 1982

e Natural extensionto Fisher-Wright
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within a population

o constant mutation rate (normal genetic drift)

Rosenburg and Nordborg 2002



—  SNP’s

Allele 1

Allele 2

Probability that two alleles “coalesce” in the previous generation is 1/2N,
Probability that they don’t is 1-1/2N,
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Population size is important

e Fortwo alleles, the time it takes to coalesce is 2N, generations (coalescent
unit)

® Chancesare thatall alleles coalesce in 4N, generations (2 coalescent units)
Violation of assumptions:

If populationsize varies across generations (likely), then bottleneck
effects erase previous history

If selection and linkage vary expect larger amount of certain gene trees in
contrast to the null model

If mutation ratesvary, ???



So why incorporate coalescence into

a traditional phylogeny?

e Concatenationdoesnotallow
modeling of different gene histories.

® Since recombination certainly does
occur between different
concatenated loci. Inherent
assumption of method is wrong.

e Certain genes may have entirely
different histories (esp.
mitochondrial)? Even homoplasy-free
regions give different phylogenies.




Anomaly zone

e Concatenationwill give high support for wrong ﬁ?
relationshipsin cases when there is a true ﬁ
polytomy (or very close to one) :\ W 2

® In some cases (anomalyzone),the most common
gene tree is wrong (even without homoplasy!)

® Anomalousgenetrees (AGTs)
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Other benefits of coalescent methods

Natural genetic drift within populations. Species are more than one
individual! Allows estimation of this parameter

Genes have different phylogenies (not due to simple artifactsin
reconstructions or homoplasy)

Deep coalescence is especially common with large populationsizes, short
branches(i.e, rapid radiations or those under severe selective pressure)




Coalescent methods for phylogenetics

e Attemptto model possible different coalescent histories for genes given a
species trees
o Multispecies coalescent
O Coalescent histories are independent and random

O Coalescent events have to occur on species branches but can go back further
in time than species divergences

e Often breaktree into quartetstopologiesand estimate most consistent
species tree

e Several kinds of methods:
o  Summary methods
o Coestimation
O Site patterns



Summary or “shortcut” coalescence

methods

Relies onindividualgene tree topologies

More accurate when based on large loci since homoplasyisless
suppressive of phylogeneticsignal in individual gene trees

Can be used (with caveats) when genes are missing from certain taxa
randomly

Uses computational power to assess species tree fit to reconstructed
gene trees

Some estimate branch lengths

STAR, STEAC, STEM, MP-EST, ASTRALand ASTRID

Liu,L.,Wu, S., & Yu, L. (2015). Coalescent methods for estimating species trees from phylogenomic data. Journal of
Systematics and Evolution, 53(5), 380-390.



Bayesian Estimation of Species Trees and

“star’BEAST

e BEST and *BEAST

e Estimate posterior distribution of gene trees given the data.
The prior on gene trees is determined for distributions of all
gene trees given species trees (considering all possible species
trees under coalescence)

® Separate mutation rate per locus. Better results when
assuming no molecular clock at all (for highly divergent taxa)

e Unfortunately, currently computationally limited to equivalent
of ~20 taxa and 100 genes

e Multiple individuals per species



Edwards et al. 2007

® Used BEST on famous Rokas 2003
yeast dataset

® Foundthatcoalescence methods
were able to reconstruct phylogeny
correctly with much fewer genes. (8
with high confidence as opposed to
20)

e Simulationsfound that coalescence
will reconstruct correct tree when
concatenation will construct wrong
tree with increasingly high support

Edwards SV, Liu L, Pearl DK. High-resolution species trees without

concatenation, Proc. Natl. Acad. Sci. USA , 2007, vol. 104 (pg. 5936-5941).
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SVDQuartets and SVDQuest

e Different from most otherapproachesinonlyusingshared site patterns

e Relies ontree symmetry generating same patternsof base pairsin
sister taxain quartets

e Matrixdecomposition

e Works ondatasimulated under coalescent processes and robust to
gene tree estimation error

e Particularlyuseful for RADseq data but need lots of data for an accurate
reconstruction

Chifman, J. and L. Kubatko. 2014. Quartet inference from SNP data underthe coalescent, Bioinformatics, 30(23): 3317-3324.
Vachaspati, P., & Warnow, T. (2018). SVDquest: Improving SVDquartets species tree estimation using exact optimization within a constrained search space.
Molecularphylogenetics and evolution, 124,122-136.



Summarize site patterns through matrices

and quartets

Methods — data representation

Taxon Sequence
1 ACCAATGCCGGAGCCCAAA
ACCATTGACGGAGCCAATA

2
12 3 4 3 ACGAAAGACGGAAGCAAAA
4  ATGAAAGTCGGAAGCTAAA

( [AA] [AC] [AG] [AT] [CA] -- \
[AA] 5 PAAAC PAAAG PAAAT PAACA ***
[AC] pacan Pacac Pacac  PACAT  Pacca
[AG] pacaa Ppacac PAGAG PAGAT  PAGCA
[AT] patan  PATAC PATAG PATAT  PATCA
K [CA] pcaas Pcaac  Pcaac 2 Pcaca

F/a[l;: »g;(P)




Methods — data representation

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
T2 3 4 3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
(A AT [AGL IAT] (A e
AA 5 DAAAC  PAAAG PAAAT  Daaca -
[AC] pacaa pPacac  PACAG PACAT DPacca
Flati234(P) = | [AG] pacaa Pacac  PAGAG PAGAT Pacca
AT] pataa  patac  PATAG  PATAT  DATCA
\:CA: PCAAA PCAnC  PCAAG 2 PCACA }

These two columns are identical — matrix rank is reduced by one



Process

Make matrix for each of three possible trees for four taxa

Matrix “rank” of true quartet relationship shouldapproach 10 (6
symmetrical columns can be flattened)

Matrix of non sister taxa should be full rank of 16 independent columns

Rank of matrices are estimated with “Singular Value Decomposition”
score

Pick the best quartet tree for all quartets or sample quartet sets from
taxa

Finally, use a quartet assembly method to build the species tree



Problems with coalescent methods

® Incomplete lineage sorting is inherently assumed to be responsible for different gene
trees thus may be overestimated

® Gene trees reflect incorrect topologies due to homoplasy or other processes

® “Gene trees” may be based on data that is spatially very far apart in genome and
thus may combine data that has separate evolutionary history due to recombination
(sometimes called c-genes)

o Simulations showed that unrecognized recombination has only a minor effect (Lanier and
Knowles 2012)

o Recombination within loci is okay in long branches since the history of recombining loci are
the same once alleles have coalesced ina long branch (chances are by 5N, generations)

o Recombination during retention of ancestral polymorphism is definitely a problem but how
likely?

® A single resolved species tree fails to visualize complex history



Is “concatalescence” a problem or a solution?

e Frequently reconstruct a different gene tree for each partition (this is not reflective of true gene trees
but rather homoplasy).

e Simulated data with naive lumping of loci together gave better results and allowed current version of
*BEAST to work on larger datasets (Bayzid and Warnow 2013)

e Should gene trees reconstructed as having the same or very similar histories be lumped together to
swamp out potential homoplasy within individual genes?

e “Statistical binning”...combine gene trees with similar history..shown to improve estimation of
phylogeny

Statistical binning technique
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Bayzid, M. S., & Warnow, T. (2013). Naive binning improves phylogenomic analyses. Bioinformatics, 29(18), 2277-2284.
Mirarab, S., Bayzid, M. S., Boussau, B., & Warnow, T. (2014). Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science, 346(6215), 1250463.



Coalescent models for species delimitation

® GMYC-Generalized mixed Yule-coalescent model (implemented in Bayesian
programs like BPP)

e DNA-based taxonomy (e.g., cryptic species or morphologically impoverished
semaphoronts)

e Models probability of tokogenetic “net-like” coalescence versus cladogenetic
branching at each node and finds threshold of speciation across ultrametric tree

® Better than arbitrary limits e.g, 97% difference between COIl species

J>

Yana.Z. (2015). The BPP program forspecies tree estimation and species delimitation. Current Zooloav. 61(5). 854-865.



Problems with GMYC

® |ncorrectphylogenetic
inference will bias results

® Requires several genes, Many s ws s

initiyson of speciyion

individuals sampled per ouhes
population and does not work
well on rapid radiations S Sseareing

completion of specution
nd dewslopment

e Canincorporate different “*««71
threshold for different y
branches of tree /4

-

e Can not delimitincipient /‘f "

speciation from any ‘AN

reproductively-isolated
population e.g, initiation of
speciation events do not
always result in new species
thus always overestimates
species numbers

Reid, N. M., & Carstens, B. C. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the

general mixed Yule-coalescent model. BMC evolutionary biology, 12(1), 196.
Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences, 114(7),

1607-1612.



Summary

Phylogeneticestimationis hard for various reasons and does not
always follow a single tree
Coalescent methods for phylogeneticreconstruction are a

promising method of overcoming incomplete lineage sorting
o Allow for gene trees to vary in topology
o Allows estimation of population size
o More accurate reconstruction of species’ histories

But they may overestimate rate of incomplete lineage sorting
SVDQuartets method is robust to gene tree error thus solvingone
of the problems with coalescent methods and becoming more
commonly used

Can use modeling of coalescent process to delimit species based
on molecular data



