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7.1 Introduction

210

What is the probability that Sweden will win next year’s world championships
in ice hockey? If you're a hockey fan, you probably already have a good idea,
but even if you couldn’t care less about the game, a quick perusal of the world
championship medalists for the last 15 years (Table 7.1) would allow you to make
an educated guess. Clearly, Sweden is one of only a small number of teams that
compete successfully for the medals. Let’s assume that all seven medalists the last
15 years have the same chance of winning, and that the probability of an outsider
winning is negligible. Then the odds of Sweden winning would be 1:7 or 0.14. We
can also calculate the frequency of Swedish victories in the past. Two gold medals in
15 years would give us the number 2:15 or 0.13, very close to the previous estimate.
The exact probability is difficult to determine but most people would probably
agree that it is likely to be in the vicinity of these estimates.

You can use this information to make sensible decisions. If somebody offered you
to bet on Sweden winning the world championships at the odds 1:10, for instance,
you might-not be interested because the return on the bet would be close to your
estimate of the probability. However, if you were offered the odds 1:100, you might
be tempted to go for it, wouldn’t you?

As the available information changes, you are likely to change your assessment
of the probabilities. Let’s assume, for instance, that the Swedish team made it to
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Table 7.1 Medalists in the ice hockey world championships 1993-2007

Year Gold Silver " Bronze

1993 Russia Sweden Czech Republic
1994 Canada Finland Sweden

1995 Finland Sweden Canada

1996 Czech Republic Canada United States
1997 Canada Sweden Czech Republic
1998 Sweden Finland Czech Republic
1999 Czech Republic Finland Sweden

2000 Czech Republic Slovakia Finland

2001 Czech Republic Finland Sweden

2002 Slovakia . Russia Sweden

2003 Canada Sweden Slovakia

2004 Canada Sweden United States
2005 Czech Republic Canada Russia

2006 - Sweden " Czech Republic Finland

2007 Canada Finland Russia

the finals. Now you would probably consider the chance of a Swedish victory to
be much higher than your initial guess, perhaps close to 0.5. If Sweden lost in the
semifinals, however, the chance of a Swedish victory would be gone; the probability
would be 0.

This way of reasoning about probabilities and updating them as new information
becomes available is intuitively appealing to most people and it is clearly related to
rational behavior. It also happens to exemplify the Bayesian approach to science.
Bayesian inference is just a mathematical formalization of a decision process that
most of us use without reflecting on it; it is nothing more than a probability analysis.
In that sense, Bayesian inference is much simpler than classical statistical methods,
which rely on sampling theory, asymptotlc behavior, statistical significance, and
other esoteric concepts.

The first mathematical formulation of the Bayesian approach is attributed to
Thomas Bayes (c. 1702-1761), a British mathematician and Presbyterian minister.
He studied logic and theology at the University of Edinburgh; as a Non-Conformist,
Oxford and Cambridge were closed to him. The only scientific work he published
during his lifetime was a defense of Isaac Newton’s calculus against a contempo-
raneous critic (Introduction to the Doctrine of Fluxions, published anonymously in
1736), which apparently got him elected as a Fellow of the Royal Society in 1742.
However, it is his solution to a problem in so-called inverse probability that made
him famous. It was published posthumously in 1764 by his friend Richard Price in
the Essay Towards Solving a Problem in the Doctrine of Chances.
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Assume we have an urn with a large number of balls, some of which are white
and some of which are black. Given that we know the proportion of white balls,
what is the probability of drawing, say, five white and five black balls in ten draws?
This is a problem in forward probability. Thomas Bayes solved an example of the
converse of such problems. Given a particular sample of white and black balls,
what can we say about the proportion of white balls in the urn? This is the type of
question we need to answer in Bayesian inference.

Let’s assume that the proportion of white balls in the urn is p. The probabxhty of
drawing a white ball is then p and the probability of drawing a black ball is 1 — p.
The probability of obtaining, say, two white balls and one black ball in three draws
would be

Pr(2white, 1black|p) = p x p x (1 — p) X (2) ‘ (7.1)

The vertical bar indicates a condition; in this case we are interested in the
probability of a particular outcome given (or conditional) on a particular value of
p. It is easy to forget the last factor (3 choose 2), which is the number of ways in
which we can obtain the given outcome. Two white balls and one black ball can
be the result of drawing the black ball in the first, second or third draw. That is,
there are three ways of obtaining the outcome of interest, 3 choose 2 (or 3 choose
1 if we focus on the choice of the black ball; the result is the same). Generally,
the probability of obtaining a white balls and b black balls is determined by the
function

f(a, bip) = p*(1 - p)"( +b) (7.2)

which is the probability mass function (Box 7.1) of the so-called binomial distri-
bution. This is the solution to the problem in forward probability, when we know
the value of p. Bayesians often, somewhat inappropriately, refer to the forward
probability function as the likelihood function.

But given that we have a sample of @ white balls and b black balls, what is the
probability of a particular value of p? This is the reverse probability problem, where
we are trying to find the function f(pla, b) instead of the function f(a, b|p). It
turns out that it is impossible to derive this function without specifying our prior
beliefs about the value of p. This is done in the form of a probability distribution on
the possible values of p (Box 7.1), the prior probability distribution or just prior
in everyday Bayesian jargon. If there is no previous information about the value
of p, we might associate all possible values with the same probability, a so-called
uniform probability distribution (Box 7.1).
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Box 7.1 Probability distributions

A function describing the probability of a discrete random variable is called a probability
mass function. For instance, this is the probability mass function for throwing a dice, an
example of a discrete uniform distribution:

025

1 2 3 4 5 6

For a continuous variable, the equivalent function is a probability density function.
The value of this function is not a probability, so it can sometimes be larger than one.
Probabilities are obtained by integrating the density function over a specified interval,
giving the probability of obtaining a value in that interval. For instance, a continuous
uniform distribution on the interval (0,2) has this probability density function:

1

[} 2

Most prior probability distributions used in Bayesian phylogenetics are uniform,
exponential, gamma, beta or Dirichlet distributions. Uniform distributions are often
used to express the lack of prior information for parameters that have a uniform effect
on the likelihood in the absence of data. For instance, the discrete uniform distribution
is typically used for the topology parameter. In contrast, the likelihood is a negative
exponential function of the branch lengths, and therefore the exponential distribution is
a better choice for a vague prior on branch lengths. The exponential distribution has the
density function f(x) = Ae~**, where A is known as the rate parameter. The expectation
(mean) of the exponential distribution is 1/A.

2
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Exp(0:5)
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The gamma distribution has two parameters, the shape parameter and the scale
parameter f. At small values of , the distribution is L-shaped and the variance is large;
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Box 7.1 (cont)

at high values it is similar to a normal distribution and the variance is low. If there is
considerable uncertainty concerning the shape of the prior probability distribution, the
gamma may be a good choice; an example is the rate variation across sites. In these cases,
the value of « can be associated with a uniform or an exponential prior (also known as
a hyperprior since it is a prior on a parameter of a prior), so that the MCMC procedure
can explore different shapes of the gamma distribution and weight each according to
its posterior probability. The sum of exponentially distributed variables is also a gamma
distribution. Therefore, the gamma is an appropriate choice for the prior on the tree
height of clock trees, which is the sum of several presumably exponentially distributed
branch lengths.

2

0 3

The beta and Dirichlet distributions are used for parameters describing proportions of
a whole, so called simplex parameters. Examples include the stationary state frequencies
that appear in the instantaneous rate matrix of the substitution model. The exchangeabil-
ity or rate parameters of the substitution model can also be understood as proportions of
the total exchange rate (given the stationary state frequencies). Another example is the pro-
portion of invariable and variable sites in the invariable sites model. The beta distribution,
denoted Beta(a;, ;), describes the probability on two proportions, which are associated
with the weight parameters &; > 0 and a; > 0. The Dirichlet distribution is equivalent
except that there are more than two proportions and associated weight parameters.

A Beta(1, 1) distribution, also known as a flat beta, is equivalent to a uniform dis-
tribution on the interval (0,1). When a; = a; > 1, the distribution is symmetric and
emphasizes equal proportions, the more so the higher the weights. Whenay =, < 1,
the distribution puts more probability on extreme proportions than on equal proportions.
Finally, if the weights are different, the beta is skewed towards the proportion defined by
the weights; the expectation of the betais /(e + ) and the modeis (@ — e+ 8-2)
fore > 1land 8 > 1.

4
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Box 7.1 (cont)

Assume that we toss a coin to determine the probability p of obtaining heads. If we asso-
ciate pand 1 — pwithaflatbeta prior, we can show that the posterior is a beta distribution
where &; — 1is the number of heads and a; ~ 1 is the number of tails. Thus, the weights
roughly correspond to counts. If we started with a flat Dirichlet distribution and analyzed
a set of DNA sequences with the composition 40 A, 50 C, 30 G, and 60 T, we might expect
a posterior for the stationary state frequencies around Dirichlet(41, 51, 31, 61) if it were
not for the other parameters in the model and the blurring effect resulting from looking
back in time. Wikipedia (http://www.wikipedia.org) is an excellent source for additional
information on common statistical distributions.

Thomas Bayes realized that the probability of a particular value of p, given
some sample (a, b) of white and black balls, can be obtained using the probability
function

F(pla, b) = f(p)f(a,blp)

fla, b)

This is known as Bayes’ theorem or Bayes’ rule. The function f(pla, b) is called
the posterior probability distribution, or simply the posterior, because it specifies
the probability of all values of p after the prior has been updated with the available
data.

We saw above how we can calculate f(a, b| p),and howwe canspecify f(p). How
do we calculate the probability f(a, b)? This is the unconditional probability of
obtaining the outcome (a, b) so it must take all possible values of p into account.
The solution is to integrate over all possible values of p, weighting each value
according to its prior probability:

(7.3)

1
fla,b) = fo £(p) f(a, blp)dp (7.4)

We can now see that the denominator is a normalizing constant. It simply ensures
that the posterior probability distribution integrates to 1, the basic requirement of
a proper probability distribution.

A Bayesian problem that occupied several early workers was an analog to the
following. Given a particular sample of balls, what is the probability that p is larger
than a specified value? To solve it analytically, they needed to deal with complex
integrals. Bayes made some progress in his Essay; more important contributions
were made later by Laplace, who, among other things, used Bayesian reasoning
and novel integration methods to show beyond any reasonable doubt that the
probability of a newborn being a boy is higher than 0.5. However, the analytical
complexity of most Bayesian problems remained a serious problem for a long time
and it is only in the last few decades that the approach has become popular due to

At

-




216

Fredrik Ronquist, Paul van der Mark, and John P. Huelsenbeck

the combination of efficient numerical methods and the widespread availability of

fast computers.

7.2 Bayesian phylogenetic inference

Fig. 7.1

How does Bayesian reasoning apply to phylogenetic inference? Assume we are
interested in the relationships between man, gorilla, and chimpanzee. In the stan-
dard case, we need an additional species to root the tree, and the orangutan would
be appropriate here. There are three possible ways of arranging these species in a
phylogenetic tree: the chimpanzee is our closest relative, the gorilla is our closest
relative, or the chimpanzee and the gorillaare each other’s closest relatives (Fig. 7.1).
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A Bayesian phylogenetic analysis. We start the analysis by specifying our prior beliefs about
the tree. In the absence of background knowledge, we might associate the same probability
to each tree topology. We then collect data and use a stochastic evolutionary model and
Bayes' theorem to update the prior to a posterior probability distribution. If the data are
informative, most of the posterior probability will be focused on one tree (or a small subset
of trees in a large tree space).
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Before the analysis starts, we need to specify our prior beliefs about the rela-

‘tionships. In the absence of background data, a simple solution would be to assign

equal probability to the possible trees. Since there are three trees, the probability of
each would be one-third. Such a prior probability distribution is known as a vague
or uninformative prior because it is appropriate for the situation when we do not
have any prior knowledge or do not want to build our analysis on any previous
results.

To update the prior we need some data, typically in the form of a molecular
sequence alignment, and a stochastic model of the process generating the data on
the tree. In principle, Bayes’ rule is then used to obtain the posterior probability
distribution (Fig. 7.1), which is the result of the analysis. The posterior specifies
the probability of each tree given the model, the prior, and the data. When the data
are informative, most of the posterior probability is typically concentrated on one
tree (or a small subset of trees in a large tree space).

If the analysis is performed correctly, there is nothing controversial about the
posterior probabilities. Nevertheless, the interpretation of them is often subject to
considerable discussion, particularly in the light of alternative models and priors.

To describe the analysis mathematically, designate the matrix of aligned
sequences X. The vector of model parameters is contained in 6 (we do not dis-
tinguish in our notation between vector parameters and scalar parameters). In the
ideal case, this vector would only include a topology parameter 7, which could
take on the three possible values discussed above. However, this is not sufficient to
calculate the probability of the data. Minimally, we also need branch lengths on the
tree; collect these in the vector v. Typically, there are also some substitution model
parameters to be considered but, for now, let us use the Jukes Cantor substitution
model (see below), which does not have any free parameters. Thus, in our case,
6 = (t,v).

Bayes’ theorem allows us to derive the posterior distribution as

f(6) £(X16)

[%5) (7.3}

fe1x)=

The denominator is an integral over the parameter values, which evaluates to
a summation over discrete topologies and a multidimensional integration over
possible branch length values:

s = [ s@(xie)ce 76)
=¥ [ o fxie. v 7)
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Posterior probability distribution for our phylogenetic analysis. The x-axis is an imaginary
one-dimensional representation of the parameter space. It falls into three different regions
corresponding to the three different topologies. Within each region, a point along the axis
corresponds to a particular set of branch lengths on that topology. It is difficult to arrange
the space such that optimal branch length combinations for different topologies are close
to each other. Therefore, the posterior distribution is multimodal. The area under the curve
falling in each tree topology region is the posterior probability of that tree topology.

Even though our model is as simple as phylogenetic models come, it is impossible
to portray its parameter space accurately in one dimension. However, imagine for a
while that we could do just that. Then the parameter axis might have three distinct
regions corresponding to the three different tree topologies (Fig. 7.2). Within each
region, the different points on the axis would represent different branch length
values. The one-dimensional parameter axis allows us to obtain a picture of the
posterior probability function or surface. It would presumably have three distinct
peaks, each corresponding to an optimal combination of topology and branch
lengths.

To calculate the posterior probability of the topologies, we integrate out the
model parameters that are not of interest, the branch lengths in our case. This
corresponds to determining the area under the curve in each of the three topology
regions. A Bayesian would say that we are marginalizing or deriving the marginal
probability distribution on topologies.

Why is it called marginalizing? Imagine that we represent the parameter space
in a two-dimensional table instead of along a single axis (Fig. 7.3). The columns in
this table might represent different topologies and the rows different branch length
values. Since the branch lengths are continuous parameters, there would actually
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A two-dimensional table representation of parameter space. The columns represent dif-
ferent tree topologies, the rows represent different branch length bins. Each cell in the
table represents the joint probability of a particular combination of branch lengths and
topology. If we summarize the probabilities along the margins of the table, we get the
marginal probabilities for the topologies (bottom row) and for the branch length bins
(last column).

be an infinite number of rows, but imagine that we sorted the possible branch
length values into discrete bins, so that we get a finite number of rows. For instance,
if we considered only short and long branches, one bin would have all branches
long, another would have the terminal branches long and the interior branch
short, etc. )

Now, assume that we can derive the posterior probability that falls in each of
the cells in the table. These are joint probabilities because they represent the joint
probability of a particular topology and a particular set of branch lengths. If we
summarized all joint probabilities along one axis of the table, we would obtain the
marginal probabilities for the corresponding parameter. To obtain the marginal
probabilities for the topologies, for instance, we would summarize the entries in
each column. It is traditional to write the sums in the margin of the table, hence
the term marginal probability (Fig. 7.3).

It would also be possible to summarize the probabilities in each row of the table.
This would give us the marginal probabilities for the branch length combinations
(Fig. 7.3). Typically, this distribution is of no particular interest but the possibility
of calculating it illustrates an important property of Bayesian inference: there is no
sharp distinction between different types of model parameters. Once the posterior
probability distribution is obtained, we can derive any marginal distribution of
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interest. There is no need to decide on the parameters of interest before performing
the analysis.

7.3 Markov chain Monte Carlo sampling

In most cases, including virtually all phylogenetic problems, it is impossible to
derive the posterior probability distribution analytically. Even worse, we can’t
even estimate it by drawing random samples from it. The reason is that most -
of the posterior probability is likely to be concentrated in a small part of a vast
parameter space. Even with a massive sampling effort, it is highly unlikely that we
would obtain enough samples from the interesting region(s) of the posterior. This
argument is particularly easy to appreciate in the phylogenetic context because
of the large number of tree. topologies that are possible even for small numbers
of taxa. Already at nine taxa, you are more likely to be hit by lightning (odds
3:100 000) than to find the best tree by picking one randomly (odds 1:135, 135).

- At slightly more than 50 taxa, the number of topologies outnumber the number
of atoms in the known universe — and this is still considered a small phylogenetic
problem. ‘

The solution is to estimate the posterior probability distribution using Markov
chain Monte Carlo sampling, or MCMC for short. Markov chains have the prop-
erty that they converge towards an equilibrium state regardless of starting point.
We just need to set up a Markov chain that converges onto our posterior probabil-
ity distribution, which turns out to be surprisingly easy. It can be achieved using
several different methods, the most flexible of which is known as the Metropolis
algorithm, originally described by a group of famous physicists involved in the Man-

- hattan project (Metropolis et al., 1953). Hastings (1970) later introduced a simple
but important extension, and the sampler is often referred to as the Metropolis—
Hastings method.

The central idea is to make small random changes to some current parameter
values, and then accept or reject those changes according to the appropriate proba-
bilities. We start the chain at an arbitrary point 8 in the landscape (Fig. 7.4). In the
next generation of the chain, we consider a new point 8* drawn from a proposal
distribution f(6*|8). We then calculate the ratio of the posterior probabilities at
the two points. There are two possibilities. Either the new point is uphill, in which
case we always accept it as the starting point for the next cycle in the chain, or it
is downhill, in which case we accept it with a probability that is proportional to
the height ratio. In reality, it is slightly more complicated because we need to take
asymmetries in the proposal distribution into account as well. Formally, we accept
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" Markov chain Monte Carlo steps

1.’Start at an arbitrary point (6)

2. Make a small random move (to 6")

3. Calculate height ratio (r) of new state (to ') to old state (6)
(@) r> 1:new state accepted

(b) r<1:new state accepted with probability r
if new state rejected, stay in old state

4. Go to step 2

*

8 Always accept

) Accept sometimes
48% \6,

Posterior probability

32%
20%

Topology A Topology B Topology C

Fig. 7.4 The Markov chain Monte Carlo (MCMC) procedure is used to generate a valid sample
from the posterior. One first sets up a Markov chain that has the posterior as its stationary
distribution. The chain is then started at a random point and run until it converges onto this -
distribution. In each step (generation) of the chain, a small change is made to the current
values of the model parameters (step 2). The ratio r of the posterior probability of the new
and current states is then calculated. If r > 1, we are moving uphill and the move is always
accepted (3a). If r < 1, we are moving downhill and accept the new state with probability
r (3b).

or reject the proposed value with the probability

_ [ FEtIX)  f167)
= min (1. 0y * Tom) )

[ FE XN F) f(9|6*))
'““”(1’ 70) FXIB)/ X f@18)

. fe*  f(X16*) f(ele‘))
=min| 1, X X (7.10)

- ( @) Fxie) e
The three ratios in the last equation are referred to as the prior ratio, the likelihood

ratio, and the proposal ratio (or Hastings ratio), respectively. The first two ratios
correspond to the ratio of the numerators in Bayes’ theorem; note that the complex

(7.9)
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integral in the denominator of Bayes’ theorem, f(X), cancels out in the second
step because it is the same for both the current and the proposed states. Because of
this, r is easy to compute.

The Metropolis sampler works because the relative equilibrium frequencies of
the two states @ and 6* is determined by the ratio of the rates at which the chain
moves back and forth between them. Equation (7.10) ensures that this ratio is the
same as the ratio of their posterior probabilities. This means that, if the Markov
chain is allowed to run for a sufficient number of generations, the amount of time it
spends sampling a particular parameter value or parameter interval is proportional
to the posterior probability of that value or interval. For instance, if the posterior
probability of a topology is 0.68, then the chain should spend 68% of its time
sampling that topology at stationarity. Similarly, if the posterior probability of
a branch length being in the interval (0.02, 0.04) is 0.11, then 11% of the chain
samples at stationarity should be in that interval.

For alarge and parameter-rich model, a mixture of different Metropolis samplers
is typically used. Each sampler targets one parameter or a set of related parameters
(Box 7.2). One can either cycle through the samplers systematically or choose
among them randomly according to some proposal probabilities (MRBAYESs does
the latter).

Box 7.2 Proposal mechanisms

Four types of proposal mechanisms are commonly used to change continuous variables.
The simplest is the sliding window proposal. A continuous uniform distribution of width
w is centered on the current value x, and the new value x* is drawn from this distribution.
The “window” width w is a tuning parameter. A larger value of w results in more radical
proposals and lower acceptance rates, while a smaller value leads to more modest changes
and higher acceptance rates.

X

i

The normal proposal is similar to the sliding window except that it uses a normal
distribution centered on the current value x. The variance o2 of the normal distribution
determines how drastic the new proposals are and how often they will be accepted.
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Box 7.2 (cont)

20

X

i

Both the sliding window and normal proposals can be problematic when the effect on
the likelihood varies over the parameter range. For instance, changing a branch length
from 0.01 o 0.03 is likely to have a dramatic effect on the posterior but changing it
from 0.51 to 0.53 will hardly be noticeable. In such situations, the multiplier proposal
is appropriate. It is equivalent to a sliding window with width A on the log scale of the
parameter. A random number u is drawn from a uniform distribution on the interval
(~0.5, 0.5) and the proposed value is x* = mx, where m = eM . If the value of A takes
the form 2 In 4, one will pick multipliers m in the interval (1/a, a).

The beta and Dirichlet proposals are used for simplex parameters. They pick new
values from a beta or Dirichlet distribution centered on the current values of the simplex.
Assume that the current values are (x;, x;). We then multiply them with a value &, which
is a tuning parameter, and pick new values from the distribution Beta(ax;, ax;). The
higher the value of @, the closer the proposed values will be to the current values.

10
Beta(70,30)
(o= 100)

Beta(7,3)
(e=10)

0

0 x=(0.7,0.3) 1

More complex moves are needed to change topology. A common type uses stochastic
branch rearrangements (see Chapter 8). For instance, the extending subtree pruning
and regrafting (extending SPR) move chooses a subtree at random and then moves
its attachment point, one branch at a time, until a random number u drawn from a
uniform on (0, 1) becomes higher than a specified extension probability p. The extension
probability p is a tuning parameter; the higher the value, the more drastic rearrangements
will be proposed.

R PO,
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The likelihood values typically increase very rapidly during the initial phase of the run
because the starting point is far away from the regions in parameter space with high
posterior probability. This initial phase of the Markov chain is known as the burn in. The
burn-in samples are typically discarded because they are so heavily influenced by the starting
point. As the chain converges onto the target distribution, the likelihood values tend to reach
a plateau. This phase of the chain is sampled with some thinning, primarily to save disk
space.

7.4 Burn-in, mixing and convergence

If the chain is started from a random tree and arbitrarily chosen branch lengths,
chances are that the initial likelihood is low. As the chain moves towards the regions
in the posterior with high probability mass, the likelihood typically increases very
rapidly; in fact, it almost always changes so rapidly that it is necessary to measure
it on a log scale (Fig. 7.5). This early phase of the run is known as the burn-in, and
the burn-in samples are often discarded because they are so heavily influenced by
the starting point.

As the chain approaches its stationary distribution, the likelihood values tend to
reach a plateau. This is the first sign that the chain may have converged onto the
target distribution. Therefore, the plot of the likelihood values against the gener-
ation of the chain, known as the trace plot (Fig. 7.5), is important in monitoring
the performance of an MCMC run. However, it is extremely important to confirm
convergence using other diagnostic tools because it is not sufficient for the chain to
reach the region of high probability in the posterior, it must also cover this region
adequately. The speed with which the chain covers the interesting regions of the
posterior is known as its mixing behavior. The better the mixing, the faster the
chain will generate an adequate sample of the posterior. '—



225

Fig. 7.6

Bayesian phylogenetic analysis using MRBAYEs: theory

2

a . . Target distribution
377 it el
] Too modest proposals
B85 W Acceptance rate too high
g Poor mixing
5 OE S e e e e e e e cccaeaad
5 .‘ 1 " 1 1 n
(] 100 200 300 400 500
Generation
{b)
5 F
S 20f :
] Too bold proposals
g 5} Acceptance rate too low
2 Poor mixing
3 1ok
5 i
0 100 200 300 400 500
Generation
(©
25}F
S af
K Moderately bold proposals
B 15 Acceptance rate intermediate
E‘ Good mixing
S 10E
5F

o o o w0 40 5w
Generation

The time it takes for a Markov chain to obtain an adequate sample of the posterior depends
critically on its mixing behavior, which can be controlled to some extent by the proposal
tuning parameters. If the proposed values are very close to the current ones, all proposed
changes.are accepted but it takes a long time for the chain to cover the posterior; mixing is
poor. If the proposed values tend to be dramatically different from the current ones, most
proposals are rejected and the chain will remain on the same value for a long time, again
leading to poor mixing. The best mixing is obtained at intermediate values of the tuning
parameters, associated with moderate acceptance rates.

The mixing behavior of a Metropolis sampler can be adjusted using its tuning
parameter(s). Assume, for instance, that we are sampling from a normal distribu-
tion using a sliding window proposal (Fig. 7.6). The sliding window proposal has
one tuning parameter, the width of the window. If the width is too small, then the
proposed value will be very similar to the current one (Fig. 7.6a). The posterior
probabilities will also be very similar, so the proposal will tend to be accepted. But
each proposal will only move the chain a tiny distance in parameter space, so it will
take the chain a long time to cover the entire region of interest; mixing is poor.
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A window that is too wide also results in poor mixing. Under these conditions,
the proposed state is almost always very different from the current state. If we
have reached a region of high posterior probability density, then the proposed
state is also likely to have much lower probability than the current state. The new
state will therefore often be rejected, and the chain remains in the same spot for
a long time (Fig. 7.6b), resulting in poor mixing. The most efficient sampling of
the target distribution is obtained at intermediate acceptance rates, associated with
intermediate values of the tuning parameter (Fig. 7.6¢).

Extreme acceptance rates thus indicate that sampling efficiency can be improved
by adjusting proposal tuning parameters. Studies of several types of complex but
unimodal posterior distributions indicate that the optimal acceptance rate is 0.44
for one-dimensional and 0.23 for multi-dimensional proposals (Roberts et al., 1997;
Roberts & Rosenthal, 1998, 2001). However, multimodal posteriors are likely to
have even lower optimal acceptance rates. Adjusting the tuning parameter values to
reach a target acceptance rate can be done manually or automatically using adaptive
tuning methods (Roberts & Rosenthal, 2006). Bear in mind, however, that some
samplers used in Bayesian MCMC phylogenetics have acceptance rates that will
remain low, no matter how much you tweak the tuning parameters. In particular,
this is true for many tree topology update mechanisms.

Convergence diagnostics help determine the quality of a sample from the poste-
rior. There are essentially three different types of diagnostics that are currently in
use: (1) examining autocorrelation times, effective sample sizes, and other meas-
ures of the behavior of single chains; (2) comparing samples from successive time
segments of a single chain; and (3) comparing samples from different runs. The
last approach is arguably the most powerful way of detecting convergence prob-
lems. The drawback is that it wastes computational power by generating several
independent sets of burn-in samples that must be discarded.

In Bayesian MCMC sampling of phylogenetic problems, the tree topology is
typically the most difficult parameter to sample from. Therefore, it makes sense
to focus our attention on this parameter when monitoring convergence. If we
start several parallel MCMC runs from different, randomly chosen trees, they
will initially sample from very different regions of tree space. As they approach
stationarity, however, the tree samples will become more and more similar. Thus,
an intuitively appealing convergence diagnostic is to compare the variance among
and within tree samples from different runs.

Perhaps the most obvious way of achieving this is to compare the frequencies
of the sampled trees. However, this is not practical unless most of the posterior
probability falls on a small number of trees. In large phylogenetic problems, there
is often an inordinate number of trees with similar probabilities and it may be
extremely difficult to estimate the probability of each accurately.
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The approach that we and others have taken to solve this problem is to focus
on split (clade) frequencies instead. A split is a partition of the tips of the tree into
two non-overlapping sets; each branch in a tree corresponds to exactly one such
split. For instance, the split ((human, chimp),(gorilla, orangutan)) corresponds to
the branch uniting the human and the chimp in a tree rooted on the orangutan.
Typically, a fair number of splits are present in high frequency among the sampled
trees. In a way, the dominant splits (present in, say, more than 10% of the trees)
represent an efficient diagnostic summary of the tree sample as a whole. If two tree
samples are similar, the split frequencies should be similar as well. To arrive at an
overall measure of the similarity of two or more tree samples, we simply calculate
the average standard deviation of the split frequencies. As the tree samples become
more similar, this value should approach zero.

Most other parameters in phylogenetic models are continuous scalar parameters.
An appropriate convergence diagnostic for these is the Potential Scale Reduction
Factor (PSRF) originally proposed by Gelman and Rubin (1992). The PSRF com-
pares the variance among runs with the variance within runs. If chains are started
from over-dispersed starting points, the variance among runs will initially be higher
than the variance within runs. As the chains converge, however, the variances will
become more similar and the PSRF will approach 1.0.

7.5 Metropolis coupling

For some phylogenetic problems, it may be difficult or impossible to achieve con-
vergence within a reasonable number of generations using the standard approach.
Often, this seems to be due to the existence of isolated peaks in tree space (also
known as tree islands) with deep valleys in-between. In these situations, individual
chains may get stuck on different peaks and have difficulties moving to other peaks
of similar probability mass. As a consequence, tree samples from independent
runs tend to be different. A topology convergence diagnostic, such as the standard
deviation of split frequencies, will indicate that there is a problem. But are there
methods that can help us circumvent it?

A general technique that can improve mixing, and hence convergence, in
these cases is Metropolis Coupling, also known as MCMCMC or (MC)? (Geyer,
1991). The idea is to introduce a series of Markov chains that sample from a
heated posterior probability distribution (Fig. 7.7). The heating is achieved by rais-
ing the posterior probability to a power smaller than. 1. The effect is to flatten out
the posterior probability surface, very much like melting a landscape of wax.

Because the surface is flattened, a Markov chain will move more readily between
the peaks. Of course, the heated chains have a target distribution that is different
from the one we are interested in, sampled by the cold chain, but we can use them
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the heating does not accelerate mixing in the cold chain. On the other hand, if we
do not heat enough, then the chains will be very similar, and the heated chain will
not mix more rapidly than the cold chain. As with the proposal tuning parameters,
an intermediate value of the heating parameter A works best.

7.6 Summarizing the results

The stationary phase of the chain is typically sampled with some thinning, for
instance every 50th or 100th generation. This is done primarily to save disk space,
since an MCMC run can easily generate millions of samples. Once an adequate
sample is obtained, it is usually trivial to compute an estimate of the marginal
posterior distribution for the parameter(s) of interest. For instance, this can take
the form of a frequency histogram of the sampled values. When it is difficult to
visualize this distribution or when space does not permit it, various summary
statistics are used instead.

Most phylogenetic model parameters are continuous variables and their esti-
mated posterior distribution is summarized using statistics such as the mean, the
median, and the variance. Bayesian statisticians typically also give the 95% cred-
ibility interval, which is obtained by simply removing the lowest 2.5% and the
highest 2.5% of the sampled values. The credibility interval is somewhat similar to
a confidence interval but the interpretation is different. A 95% credibility interval
actually contains the true value with probability 0.95 (given the model, prior, and
data) unlike the confidence interval, which has a more complex interpretation.

The posterior distribution on topologies and branch lengths is more difficult to
summarize efficiently. If there are few topologies with high posterior probability,
one can produce a list of the best topologies and their probabilities, or simply give
the topology with the maximum posterior probability. However, most posteriors
contain too many topologies with reasonably high probabilities, and one is forced
to use other methods.

One way to illustrate the topological variance in the posterior is to list the
topologies in order of decreasing probabilities and then calculate the cumulative
probabilities so that we can give the estimated number of topologies in various
credible sets. Assume, for instance, that the five best topologies have the esti-
mated probabilities (0.35, 0.25, 0.20, 0.15, 0.03), giving the cumulative probabili-
ties (0.35, 0.60, 0.80, 0.95, 0.98). Then the 50% credible set has two topologies in
it, the 90% and the 95% credible sets both have four trees in them, etc. We simply
pass down the list and count the number of topologies we need to include before
the target probability is met or superseded. When these credible sets are large,
however, it is difficult to estimate their sizes precisely.
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The most common approach to summarizing topology posteriors is to give the
frequencies of the most common splits, since there are much fewer splits than
topologies. Furthermore, all splits occurring in at least 50% of the sampled trees
are guaranteed to be compatible and can be visualized in the same tree, a major-
ity rule consensus tree. However, although the split frequencies are convenient,
they do have limitations. For instance, assume that the splits ((A,B),(C,D,E)) and
((A,B,C),(D,E)) were both encountered in 70% of the sampled trees. This could
mean that 30% of the sampled trees contained neither split or, at the other extreme,
that all sampled trees contained at least one of them. The split frequencies them-
selves only allow us to approximately reconstruct the underlying set of topologies.

The sampled branch lengths are even more difficult to summarize adequately.
Perhaps the best way would be to display the distribution of sampled branch
length values separately for each topology. However, if there are many sampled
topologies, there may not be enough branch length samples for each. A reasonable
approach, taken by MRBAYEs, is then to pool the branch length samples that
correspond to the same split. These pooled branch lengths can also be displayed on
the consensus tree. However, one should bear in mind that the pooled distributions
may be multimodal since the sampled values in most cases come from different
topologies, and a simple summary statistic like the mean might be misleading.

A special difficulty appears with branch lengths in clock trees. Clock trees are
rooted trees in which branch lengths are proportional to time units (see Chapter 11).
Even if computed from a sample of clock trees, a majority rule consensus tree with
mean pooled branch lengths is not necessarily itself a clock tree. This problem is
easily circumvented by instead using mean pooled node depths instead of branch
lengths (for Bayesian inference of clock trees, see also Chapter 18).

7.7 An introduction to phylogenetic models

A phylogenetic model can be divided into two distinct parts: a tree model and a sub-
stitution model. The tree model we have discussed so far is the one most commonly
used in phylogenetic inference today (sometimes referred to as the different-rates
or unrooted model, see Chapter 11). Branch lengths are measured in amounts
of expected evolutionary change per site, and we do not assume any correlation
between branch lengths and time units. Under time-reversible substitution models,
the likelihood is unaffected by the position of the root, that is, the tree is unrooted.
For presentation purposes, unrooted trees are typically rooted between a specially
designated reference sequence or group of reference sequences, the outgroup, and
the rest of the sequences. :

Alternatives to the standard tree model include the strict and relaxed clock
tree models. Both of these are based on trees, whose branch lengths are strictly
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proportional to time. In strict clock models, the evolutionary rate is assumed to
be constant so that the amount of evolutionary change on a branch is directly
proportional to its time duration, whereas relaxed clock models include a model
component that accommodates some variation in the rate of evolution across the
tree. Various prior probability models can be attached to clock trees. Common
examples include the uniform model, the birth-death process, and the coalescent
process (for the latter two, see Chapter 18).

The substitution process is typically modeled using Markov chains of the same
type used in MCMC sampling. For instance, they have the same tendency towards
an equilibrium state. The different substitution models are most easily described in
terms of their instantaneous rate matrices, or Q matrices. For instance, the general
time-reversible model (GTR) is described by the rate matrix

- TICTAC TGTAG TTTAT
JTTATAC - TTGrcG ATICT
TIATAG TICTCG - TTGT
JATAT Tcrcr  TGTGT -

Each row in this matrix gives the instantaneous rate of going from a particular
state, and each column represents the rate of going to a particular state; the states
are listed in alphabetical sequence A, C, G, T. For instance, the second entry in the
first row represents the rate of going from A to C. Each rate is composed of two
factors; for instance, the rate of going from A to C is a product of 7z and rac. The
rates along the diagonal are commonly omitted since their expressions are slightly
more complicated. However, they are easily calculated since the rates in each row
always sum to zero. For instance, the instantaneous rate of going from A to A (first
entry in the first row) is —zcrac — 7Grag — TTTAT-

It turns out that, if we run this particular Markov chain for a long time, it
will move towards an equilibrium, where the frequency of a state i is determined
exactly by the factor &r; given that ) sr; = 1. Thus, the first rate factor corresponds
to the stationary state frequency of the receiving state. The second factor, r;j, is a
parameter that determines the intensity of the exchange between pairs of states,
controlling for the stationary state frequencies. For instance, at equilibrium we
will have 7, sites in state A and 7 sites in state C. The total instantaneous rate
of going from A to C over the sequence is then 4 times the instantaneous rate
of the transition from A to C, which is mcrac, resulting in a total rate of A to C
changes over the sequence of mancrac. This is the same as the total rate of the
reverse changes over the sequence, which is wcmarac. Thus, there is no net change
of the state proportions, which is the definition of an equilibrium, and the factor
rac determines how intense the exchange between A and C is compared with the
exchange between other pairs of states.
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Many of the commonly used substitution models are special cases or extensions
of the GTR model. For instance, the Jukes Cantor model has all rates equal, and
the Felsenstein 81 (F81) model has all exchangeability parameters (r;;) equal.
The covarion and covariotide models have an independent on—off switch for each
site, leading to a composite instantaneous rate matrix including four smaller rate
matrices: two matrices describing the switching process, one being a zero-rate
matrix, and the last describing the normal substitution process in the on state.

Inaddition to modeling the substitution process at each site, phylogenetic models
typically also accommodate rate variation across sites. The standard approach is
to assume that rates vary according to a gamma distribution (Box 7.1) with mean
1. This results in a distribution with a single parameter, typically designated o,
describing the shape of the rate variation (see Fig. 4.8 in Chapter 4). Small values
of o correspond to large amounts of rate variation; as & approaches infinity, the
model approaches rate constancy across sites. It is computationally expensive to let
the MCMC chain integrate over a continuous gamma distribution of site rates, or
to numerically integrate out the gamma distribution in each step of the chain. The
standard solution is to integrate out the gamma using a discrete approximation
with a small number of rate categories, typically four to eight, which is a reasonable
compromise. An alternative is to use MCMC sampling over discrete rate categories.

Many other models of rate variation are also possible. A commonly considered
model assumes that there is a proportion of invariable sites, which do not change
at all over the course of evolution. This is often combined with an assumption of
gamma-distributed rate variation in the variable sites.

It is beyond the scope of this chapter to give a more detailed discussion of
phylogenetic models but we present an overview of the models implemented in
MRBAYESs 3.2, with the command options needed to invoke them (Fig. 7.8). The
MRrBAYEs manual provides more details and references to the different mod-
els. A simulation-based presentation of Markov substitution models is given in
(Huelsenbeck & Ronquist, 2005) and further details can be found in Chapter 4 and
Chapter 10. :

7.8 Bayesian model choice and model averaging

So far, our notation has implicitly assumed that Bayes’ theorem is conditioned on
a particular model. To make it explicit, we could write Bayes’ theorem:

f61M) f(X16, M)
f(XIM)

It is now clear that the normalizing constant, f(X|M), is'the probability of
the data given the chosen model after we have integrated out all parameters. This

f61X, M) = (7.12)
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(a) Models supported by MrBayes 3 (simplified)
State frequencies Across-site Coding bi
Data type (substitution rates) rate variation ocingblas Misc.
Restriction Fixed/estimated (Dirichlet, Equal/gamma | Alljvariable/
0-1 prset statefreqpr | Isetrates no presencesites/no absencesites
Iset coding
Standard | | Equal/estimated (SymmDir) | Equal/gamma | | All/variable/informative Unordered/ordered
0-9 prset symdirihyperpr . Iset rates Iset coding ctype
Across-site Across-tree
ta
Data type Mo.clel type State frequencies  Substitution rates rate variation rate variation
DNA | [ 4bys || Fixed/est.(Din‘chlet)__ F81/HKY/GTR Equal/gamma/ Yes/no
ACGT Iset nucmodel prset statefreqpr Isetnst=1/2/6 [ |propinv/invgamma/ [ | Iset covarion
adgamma
Iset rates
Doublet Fixed/est. (Dirichlet) | F81/HKY/GTR . Equal/gamma/
Isetnucmodel| |  (over 16 states) Isetnst=1/2/6 || propinv/invgamma
prset statefreqpr Iset rates
Across-site
omega variation
Codon Fixed/est. (Dirichlet) F81/HKY/GTR Equal/Ny98/M3
Isetnucmodel] | (over61states) [ | lsetnst=1/2/6 | | Iset omegavar
prset statefreqpr

Fig. 7.8 Schematic overview of the models implemented in MRBAYES 3. Each box gives the available
settings in normal font and then the program commands and command options needed to
invoke those settings in italics.

quantity, known as the model likelihood, is used for Bayesian model comparison.
Assume we are choosing between two models, M and M,, and that we assign them
the prior probabilities f(Mp) and f(M;). We could then calculate the ratio of their
posterior probabilities (the posterior odds) as

f(MIX) _ (M) F(XIMo) _ f(Mo)  £(XIMy)
FO41%) ~ FO) FXIM) ~ F(M) . F(XIM)

(7.13)

Thus, the posterior odds is obtained as the prior odds, f(Mp)/f(M;), times a
factor known as the Bayes factor, By, = f(X|M,)/f(X|M,), which is the ratio
of the model likelihoods. Rather than trying to specify the prior model odds, it is
common to focus entirely on the Bayes factor. One way to understand the Bayes
factor is that it determines how much the prior model odds are changed by the
data when calculating the posterior odds. The Bayes factor is also the same as

[T
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(b) Models supported by MrBayes 3 (simplified) page 2
e e Across-site Across-tree
Data type Model type State frequencies  Substitution rates rate variation rate variation
Protein Equalin/GTR Fixed/est. (Dirichlet)] |Fixed/est. (Dirichlet) Equal/gamma/ Yes/no
A-Y prset aamodelpr| prset statefreqpr prset aarevmatpr | |propinv/invgamma/ Iset covarion
adgamma

Poisson/Jones/ Iset rates
Dayhoff/Mtrev/

Mtmam/Wag/ eq.uall/igamma/ y v
Rtrev/CpreviVt/ | " 1 | " I |propinv/invgamma/ | | yes no.
Bl:::u:/mixed Fixed/mixed Fixed/mixed adgamma Iset covarion
prset aamodelpr Iset rates

Parameter variation across partitions
Shared/separate Inferring site parameters
Topology models Brlens type set partition, link, unfink ancstates/possel/sitecomega/siterate
Unconstrained/ Fixed report
constraints/fixed prset brlenspr
constraint Briens prior Additional
prset topologypr Unconstrained Exponential/Uniform parameters Clockrate variation
prset brlenspr prset brlenspr seeprset strict/cppm/
(Iset for diploidy) cppi/bm
Clock Uniform —| Treeheight prset clockratepr
prset brlenspr prset brlenspr - 1
Theta, Diploidy Dating constraints
Coalescence Growth Unconstrained/
prset brlenspr Speciation calibrated
- Extinction calibrate
Birth-Death Treeheight prset nodeagepr
prset brlenspr Sampleprob prset treeagepr
Fig. 7.8 (cont)

the posterior odds when the prior odds are 1, that is, when we assign equal prior
probabilities to the compared models.

Bayes factor comparisons are truly flexible. Unlike likelihood ratio tests, there
is no requirement for the models to be nested. Furthermore, there is no need to
correct for the number of parameters in the model, in contrast to comparisons
based on the Akaike Information Criterion (Akaike, 1974) or the confusingly
named Bayesian Information Criterion (Schwarz, 1978). Although it is true that
a more parameter-rich model always has a higher maximum likelihood than a
nested submodel, its model likelihood need not be higher. The reason is that a
more parameter-rich model also has a larger parameter space and therefore a lower
prior probability density. This can lead to a lower model likelihood unless it is
compensated for by a sufficiently large increase in the likelihood values in the peak
region. '

The interpretation of a Bayes factor comparison is up to the investigator but
some guidelines were suggested by Kass and Raftery (1995) (Table 7.2).
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Table 7.2 Critical values for Bayes factor comparisons

21n By, . By Evidence against M,

0to2 1to3 Not worth more than a bare mention
2to6 3t020 Positive

6to10 20 to 150 ’ Strong

>10 >150 Very strong

From Kass & Raftery (1995).

The easiest way of estimating the model likelihoods needed in the calculation of
Bayes factors is to use the harmonic mean of the likelihood values from the stationary
phase of an MCMC run (Newton & Raftery, 1994). Unfortunately, this estimator is
unstable because it is occasionally influenced by samples with very small likelihood
and therefore a large effect on the final result. A stable estimator can be obtained
by mixing in a small proportion of samples from the prior (Newton & Raftery,
1994). Even better accuracy, at the expense of computational complexity, can
be obtained by using thermodynamic integration methods (Lartillot & Philippe,
2006). Because of the instability of the harmonic mean estimator, it is good practice
to compare several independent runs and only rely on this estimator when the runs
give consistent results.

An alternative to running a full analysis on each model and then choosing
among them using the estimated model likelihoods and Bayes’ factors is to let a
single Bayesian analysis explore the models in a predefined model space (using
reversible-jump MCMC). In this case, all parameter estimates will be based on an
average across models, each model weighted according to its posterior probability.
For instance, MRBAYEs 3 uses this approach to explore a range of common fixed-
rate matrices for amino acid data (see practice in Chapter 9 for an exercise).

Different topologies can also be considered different models and, in that sense,
all Markov chains that integrate over the topology parameter also average across
models. Thus, we can use the posterior sample of topologies from a single run to
compare posterior probabilities of topology hypotheses.

For instance, assume that we want to test the hypothesis that group A is mono-
phyletic against the hypothesis that it is not, and that 80% of the sampled trees
have A monophyletic. Then the posterior model odds for A being monophyletic
would be 0.80/0.20 = 4.0. To obtain the Bayes factor, one would have to multiply
this with the inverse of the prior model odds (see 7.13). If the prior assigned equal
prior probability to all possible topologies, then the prior model odds would be
determined by the number of trees consistent with each of the two hypotheses, a
ratio that is easy to calculate. If one class of trees is empty, a conservative estimate
of the Bayes factor would be obtained by adding one tree of this class to the sample.
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7.9 Prior probability distributions

We will end with a few cautionary notes about priors. Beginners often worry
excessively about the influence of the priors on their results and the subjectivity
that this introduces into the inference procedure. In most cases however, the exact
form of the priors (within rather generous bounds) has negligible influence on the
posterior distribution. If this is a concern, it can always be confirmed by varying
the prior assumptions. ;

The default priors used in MRBAYES are designed to be vague or uninformative
probability distributions on the model parameters. When the data contain little
information about some parameters, one would therefore expect the correspond-
ing posterior probability distributions to be diffuse. As long as we can sample
adequately from these distributions, which can be a problem if there are many of
them (Nylander et al., 2004), the results for other parameters should not suffer. We
also know from simulations that the Bayesian approach does well even when the
model is moderately overparameterized (Huelsenbeck & Rannala, 2004). Thus, the
Bayesian approach typically handles weak data quite well.

However, the parameter space of phylogenetic models is vast and occasionally
there are large regions with inferior but not extremely low likelihoods that attract the
chain when the data are weak. The characteristic symptom is that the sample from
the posterior is concentrated on parameter values that the investigator considers
unlikely or unreasonable, for instance in comparison with the maximum likelihood
estimates. We have seen a few examples involving models of rate variation applied
to very small numbers of variable sites. In these cases, one can either choose to
analyze the data under a simpler model (probably the best option in most cases)
or include background information into the priors to emphasize the likely regions
of parameter space.



