Chapter 6
Inferring Molecular Phylogeny
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6.1 Introduction

The task of molecular phylogenetics is to convert information in sequences
into an evolutionary tree for those sequences. A great (and ever increasing)
number of methods have been described for doing this, which raises the
inevitable question of how to come to grips with this plethora of possibilities.
Two ways which seem useful to us are either to divide the methods by how
they handle data, or 10 divide them by the approach taken when building
trees. Both these divisions can help us appreciate the differences among the

various tree building techniques. Given the rapid development of methods in
r completely every method that has been

this field, we cannot hope to cove
Iptul. Our goal is to cover the major

proposed, nor would this necessarily be he
methods, and to show how they interrelate.

6.1.1 Kinds of data: distances versus discrete characters

This division is based on how the data are treated; distance methods first convert
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Parsimony Distance

Fig. 6.1 A parsimony tree and a distance tree for the same sequence data. Note that both
trees have the same topology and branch lengths, but that the parsimony tree identifies
which site contributes to the length of each branch.

aligned sequences into a pairwise distance matrix, then input that matrix into
a tree building method, whereas discrete methods consider each nucleotide
site (or some function of cach site) directly. As an example, consider the
following sequences and corresponding (uncorrected) distance matrix;
sequences distances
sites
1234567
TTATTAA 3
sequences AL T & sequences ol
AAAAATA 45 4 2
AAAAAAT 1 2 3
sequences
The trees obtained by parsimony (a discrete method) and minimum evolution
(a distance method) are identical in topology and branch lengths (Fig. 6.1).
The parsimony analysis identifies seven substitutions and places them on the

five branches of the tree. The distance tree apportions the observed distances
between the sequences over the branches of the tree, and you can see that
both methods arrive at the same estimates of the lengths of each branch. Under
parsimony cach ol the seven sites requires one change, for a total of seven
changes; if we sum the branch lengths on the distance tree we obtain the same
value: 2+ 1+ 2+ 1+ 1=7. Note, however, that the parsimony tree gives us
the additional information of which site contributes to the length of each
branch. Once we convert sequences into distances we lose this information.
Furthermore, discrete methods allow us to infer the attributes of extinct
ancestors, in this case extinct nucleotide sequences. These reconstructed
ancestors can offer insights about molecular evolution (see Chapter 5).

6.1.2 Clustering methods versus search methods

Another way of dividing tree building methods is by the way they construct
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turn until finally all
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trees. Cluster methods follow a set of steps (an algorithm) and arrive at a
tree. For example, if we have five sequences we might start with three ol them
(remember that there is only one possible unrooted tree for three sequences)
and decide where to place the fourth sequence. Given the resulting tree for
four sequences, we then decide where to add the [ilth and last sequence to our
tree (Fig. 6.2).

Clustering methods have the advantage of being easy to implement, resulting
in very fast computer programs. Furthermore they almost always produce a
single tree. This combination of speed and an apparently unambiguous answer
is naturally very appealing, and accounts for much of the sustained popularity
of clustering methods. However, they have some severe limitations as analytical
tools. The result obtained from simple clustering algorithms often depends on
the order in which we add the sequences to the growing tree. For example,
had we started with sequences b, d and e rather than a, b and ¢ in Fig. 6.2 we
might have arrived at a different tree. But the biggest limitation is that cluster
methods do not allow us to evaluate competing hypotheses, they merely
produce a tree. It may be that two different trees could explain our data equally,
or nearly equally, well. Unless we have some way to measure the fit between
tree and data, we will not be aware of this.

Tree-building methods in the second class usc optimality criteria to choose
among the set of all possible trees (Fig. 6.3). This criterion is used to assign to
each tree a ‘score’ or rank which is a function of the relationship between tree
and data (examples include maximum parsimony and maximum likelihood).
Optimality methods have the great advantage of requiring an explicit function
that relates data and tree (for example, a model of how sequences evolve).
These methods also allow us to evaluate the quality of any tree, hence we can
compare how well competing hypotheses of evolutionary relationship fit the
data. The Achilles’ heel of optimality methods is that they are computationally

Fig. 6.3 /
method a
possible t
on SOme |
data relat
on this sc
ranked in
the best t
as the est
phylogen
there are
(indicate
first equs

very e
solved:
optima
of evol
of all th
which

genera
difficul




le of how
d builds a
1structed
2 tree for
en adding
uence in

I

n added.

[rive at a
e of them
quences)
7 tree for
Ce to our

resulting
roduce a
s answer
pularity
nalytical
ends on
xample,
. 6.2 we
L cluster
merely
equally,
etween

choose
sign to
en tree
hood).
nction
volve).
Ve can
fit the
onally

INFERRING MOLECULAR PHYLOGENY
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very expensive. An optimality method poses two problems that must be
solved: firstly, for a given data set and a given tree, what is the value of the
optimality criterion for that tree? For example, what is the minimum number
of evolutionary events required to explain the observed data? Secondly, which
of all the possible trees has the maximum value of this criterion? For example,
which tree requires the fewest evolutionary events? The [irst problem is
generally fairly straightforward; however, the second problem is rather more
difficult as it belongs to a class of problems called NP-complete (see Box 6.1).

=== o === =~
' Box 6.1 NP-completeness and the problem of finding the best
evolutionary tree

Despite the best efforts of mathematicians and computer scientists there is a set
of problems called NP-complete (NP = non-deterministic polynomial) for which
no efficient algorithms for their solution are known o exist. Members of this |
class of problems are all variants on the same problem, in that if one problem .
could be solved efficiently then all could be. The problem of finding the optimal
evolutionary tree for a variety of criteria, including minimum evolution and
maximum parsimony, is known to be NP-complete. In practical terms this means
that for any reasonable number of sequences (e.g. more than 20) it is often impossible
to guarantee that the optimal tree has in fact been found. Consequently, in
many cases we must rely on heuristics (a euphemism for ‘quick and dirty’). Trees
found by such methods may turn out to be far from optimal, and the conclusions
drawn from such trees may be somewhat suspect. A salutary example is the
controversy over the geographic origins of human mitochondrial DNA in which
different workers obtained quite different trees from different heuristic searches.
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While for small numbers of sequences (e.g. no more than 20) it is often
possible to find the optimal tree (or trees), in many cases this is not feasible, in
which case we have to rely on heuristic methods. These are strategies designed
to explore some subset of all the possible trees, in the hope that that subset
will contain the optimal tree. A typical heuristic strategy is to start with a tree
(which may be obtained using a simple clustering algorithm, or even chosen
atrandom) and rearrange it, keeping any rearrangement that produces a better
tree. Such algorithms are often called ‘hill-climbing’. Imagine that you are in a
valley and want to climb the highest hill, but you cannot see (some malicious
text-book author has forced you to wear a blindfold). A reasonable strategy
for climbing the highest hill would be to take a step, which may take you
either a little bit downbhill, a little bit uphill, or may keep you on a flat surface;
if the step was downbhill you are clearly not going up a peak, hence you retrace
your step and try again; if the step is uphill you may be on the right track, and
may wish to take another step in the same direction. If no step in any direction
takes you up, but at least one takes you neither up nor down, then you are on
a plateau. This plateau may be the top of the highest hill in the region, in
which case you have succeeded; however, it may be merely a local high-point—
being blindfolded you cannot tell.

Translating this analogy into the problem of tree searching, the *hills’ represent
sets of locally optimal trees, and your steps are the tree rearrangements. Figure
6.4 shows two ‘hills’ or “islands’ of trees, and two possible starting trees, 1 and
i. By rearranging the starting tree, and keeping only those trees that are better
under our optimality criterion, we arrive at two different islands (a and b),
one of which (b) is better than the other, The search that landed on island a
would be unable to reach island b as to get there it would have to accept a
suboptimal tree (tree 5) before reaching island b. If a set of possible trees contains
more than one island then heuristic methods may land on a suboptimal island,
and the optimal island goes undiscovered.

6.1.3 Subtree methods—assembling larger trees from smaller ones

Most algorithms for finding optimal phylogenetic trees use various techniques
for rearranging trees to explore the phylogenetic ‘landscape’ comprising possible
solutions (Fig. 6.4). Il we can readily compute a score [or each tree this approach
is often reasonable. However, for some optimality criteria, such as maximum
likelihood discussed below, computing a score for even a single tree is time
consuming. Because the effectiveness of a heuristic search depends in part on
how many trees we are willing to examine, this can hamper our search.

An alternative approach that has been used for both distance and discrete
character methods is to divide the set of sequences into smaller sets and find
the optimal tree for these subsets, which are then combined to form a larger
tree. The smallest useful subset of an unrooted tree comprises four sequences
(a quartet). For n sequences there are (2} =n(n—1)(n-2)(n-3)/24 possible

Island A

Fig. 6.4 Lands
hill climbing al
(which compri
because to get
trees 3 and 4. 1
1f the set of pot
on a suboptin
{1991).

quartets, Ea
(Fig. 6.5). E¢
for example
neighbours
1 For each
those four s
2 Takeallt
Given perfe
all the subtr
subtrees can

Fig. 6.5 The |
trees for four



it is often
easible, in
s designed
1at subset
fith a tree
N chosen
's a better
Uarein a
nalicious
Strategy
ake you
surface;
1 retrace
ack, and
irection
1are on
Jion, in
point —

present
Figure
, 1 and
‘better
nd b),
land a
cept a
ntains
sland,

es

ques
sible
pach
1um
lime
ton

rete
ind
ger
ces
ble

INFERRING MOLECULAR PHYLOGENY 177
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Fig. 6.4 Landscapes and the problem of islands of trees (locally optimal sets of trees). A

hill climbing algorithm that started from tree 1 would succeed in finding trees 3 and 4
(which comprise island a), but would fail

because to get to that tree it would have

to discover that tree iv (island b) was even better,

to cross a plateau of trees that were worse than
trees 3 and 4. However, a search starting [rom tree i would succeed in finding the
If the set of possible trees contains more than one island then |

best tree.
reuristic methods may land

on a suboptimal island, and the optimal island will not be discovered. After Maddison
(1991).

quartets. Each quartet has three possible unrooted trees (see Table 2.1, p. 18)
(Fig. 6.5). Each tree partitions the set of sequences (A, B, C, D} into two pairs:
for example Q, corresponds to {A, B}and {C, D}. These two sets are each other’s
neighbours. Quartet-based tree building methods follow these two steps;

1 For each quartet identify which of the three possible trees is optimal for
those four sequences,

2 Take all the four-sequence trees from step I and assemble them into a tree.,
Given perfect data the second step is trivial as there will be only one tree that
all the subtrees will agree on. However, given homoplasy it may be that not all
subtrees can be combined into one tree, in which case we want the tree that

Fig. 6.5 The three possible B
trees for four taxa (a quartet).
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accommodates the greatest number of the quartets. Finding this tree is, alas,
also an NP complete problem (see Box 6.1) so it suffers from the same
computational complexity that besets other methods. However, fast heuristic
algorithms for assembling quartets into larger trees are available.

6.1.4 How do we compare different tree-building methods?

Based on the distinction we have made between tree-building methods that
use distances versus those that use discrete characters, and methods that use a
clustering algorithm versus those with an explicit optimality criterion, we can
classify some commonly used methods (Fig. 6.6).

Note that methods from different classes may be related. For example,
UPGMA can be considered a heuristic method for finding the best least squares
ultrametric tree, and similarly neighbour joining is a heuristic method for
estimating the minimum evolution tree.

Given the range of tree-building methods available, how can we decide
which ones are better than others? David Penny and colleagues have suggested
five desirable properties a tree-building method should have:

» efficiency (how fast is the method?);

* power (how much data does the method need to produce a reasonable
result?);

* consistency (will it converge on the right answer given enough data?);
¢ robustness (will minor violations of the method’s assumptions result in
poor estimates of phylogeny?);

« falsifiability (will the method tell us when its assumptions are violated,
i.e. that we should not be using the method at all).

Efficiency is effectively the time in which a computer program can [ind a
tree using a given method. As we have seen above most, il not all, optimality
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methods are NP-complete (see Box 6.1) and hence efficient tree searching
algorithms that guarantee to find the best tree are unlikely to be found. As a
result, we have to rely on heuristics for all but the smallest problems. Some
optimality criteria can be evaluated more quickly than others; for example,
the most parsimonious set of nucleotide substitutions can be calculated orders
of magnitude more quickly than the likelihood of the same tree giving rise to
the same data. One practical consequence of this is that in the same period of
time, heuristic searches using parsimony can explore a much larger set of trees
than a search using likelihood. Subtree methods (section 6.1.3) may be used
when the optimality criterion is time consuming to compute.

The power of a method is a measure of how much data we need to collect
before we can be reasonably sure of arriving at the correct result. A method
might be theoretically very appealing, but if it requires huge numbers of sites
to be sequenced then it may not be of much practical use. Another consideration
is whether the method will converge on the true tree as we add more data.
This desirable property is consistency; an inconsistent method would [ail even il
we kept feeding it more data.

All tree-building methods make (implicit or explicit) assumptions about
the evolutionary process. Violation of these assumptions may result in a
method returning a poor estimate of phylogeny, for example a method that
assumed a molecular clock when there was none may be very misleading
about evolutionary relationships. The sensitivity of a method to violations of
its underlying model is a measure of its robustness. Ideally, we would like to
know whether these violations are sulficient to rule out a particular model,
that is, the method is falsifiable. A falsitiable method that assumed a molecular
clock when there was none would allow us to test the clock assumption; if
that assumption was [ound wanting then we would abandon that method
and use another that did not make the clock assumption.

The ideal tree-building method would meet all five criteria, but such a
method does not exist, nor is it likely to. All current methods emphasise one
or more of these criteria at the expense of the remainder. For example, UPGMA
is extremely fast (efficient) but is not robust to its implicit assumption of a
molecular clock, whereas maximum likelihood is consistent (with respect to
its chosen model ol evolution) but computationally very intensive. In this
chapter we will evaluate each method based on these five criteria.

6.2 Distance methods

Distance methods are based on the idea that if we knew the actual evolutionary
distance between all members of a set of sequences, then we could easily
reconstruct the evolutionary history of those sequences. This follows from the
relationships between distances and trees outlined in Chapter 2: evolutionary
distance is a tree metric and hence defines a tree. In practice, however, distances
are rarely, if ever, exactly tree metrics, and hence one class of ‘goodness of fit’
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methods seeks the metric tree that best accounts for the ‘observed” distances
(i.e. the pairwise distances calculated between the sequences). The second
class of method seeks the tree whose sum of branch lengths is the minimum
(‘minimum evolution’).

6.2.1 Goodness of fit measures

The goodness of fit F between observed distance d; and tree distances p; (see
Chapter 2) for each pair of sequences i and j is given by

Fo= 2I£r’<i5n .

where o can take various values. If o = 1 then the criterion is Farris’s fstatistic,
if o0 =2 then F is the least-squares-fit criterion. As an example of the latter
criterion, consider the distance matrix between hominoids shown in Table 6.1
and the corresponding additive tree (Fig. 6.7).

o

i~ Pij (6.1)

Table 6.1 Kimura 2-parameter distances between hominoid sequences (above diagonal)
and tree distances obtained by least squares (below the diagonal) for the tree shown in Fig.
6.7. Tree distances larger than the observed distances are shown in bold, tree distances
smaller than the observed are shown in italics.

Human Chimp Gorilla Orang-utan Gibbon
Human - 0.09190 0.1083 0.1790 0.2057
Chimp 0.0919 - 0.1134 0.1940 0.2168
Gorilla 0.1068 0.1151 - 0.1882 0.2170
Orang-ulan 0.1816 0.1898 0.1893 - 0.2172
Gibbon 0.2078 0.2160 0.2155 0.2172 =
Chimpanzee
Human 0.05008
e 0.00769
0.05728 203654 .
Gibbon : o4
i 0.12170 Fig. 6.7 Additive tree lor
orilla hominoid mIDNA sequences
0.09550 showing branch lengths
computed using least squares.
L The pairwise tree distances for
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The observed and tree distances are in close agreement, but note that some
tree distances are larger than the observed, and some are less than the observed.
While tree distances can be larger than observed distances due to homoplasy
(i.e. multiple substitutions), the reverse is counter intuitive as tree distances
less than those we observe between sequences imply that less evolutionary
change took place than we actually observe. This contradiction (discussed
further on p. 186) has led some workers to abandon the use of distance methods,
or to use other methods of computing branch lengths from distances (see
below).

In the example just given we were fitting an additive tree with (2n-3)
branches to {’2?) =n(n—-1)/2 pairwise distances. However, measures of fit can
also be applied to ultrametric trees, in which case there are (n - 1) independent
branch lengths to be estimated. That there are fewer parameters to be estimated
for an ultrametric tree, which has one more branch than an unrooted additive
tree, may seem paradoxical, but this is due to the constraint that all terminal
taxa are equidistant from the root. This constraint is equivalent to postulating
a ‘molecular clock’ (a concept which is discussed in detail in Chapter 7). For
example, in the ultrametric tree shown in Fig. 6.8 the branches ¢, and ¢, must
be of the same length as they both represent the same interval of time (i.e. the
time since sequences A and B diverged).

If the distances between sequences are ultrametric then both the ultrametric
and additive trees would [it those distances equally well (indeed, the additive
tree would be identical to the ultrametric tree). The greater the departure
from the molecular clock, the more the data will depart from being ultra-
metric, and the greater the difference in [it between additive and ultrametric
trees, the additive tree always being a better fit as it lacks the constraints
imposed by the ultrametric tree. This property is employed by some tests of

Additive tree Ultrametric tree

B
Constraints
ej=e;
eg=€7

eg=eq1+e3

e +eg =g+
5 eg gt eg=@€g+eg

Fig. 6.8 Additive and ultrametric trees for the same sequences. Both trees specify the
same cladistic relationships among the taxa, but whereas the additive tree has (2n-3=7)
independent branches the ultrametric tree has only (1 - 1) = 4 because some branches are
constrained to be equal to others, or 1o combinations of others. This constraint is
equivalent to a molecular clock.
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.1070
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00136 e ] Gori”a
0.0460 :
0.0380 pr— Chimpanzee
Fig. 6.9 Uliramectric tree for
| hominoid mtDNA with least
0.0094 squares branch lengths
0.0460 Human computed from the Kimura

2-parameter distances shown

in the upper right triangle of

0.1 Table 6.1. Compare with the
additive tree in Fig. 6.7.

the molecular clock, such as the likelihood ratio test described later in this
chapter (sce p. 198).

Figure 6.9 shows an ultrametric tree for the same distances used to compute
the additive tree in Fig. 6.7. The two trees specify the same cladistic relationships;
however, the ultrametric tree also supplies a root (between the gibbon and the
great apes including humans) and the branch lengths are slightly different. For
instance, the additive tree apportions more evolutiona ry change to chimpanzee
miDNA than to human mtDNA, whereas in the ultrametric tree these two

sequences are constrained to have exactly the same amount of evolutionary
change since their divergence.

6.2.2 Minimum evolution

Given an unrooted metric tree for n sequences there are (21— 3) branches,

cach with length e, The sum of these branch lengths is the length L of the
tree:

2n-3
;W 2‘ (6.2)
i=l
The minimum evolution tree (ME) is the tree which minimises . This method
is similar in spirit to parsimony, which we shall discuss below: however, the
length in this case is computed from the pairwise distances between the
sequences rather than from the fit of individual nudleotide sites to a tree. To
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use this method we need to be able to compute the length of any tree. However,
these lengths are not always biologically valid (see p. 186).

Linear programming

Linear programming is a widely used mathematical technique to find the
optimal solution to a problem, given a set of constraints (most spreadsheet
programs can perform linear programming). When applied to finding the length
of a tree, the two constraints that we must satisfy are that all the branch lengths
are non-negative (i.e. ¢,2 0 for all i), and that for any pair of sequences the
tree distances are never less than the observed distances (i.e. p;; 24, for all i
and j). Table 6.2 gives the observed pairwise distances for the hominoid DNA
sequences, and the corresponding tree distances obtained for the tree shown
in Fig. 6.10. The tree distances are in good agreement with the observed
distances. Note that where the tree distances differ from the observed differences
(e.g. between human and gibbon) the tree distances are always greater than
the observed distances, satisfying the condition that the amount of evolutionary
change inferred cannot be less than that which we have observed.

Table 6.2 Obscrved pairwise distances (p) between hominoid sequences (above
diagonal) and tree distances computed by linear programming (below diagonal). Tree
distances that differ from the observed are marked in bold. The corresponding tree is
shown in Fig. 6.10.

Human Chimp Gorilla Orang-utan Gibbon

Human 79 92 144 162
Chimp - 95 154 169
Gorilla - 150 169
Orang-utan - 169
Gibbon 169 -

Gorilla

Fig. 6.10 Minimum
evolution tree for the
hominoid sequences with the
branch lengths computed
from the observed pairwise

distances L{smg linear Orang-utan Chimpanzee
programming. The total
length of this tree is 331.5.
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Least squares

More commonly, the branch lengths of the minimum evolution tree are
estimated using least-squares methods. The branch lengths are estimated in
the same way as for goodness of fit measures; however, rather than compare
the fit of the observed distances the least squares branch lengths are added
together to give the length of the tree.

6.2.3 Algorithms for finding distance trees

As with discrete characters, finding the optimal distance tree is computationally
difficult. For small numbers of taxa exact methods can be used: for larger numbers
we must rely on heuristics, of which there are a large number, some of which
have largely been used only with distance data. We mention three here.

Neighbourliness

Neighbourliness makes use of the additive condition (sce Chapter 2) where,
given any four sequences, it is possible to label them A-D such that the distances
between them obey this condition:

d(A, B) +d(C, D) <d(A, C) + d(B, D) = d(A, D) +d(B, C) (6.3)

Recalling from Chapter 2 that the additive condition defines a tree, this equation
corresponds to the tree Q, shown in Fig. 6.5. On this tree A and B, and C and
D are neighbours with respect to each other, hence the name of the method.
Given data for  sequences that are perfectly additive (i.c. perfectly tree-like)
we could use equation (6.3) to identily the additive subtrees for the data and
from them construct the phylogeny for all # sequences. For actual data additivity
may not hold, in which case we could seck the tree that has the greatest number
ol quartets for which equation (6.3) holds.

Neighbour joining

Neighbour joining (NJ) is a widely used method for tree building which combines
computational speed with uniqueness of result—most implementations give
a single tree. These two attributes (i.e. getting one tree, fast) have made it
seem very appealing. Neighbour joining is a clustering method rather than an
optimality method, and hence suffers from the limitation that it does not
optimise a criterion of fit between tree and data. However, it is a good heuristic
method for estimating the minimum evolution tree. One strategy for finding
the ME tree is to first compute the NJ tree, then see if any local rearrangement
of the NJ tree produces a shorter tree. Note that this strategy is not guaranteed
to find the ME tree, for the reasons given in section 6.1.2. However, in practice
the NJ tree is often the same or very similar to the ME tree.
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Unweighted pair group method with arithmetic means (UPGMA)

UPGMA is one of the few tree-building methods that constructs an ultrametric
tree (see Chapter 2). In an ultrametric tree all the tips are equidistant from the
root of the tree, which is equivalent to assuming a molecular clock (see Chapter
7). Indeed, UPGMA is best viewed as a heuristic for finding the least squares
ultrametric tree for a distance matrix.

Box 6.2 Are distance methods ‘phenetic?’

A criticism often levelled at distance methods is that they are ‘phenetic’, and

therefore inferior to other, ‘phylogenetic’, methods. Our view is that phenetics

is a philosophy of systematics that eschews phylogenetic analysis as a search for

the unknowable (because, with very few exceptions, no one has observed a |
| phylogeny unfold over time). Hence phenetics favours summarising observed |
features of organisms using ‘maximally informative’ or ‘predictive’ classifications |
(which may or may not be actual phylogenies; if they are, this is merely a |
happy accident). Typically such classifications were constructed by computinga |
| measure of similarity between organisms, then doing a cluster analysis on those |
similarities. Phenetics was rejected by most systematists by the late 1970s, largely
because: (1) estimating evolutionary trees was thought to be a more worthwhile
goal; (2) techniques (such as cladistics) existed which claimed to be able to estimate
such trees; and (3) phenetics was unable to provide unambiguous reasons for |
choosing between a plethora of measures of similarity and clustering algorithms, i
However, if the goal is to reconstruct phylogeny then there are clear reasons for
favouring one measure of similarity over another, and for favouring particular
methods for converting distances into trees. This does not mean that all criticisms
ot distances raised by opponents of phenetics do not apply in this phylogenetic
context, rather, we suggest that the criticism that a method is ‘phenetic’ is not,
by itself, meaningful.

6.2.4 Objections to distance methods

In considering distance methods we should distinguish between methods for
constructing the trees and methods for obtaining the distances. If the esti-
mates of evolutionary distance are poor then the performance of a distance
method may be adversely affected, which may not be a true reflection of the
merits of the tree building method itsell. Furthermore, many existing computer
programs for finding distance trees lack the sophistication of equivalent programs
for discrete data, making it difficult to determine if there is more than one
optimal tree for example, or how many trees are nearly as good as the optimal
tree. Again, this is a limitation of existing software, not distance methods as
such. Hence in this section we consider objections to the use of distance data

per se.
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The major objections to distance methods are:
* summarising a set of sequences by a pairwise distance matrix loses
information;
* branch lengths estimated by some distance methods may not be evolutionarily
interpretable.

Distances lose information

If the original data are in the form of distances, such as those obtained from
DNA hybridisation studies, then we have no other option but to use distances.
However, if we have the sequences we have the option of analysing them
directly or converting them into distances (Chapter 5). Doing the latter may
lose information. For example, once converted to distances, we cannot trace
the evolution of individual sites, or categories of sites on a tree, we have only
an overall estimate of the relationship between tree and data. This can be
clearly seen in Fig. 6.1 where the parsimony analysis of the original sequence
data allows us to locate where in the tree each site changes, whereas the distance
tree merely tells us how much change occurs along cach branch.

Another way of expressing the loss of information inherent in converting
sequences to distances is to compare the number of possible distance matrices
with the number of possible data sets—the latter greatly exceed the former.

Uninterpretable branch lengths

It is possible to reconstruct branch lengths from distances that are mathematically
valid but biologically difficult to interpret. For example, on p. 183 we used
linear programming to fit observed distances between hominoid sequences to
a tree. The length of that tree was 331.5 substitutions. This value raises two
problems, the [irst being how to interpret 0.5 substitutions —a nucleotide can
either be substituted or not; we cannot have half a substitution. One response
to this difficulty is that branch lengths can represent two quite different
quantities: the expected amount of evolutionary change and the actual or realised
amount of change. For example, if we have a branch in a tree that corresponds
to an interval of 1 Myr, and the rate of nucleotide substitution is 2.5% per
Myr, then given a sequence of 100 bases in length we expect on average 2.5
substitutions to have occurred. Obviously, we cannot have half a substitution,
so in reality some whole number of substitutions would have occurred, say 2
or 3 (or some other whole number). Under this interpretation, a branch length
of 2.5 is entirely reasonable.

The second problem is that the figure of 331.5 substitutions is biologically
not possible for this data set. As we shall see below when we discuss maximum
parsimony, the minimum number of substitutions that must have occurred in
the evolution of these particular sequences is 353. The tree length obtained by
linear programming is internally consistent—but biologically impossible. In
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much the same way, when estimating branch lengths using least squares we
can obtain tree distances that are less than the distances observed between the
sequences (e.g. Table 6.1). Again, we cannot have less evolutionary change
than we actually observe in the data.

6.3 Discrete methods

In contrast to distance methods, discrete methods operate directly on the
sequences, or on functions derived from the sequences, rather than on pairwise
distances. Hence they endeavour to avoid the loss of information that occurs
when sequences are converted into distances. The two major discrete methods
are maximum parsimony (MP) and maximum likelihood (ML). Maximum
parsimony chooses the tree (or trees) that require the fewest evolutionary
changes. Maximum likelihood chooses the tree (or trees) that of all trees is the
one that is most likely to have produced the observed data. We also consider
two methods that treat the data not as individual sites but as ‘splits’ (see Chapter
2): spectral analysis and split decomposition.

6.4 Maximum parsimony

The data for maximum parsimony comprise individual nucleotide sites. For
cach site the goal is to reconstruct the evolution of that site on a tree subject to
the constraint of invoking the fewest possible evolutionary changes. Consider
the following four sequences:

ATATT

ATCGT
GCAGT
GCCGT

W N e

Figure 6.11 shows the unrooted tree ((1,2),(3,4)) and two possible reconstructions
of the evolution of the first site on that tree. In each reconstruction we have
postulated which nucleotide the two internal nodes (ancestral sequences)

Tree 1 change 5 changes

Fig. 6.11 An unrooted tree for four sequences 1-4 and two possible reconstructions of the
evolution of the same site on that tree. One reconstruction requires one change, the other

requires five. The former is more parsimonious.
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possess. On branches where the nucleotide at each end differs we postulate
a substitution. Note that our reconstruction does not specify where along
that branch the change took place, merely that it did. Under the principle of
parsimony the reconstruction that invokes a single substitution is preferred
over the less parsimunious reconstruction that requires five substitutions. We
can now find the most parsimonious reconstructions for each of the remaining
sites (Fig. 6.12). Note that for the third site there ar¢ two equally parsimonious
reconstructions, both requiring two steps.-

The total number of evolutionary changes on a tre

the tree’s length) is simply the sum of the number ©
Hence, if we have K sites, each with a length of I, then the length L of

is given by

i=1

e (often referred to as

f changes at each site.
the tree

(6.4)

+ 1+ 0=5steps. The other

alengthof 1 +1 +2
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Table 6.3 Changes required

for each site to fit the three Sites

possible trees for four

sequences. Tree 1 2 3 4 5 Total
((1.2).(3.4)) 1 1 2 1 0 5
((1,3).(2.4)) 2 2 1 1 0 6
((1.4),(2,3)) 2 2 2 1 0 7

Notice that the number of steps at sites 4 and 5 are the same for all three Lrees,
hence these sites do not discriminate between the three alternative trees. Such
sites arc termed phylogenetically uninformative; sites that are invariant
(each sequence has the same nucleotide at the same position) or sites where
only one sequence has a different nucleotide are examples of such sites.

6.4.1 Generalised parsimony

When counting changes in the above example, each substitution was accorded
the same “cost’, so that the transition A — G counts as one step, as does the
transversion A — C. Another way of representing this is by means of a step
matrix (Fig. 6.13).

In the first model, which we have implicitly used above, each substitution
has equal cost, so each cell in the corresponding step matrix has the entry ‘1’
Note that the cost of not changing is zero; if the nucleotide at cach end of a
branch is the same then we infer that no ¢hange has occurred.

The second model assigns a higher cost to transversions, in this case (wice
the cost of a transition. This is equivalent to saying the transversions are rarer

Substitution model Step matrix
To
A C G T
Al 0o 1 1
ECl1 0 1
S
£ Gl 1 1 1
T 1 1 0
To
1
Fig. 6.13 Two different A4—>»G A
substitution models and the /
. £ C
corresponding step matrices. 2 2X2 2 S
The value in each cell in a / e
step matrix is the ‘cost’ of the C 4—1—FT T

corresponding substitution.

|
|
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than transitions, and therefore may be more reliable indicators of phylogeny.
If we were to use this step matrix on the data discussed above, the number of
steps for sites 1, 2 and 4 would not change as they all involve transitions.
However, site 3 requires an A-C transversion. Trees 1 and 3 require this
transversion to occur twice, hence for those sites the total cost for site 3 is 4.
Tree 2 requires a single transversion with cost 2. Under this model tree 2 is
now just as parsimonious as tree 1.

Generalised parsimony is very flexible in that we can specify a wide range
of substitution models (see Chapter 5) using step matrices. However, it is not
immediately obvious what cost to assign the different kinds of substitutions.
We shall return to this point below.

6.4.2 Weighted parsimony

Not all sites may be equally phylogenetically useful. Sites that evolve very
rapidly are likely to become quickly saturated so that the trace of history is
overprinted and lost. Indeed, such sites may even be positively misleading. In
contrast, sites that are conservative and evolve very slowly are less likely to
suffer the effects of saturation. The relative value of different sites can be
reflected by the weight w given to each site. Hence the length of a tree becomes

L=y wi, (6.5)

The greater the phylogenetic value of the character, the greater the weight we
might wish to assign it.

As with step matrices, weighting adds flexibility to parsimony analyses,
but raises the question of exactly what weights to assign different sites.

6.4.3 Justification for parsimony

Among parsimony’s advantages are that it is relatively straightforward to
understand, it apparently makes few assumptions about the evolutionary
process, it has been extensively studied mathematically, and some very powerful
software implementations are available. However, the justification for choosing
the most parsimonious tree as the best estimate of phylogeny is the subject of
considerable controversy. Essentially two main arguments have been presented.
The first is that parsimony is a methodological convention that compels us
to maximise the amount of evolutionary similarity that we can explain as
homologous similarity, that is, we want to maximise the similarity that we
can attribute to common ancestry. Any character which does not fit a given
tree requires us to postulate that the similarity between two sequences
shown by that character arose independently in the two sequences—the
similarity is due to homoplasy not homology. Hypotheses of homoplasy (such
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as convergence or parallel evolution) may be judged ad hoc in that they are
attempts to explain why data do not fit a particular hypothesis. The most
parsimonious tree minimises the number of ad hoc hypotheses required, and
for that reason is preferred.

The second view is that parsimony is based on an implicit assumption
about evolution, namely that evolutionary change is rare. Rarity of change
implies that the tree that minimises change is likely to be the best estimate
of the actual phylogeny. Under this view, parsimony may be viewed as an
approximation to maximum likelihood methods (discussed below), and indeed
it was in this context that parsimony methods were first proposed by Edwards
and Cavalli-Sforza.

The debate between advocates of these two positions has been explored in
great detail by Elliot Sober (1988), to which the reader is referred for more
details. Of the two positions, the latter has the advantage that it is possible to
explore the circumstances under which parsimony will fail to reconstruct the
correct phylogeny, and to develop a framework in which parsimony can be
compared with other methods.

6.4.4 Objections to parsimony

The principal objection to parsimony is that under some models of evolution it
is not consistent (sc¢ section 6.1.4), that is, even if we add more data it is
possible to obtain the wrong tree. The classic scenario where this might happen
has been termed ‘long branches attract’,

In the tree shown in Fig. 6.14, there are two unrelated sequences that are
each separated from their ancestor by a long edge. In order for parsimony to
recover the correct tree ((A, B),(C, D)) there must be more sites supporting

‘Long branches'

Fig. 6.14 The problem of long branches attracting’. The edges leading to sequences A and
C are long relative to the other branches in the tree, reflecting the relatively greater
number of substitutions that have occurred along those two edges. If the difference in
numbers of substitutions is sufficiently great, there may be more apparent support for the
split {{A, C).{B, D}] than for the split {{A, BJL.(C, D}}.
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the split {(A, B},{C, D}} than either of the two other possible internal splits:
{{A, C}{B, D}} and {{A, D}L(B, C)}. If the internal edge is short relative to the
long terminal edges then by chance alone A and C may acquire the same
nucleotide independently. These convergences may outweigh the sites changing
along the internal edge, and hence by the parsimony criterion the tree ((A, C),
(B, D)) would be favoured. Under some circumstances, no matter how much
data is added parsimony will obtain the wrong tree, hence it is inconsistent.

The problem of long branches attracting is most likely to occur when rates
of evolution show considerable variation among sequences, or where the
sequences being analysed are quite divergent. One strategy Lo reduce the effects
of long edges is to add sequences that join onto those edges thus breaking
them up (see Box 6.3).

. — — e — — S — — E— — —

% Box 6.3 Big trees and long branches

| The problem of ‘long branch attraction” may be severe in the case of trees for |
| four sequences. Paradoxically, it may be less of a problem for large phylogenies. |
| The diagram below shows a tree for 228 angiosperm (flowering plant) 18S |
| ribosomal DNA sequences.

il

|
‘ This tree contains several prominent long edges. To test our ability to recover |
this tree Hillis (1996) generated artificial data sets by simulating the evolution
of DNA sequences of various lengths on this tree, then analysed those data sets
using a range of tree-building methods (this approach of simulating data on '
a tree is called ‘parametric bootstrapping’ and is discussed in section 6.8.3). |
‘ Parsimony and neighbour joining both did surprisingly well, requiring only '
| 5000 nucleotides to recover the original tree. The crucial problem posed by.|
| |

l_ contimeed
|
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Box 6.3 continued

‘long branches’ is not so much the length of the branches, but that the same
substitutions have occurred along the two branches, fooling tree-building methods
into joining them together. The probability of such covarying homoplasies is
less if the branches are widely separated. Intuitively, if the long branches are |
close together then their ancestral states probably closely resembled each other,
whereas branches far apart in a tree likely had very different ancestral states. It
is more likely that similar substitutions will occur in two lineages that were

| similar to start with than in two lineages that were very different, Hence, in
small trees (such as the four-taxon trees much used in simulations — see section
6.7.3), the rapid rate of evolution in the two lineages that were initially quite |
similar is more likely to yield the same substitutions in the two edges than in ﬁ
large trees. '

Small tree Large tree
Long edges close Long edges far apart
together (many (few covarying sites)

covarying sites). S %

= = Covarying sites

6.5 Maximum likelihood

Given competing explanations for a particular outcome, which explanation
should we choose? The principle of likelihood, which we encountered in
Chapter 5, suggests that the explanation that makes the observed outcome
the most likely (i.e. the most probable) occurrence is one t0 be preferred. Put
more formally, if given some data D, and a hypothesis H, the likelihood of that
data is given by

L, = Pr(D|H) (6.6)

which is the probability of obtaining D given H. In the context of molecular
phylogenetics D is the set of sequences being compared, and H is a phylo-
genetic tree, hence we want to find the likelihood of obtaining the observed
sequences given a particular tree. The tree that makes our data the most
probable evolutionary outcome is the maximum likelihood estimate of
the phylogeny.




