Stream communities & ecosystems

Limnology Lecture 22

Resource partitioning

Coexistence through resource partitioning

3 Major Axes Typically Evaluated

- 1. Habitat
- 2. Diet
- 3. Time (season or time of day)

Schoener, T.W. 1974

Habitat Partioning

FIGURE 9.1 Ecological segregation among eight species of cyprinids in a Mississippi stream. Only Ericymba buccata and Notropis longirostris failed to separate on the axes shown, and the former was the sole nocturnal feeder in the assemblage. W, Notropis welaka; S, N. signipinnis; V, N. venustus; R, N. roseipinnis; T, N. texanus; C, N. chrysocephalus; L, N. longirostris; E, Ericymba buccata. (From Baker and Ross, 1981.)

Notropis longirostris

Notropis welaka

Diet Partitioning

Serrasalmus rhombeus

Gymnotus carapo

Rhamdia sp

Caquetia kraussii

FIGURE 9.3 Frequency histograms of dietary overlap exhibited by each of nine piscivorous fish during different seasons at a lowland creek-and-marsh site in Venezuela. Wet season lasts from May to August, transition season from September to December, and dry season from January to April. Diet overlap was computed from pairwise comparisons of ingested prey after converting prey abundance to volume as an approximation of biomass. Dry season data are less extensive because not all species were present and many had empty guts. Over half of overlap estimates were less than 0.10. (From Winemiller, 1989.)

Serrasalmus rhombeus

Hoplias malabaricus

Temporal Partitioning

Ephemerella subvaria White Clay Creek, PA

Intermediate disturbance hypothesis in rivers

Townsend & Scarsbrook 1997

Partition habitat by disturbance-biotic interaction tradeoff

Colonization-competition tradeoff

Some evidence for tradeoff between two traits

Competition ability

Succession in rivers

Succession – predictable changes in community following disturbance or creation of new habitat

What do you expect to happen in streams?

Rapid recovery after disturbance

FIG. 3. Percent cover of algal patch types following flooding.

ter flooding. "Biomass" is determined as ash-free dry mass and thus includes living and nonliving organic matter. (± 1 SE).

Rapid recovery after disturbance

Small ephemeroptera, chironomids, beetles, simulidae flies colonize rapidly

Muir and Riggs Glaciers

Wolf Point Creek

Long-term assembly at Wolf Point Creek

First non-flying invert.

Figure 2. Year of first colonization by fish and macroinvertebrate orders and families with corresponding maximum water temperature. Total number of macroinvertebrate taxa in August for any particular year is given in purple.

Wolf Point Creek

Major groups still colonizing after 30 years

Broadstone stream

One of best understood streams in world

Woodward et al. 2005 AER

Figure 2 Summary connectance food web for the macrofaunal assemblage of Broadstone Stream (1996-1997). Double-headed arrows depict mutual predation circular arrows cannibalism. Key to species: 1. Cordulegaster boltonii (Donovan) 2. Sialis fuliginosa Pict; 3. Plectrocnemia conspersa (Curtis); 4. Pedicia sp. 5. Siphonoperla torrentium (Pictet); 6. Dicranota sp.; 7. Platambus maculatus (Pictet); 8. Macropelopia nebulosa (Meigen); 9. Zavrelimyia barbatipes (Kieffer) 10. Trissopelopia longimana (Staeger); 11. Bezzia sp.; 12. Potamophylax cingulatus (Stephens); 13. Adicella reducta (McLachlan); 14. Tipulidae (non-predatory) 15. Nemurella pictetii Klapalek; 16. Leuctra nigra (Olivier); 17. Leuctra hippopu. Kempny; 18. Corynoneura lobata Edwards; 19. Prodiamesa olivacea (Meigen) 20. Heterotrissocladius marcidus (Walker); 21. Micropsectra bidentata (Goetghebuer) 22. Brillia modesta (Meigen); 23. Polypedilum albicorne grp.; 24. Paraleptophlebia submarginata (Stephens); 25. oligochaetes; 26. Pisidium sp.; 27. Simulium sp. 28. Helodidae sp.; 29. Niphargus aquilex Schiödte; 30. Asellus meridianus Racovitza 31. cyclopoids; 32. Terrestrial invertebrates; 33. CPOM; 34. FPOM; 35. Iror bacteria; 36. Algae.

Food web interactions change through time

Many weak interactions at any given point

Figure 7 Quantified food webs representing numbers of macrofaunal prey (individuals > $10 \mu g$) eaten *per capita* 24 h⁻¹ (as a percent of numbers m⁻²) during 1996–1997. The area of each circle is proportional to total numerical standing stock within sampling occasions (see Fig. 5 for absolute values). Links to basal resources and the meiofaunal cyclopoids were not quantified (see Fig. 2 for comparison with connectance web and identity of taxa).

Fig. 2. Trophic relations of dominant biota in and around algal turfs during the summer low-flow period. Arrows point from prey to their consumers.

Power 1990

With fish

Food Webs

ers.

With fish

Diversity patterns in streams

EPT index – Ephemeroptera – Plecoptera – Trichoptera

why these taxa?

Easily ID'd Tend to be sensitive to human disturbance

Diversity patterns in streams

Tolerance – ability to withstand (human) disturbance

Usually based on finding them in "healthy" habitats

What is "healthy"?

Should be based on ecotoxicology

	Small rivers	Large rivers	Ponds	Lakes
Macrophyte habitat				
Sediment stability				
Sediment loading				

	Small rivers	Large rivers	Ponds	Lakes
Macrophyte habitat	Low	Moderate	High	Moderate
Sediment stability				
Sediment loading				

	Small rivers	Large rivers	Ponds	Lakes
Macrophyte habitat	Low	Moderate	High	Moderate
Sediment stability	Low, catastrophic flooding	Low, shifting sands	High	High
Sediment loading				

	Small rivers	Large rivers	Ponds	Lakes
Macrophyte habitat	Low	Moderate	High	Moderate
Sediment stability	Low, catastrophic flooding	Low, shifting sands	High	High
Sediment loading	Low	High	Moderate	Low

	Small rivers	Large rivers	Ponds	Lakes
Benthic richness				
Important guilds				
Dominant food sources				

	Small rivers	Large rivers	Ponds	Lakes
Benthic richness	Low	High	High	Low
Important guilds				
Dominant food sources				

	Small rivers	Large rivers	Ponds	Lakes
Benthic richness	Low	High	High	Low
Important guilds	Shredders, collectors	Grazers, collectors	Grazers, collectors, shredders	Grazers, collectors, shredders
Dominant food sources				

	Small rivers	Large rivers	Ponds	Lakes
Benthic richness	Low	High	High	Low
Important guilds	Shredders, collectors	Grazers, collectors	Grazers, collectors, shredders	Grazers, collectors, shredders
Dominant food sources	CPOM, periphyton	FPOM	CPOM, periphyton, phytoplankton, macrophytes	CPOM, phytoplankton, macrophytes

	Small rivers	Large rivers	Ponds	Lakes
Benthic production				
Fish communities				
Fish production				

	Small rivers	Large rivers	Ponds	Lakes
Benthic production	Low	High	High	Low
Fish communities				
Fish production				

	Small rivers	Large rivers	Ponds	Lakes
Benthic production	Low	High	High	Low
Fish communities	Few	Many	Few	Many
Fish production				

	Small rivers	Large rivers	Ponds	Lakes
Benthic production	Low	High	High	Low
Fish communities	Few	Many	Few	Many
Fish production	Moderate	High	Low, moderate	Moderate