Locomotion

Announcements

- We did a shitty job of restoring habitat yesterday
 - Logs and rocks dislodged from their original location
 - At least one salamander left on a log, almost dead
- Here's how to fix it
 - It's **not** enough to place the rock or log back haphazardly, you **must** place it back it's original footprint
 - If there's a gap between the rock/log and the hole under it, brush dirt/leaves over it
 - Animals must go back under the rock/log after data collecting
 - Place it in a position to crawl back under, coerce it (gentle prod) if necessary

Connecticut Amphibian and Reptile Checklist

Salamanders

Ambystoma jeffersonianum Jefferson Salamander

Ambystoma laterale Blue-spotted Salamander

Ambystoma maculatum
Spotted Salamander

Ambystoma opacum
Marbled Salamander

Desmognathus fuscus
Northern Dusky Salamander

Eurycea bislineata

Northern Two-lined Salamander

Gyrinophilus porphyriticus
Spring Salamander

☐ Hemidactylium scutatum
Four-toed Salamander

Plethodon cinereus
Northern Redback Salamander

Plethodon glutinosus
Northern Slimy Salamander

Necturus maculosus
Common Mudpuppy

Notophthalmus viridescens
Red-spotted Newt

Frogs

Bufo americanus

American Toad

Bufo fowleri
Fowler's Toad

Hyla versicolor
Gray Treefrog

Pseudacris crucifer
Spring Peeper

Rana catesbeiana
Bullfrog

Rana clamitans
Green Frog

Rana palustris
Pickerel Frog

Rana pipiens
Northern Leopard Frog

Rana sylvatica
Wood Frog

Scaphiopus holbrookii
Eastern Spadefoot Toad

Turtles

Chelydra serpentine
Common Snapping Turtle

Chrysemys picta
Painted Turtle

Clemmys guttata
Spotted Turtle

Clemmys insculpta
Wood Turtle

Clemmys muhlenbergii
Bog Turtle

Malaclemys terrapin
N. Diamondback Terrapin

Terrapene carolina
Eastern Box Turtle

Sternotherus odoratus
Common Musk Turtle

Snakes

Carphophis amoenus
Eastern Worm Snake

Coluber constrictor
Black Racer

Diadophis punctatus
Ringneck Snake

Elaphe obsolete
Black Rat Snake

Heterodon platirhinos
Eastern Hognose Snake

Lampropeltis triangulum
Eastern Milk Snake

Opheodrys vernalis Smooth Green Snake

Nerodia sipedon
Northern Water Snake

Storeria dekayi
Northern Brown Snake

Storeria occipitomaculata
Northern Redbelly Snake

Thamnophis sauritus Eastern Ribbon Snake

Thamnophis sirtalis
Eastern Garter Snake

Agkistrodon contortrix*
Copperhead

Crotalus horridus*
Timber Rattlesnake
*VENOMOUS

Lizards

Plestiodon (Eumeces) fasciatus

Five-lined Skink

16 Caught CT Herps45 Total CT Herps

Pessimist's estimate: 29 left to go!

20 "Observed" CT Herps 45 Total CT Herps

Conservative estimate: 25 left to go!

16 Caught CT Herps28 Expected CT Herps

Moderate estimate: 12 left to go!

20 "Observed" CT Herps 28 Expected CT Herps

Liberal estimate: 8 left to go!

Ethology

- Ethology is the study of organismal movement that results in the organism changing place in 3-dimensional space
- Amphibians and reptiles have a wide variety of locomotion modes
 - Limbed locomotion (walking)
 - Saltatorial locomotion (hopping in frogs)
 - Limbless locomotion (many types in snakes)
 - Aquatic locomotion (swimming)

Limbed Locomotion

 Locomotion in salamanders crocodiles, and lizards hasn't changed much since the Devonian period (before dinosaurs evolved)

- Limbs are short and sprawled out, bodies are pressed to the ground and lifted to walk
- Movements are like undulations

Limbed Locomotion

- An animal's gait is the pattern of footfalls it makes during locomotion
- Most amphibians and reptiles use a trot or lateralsequence gait to walk
 - Trot: 2 points of contact with the ground
 - Lateral sequence: 3 points of contact with the ground

Limbed Locomotion

- What kind of gait is each animal using?
 - Salamander
 - Frog
 - Lizard
 - <u>Turtle</u>

Frog Walking

- Ancestral frogs were specialized for jumping
 - Walking frogs and toads reverted back to a lateral sequence gait
 - Shorter hind-limbs let toads walk or take small hops

Turtle Walking

- Turtles have problems with inflexibility
 - Ribs and vertebrae are attached to the shell
 - Limb movements are confined by small shell openings
- Steps in turtle walking (a modified lateral sequence gait)
 - 1. Lift shell vertically off the ground
 - 2. Move one limb at a time (lateral sequence gait)
 - 3. Slowly pitch and roll the body forward with each step

Saltational Locomotion

- Frog skeleton is specialized for jumping
 - Launching evolved before landing
- Skeletal Adaptations:
 - Launching:
 - Massive bones in the hind limbs, with massive muscles attached
 - Flexible hip bones for spring-like launch
 - Landing:
 - Head and spinal column are fused (no neck)
 - Thick bones in the pectoral girdle function
 - Shock absorption!

Limbless Locomotion

- Four types of limbless locomotion
 - Lateral undulation (serpentine)
 - Rectilinear
 - Concertina
 - Sidewinding

Limbless Locomotion: Lateral Undulation

- Each curve of the snake pushes against and away from the ground
- Requires rough ground or objects to push against (does not work on smooth surfaces)

Limbless Locomotion: Rectilinear

- Snake uses gastrosteges scales (belly scales) to inch forward (like a worm)
- Video

Limbless Locomotion: Concertina

 The snake "piles-up" in one spot, then shoots its head forward, then "piles-up" in the new spot

Limbless Locomotion: Sidewinding

- Snake travels at an angle going "backwards"
- Sections of the snake are lifted and moved over to a new segment parallel to the original segment

Aquatic Locomotion: Lateral Undulation

- Frog and salamander larvae use lateral undulation to propel themselves through the water
 - Provides thrust by pushing body against the water
 - The most primitive form of locomotion found in tetrapods
 - The basis of many other amphibian and reptile modes of locomotion

Aquatic Locomotion: Lateral Undulation

 Salamander larvae (and Necturus maculosus and adult Notophthalmus viridescens) quickly augment lateral undulation with walking-like motion

Aquatic Locomotion: Lateral Undulation

- Tadpoles are especially adept at lateral undulation
 - They lack vertebrae (they only possess a flexible notochord until metamorphosis)
 - Can quickly maneuver, but lack of fins severely reduces speed
- Frogs are most often preyed upon while in intermediate stages of metamorphosis
 - Unable to effectively swim away
 - Strong selection for extremely brief metamorphosis

Aquatic Locomotion: "Frog-kicking" and "Turtle paddling"

 "Frog-kicking" is a modification of the jumping movement, where webbed hind-limbs provide the majority of the thrust "Turtle paddling" is a modification of the walking movement, where webbed fore-limbs and hind-limbs provide thrust using a lateral sequence gait

