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PhyloMath Lecture 10 – April 6, 2004 
M. McAloon 
 
  
We continue here with Bayesian analyses from last lecture, then will end with the 
Markov Chain Monte Carlo method for approximating prior probabilities: 
 

Simple abstract example of a Bayesian analysis: 
 
Imagine having 3 hypotheses (only 3 possible, no others): We’ll call them A, B, C. 
(D=data). A,B,C are the 3 possible choices for the only model parameter (call this single 
discrete parameter θ) in this equation: 
 
 

 

 
 
where Pr (D) is the unconditional probability of the data. The posterior probability 
Pr(A|D)  is normally not expressed in terms of joint probabilities, as above, but rather in 
terms of likelihoods (probability of the data conditional on one hypothesis) and prior 
probabilities (the probability of the condition): 
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 In the numerator, Pr (D|A) is the likelihood of hypothesis A, and Pr (A) is the prior 
probability of hypothesis A. 
 
Note added by Paul:  
Although you often see the likelihood described “likelihood of the data” it is more correct 
to say “likelihood of the hypothesis” or “likelihood of the parameter”. This is because the 
data are constant with respect to the likelihood, which is a function of the parameter or 
hypothesis of interest. Two likelihoods scores computed using different data sets are not 
even comparable. One can think of a set of mutually exclusive hypotheses (e.g. A, B and 
C) as values of a discrete parameter. This is the viewpoint  taken in this example. You 
can, however, also think of each value of a continuous model parameter as a different 
hypothesis (one of an infinite number of hypotheses). For example, under the K80 model, 
you can imagine κ = 1.0 as being a different hypothesis than κ = 1.0001. 
________________________________________________________________________ 
 
The denominator, Pr(A)Pr(D|A) + Pr(B)Pr(D|B) + Pr(C)Pr(D|C), is a constant because it 
is the total probability of the data, marginalized over all possible hypotheses. It is often 
symbolized Pr(D), and often described as the marginal likelihood of the model or the 
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marginal probability of the data. In more complicated models, this marginalized model 
likelihood has to take all values of all parameters into consideration (such as the infinite 
number of possible lengths for each branch, the infinite number of possible k values, the 
finite (but possibly very large number) of possible trees, etc.) An infinite number of 
parameter values makes it difficult to calculate (even for computers) except for very 
simple models in which there are closed-form solutions to the integrals involved, so it’s 
good that this term cancels out when using MCMC to approximate the posterior 
distribution! 
 
Law of total probability: because A, B, and C are the only possibilities for our parameter 
θ, the marginal probability of the data makes use of the law of total probability, whcih 
says that you can obtain the unconditional probability of D (that is, Pr(D)) given that you 
sum over all possible joint probabilities of the form Pr(D,θ). 
 
If we set the prior probabilities for A, B, C all to the same value (this is said to be a flat 
or uninformative prior), the posterior probability calculation looks like this: 
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Use of a flat prior in Bayesian analyses results in an analysis that is identical to a 
maximum likelihood analysis if the goal is only to find the optimal hypothesis or 
parameter value. Note that the 1/3 term can be factored out of all three terms in the 
denominator above, and then can be cancelled with the 1/3 in the numerator, leaving just 
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It is clear from the above expression that whichever hypothesis (A, B or C) has the 
largest likelihood will also end up with the largest posterior probability.  
 
Note added by Paul 
Bayesians can sometimes successfully argue that maximum likelihood is just a Bayesian 
analysis using a flat prior. While this is strictly true for a simple problem like the above, 
involving only discrete choices of hypotheses, the argument becomes more complicated 
for models (like the K80 model) in which there are parameters that range from 0 to 
infinity. In thoses cases, it is not possible to apply a completely flat prior. 
________________________________________________________________________ 
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More compicated but concrete example of a Bayesian analysis: 
 
Note: In PAUP there is a command called “pairdiff” for computing nucleotide-pair 
frequencies, proportion of sites differing, and apparent transition/transversion ratio. The 
following shows the results of using the pairdiff command on an rbcL data set containing 
sequences for corn and tobacco. 
 
                         corn  vs. tobacco 
 

rbcL A C G T 

A 316 11 22 9 

C 9 214 9 27 

G 25 4 280 11 

T 13 29 7 328 

  
n1= 103 transitions 
n2= 73 transversions 
n3= 1138 no change 
n= 1314 base pairs 
 
This chart shows all possible substitution types; e.g., for every base A in tobacco, there 
were 316 A’s at the same sequence position in corn. After adding transitions, 
transversions to sites that did not change we end up with 1314 base pairs. 
 
This model only uses pooled transv/transit/no changes; e.g., it treats C A and A C as 
the same and does not distinguish between the two. 
 
Model characteristics: 
Parameters for the K80 model  d = branch length, κ  = trs/trv rate ratio 

Posterior density f(d, κ | n1, n2, n3)  
Note that this time the posterior density is a function of two parameters and thus is a 3-D 
surface rather than a 2-D curve as we have seen before).  
 
Note added by Paul: 
To compute a posterior density, we must specify prior densities for each parameter. WE 
are talking densities here because the parameters are continuous. In the privious simple 
example, the prior distributions involved specification of probabilities because the 
parameter was discrete. The priors chosen in this example are both exponential 
distributions. 
________________________________________________________________________ 
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The rationale behind choosing a prior: we cannot use a truly flat prior for a parameter like 
d because that would result in a prior density that has infinite area. Proper densities 
integrate to 1.0, so we must resort to using something that is not truly uninformative if we 
are to use a proper prior density. Values of d heading way out towards infinity are not 
really as believable as values closer to 0. We can almost guarantee that within a particular 
branch there aren’t going to be a large number such as 1,000,000 substitutions (this is 
before we even consider the data). This logic also applies for “κ”. If such values were 
common, we would probably never be able to make sense of any sequence dataset! There 
are at least two ways to choose a proper prior in this case: MrBayes allows you to choose 
between a truncated uniform prior: 
 

 
or an exponential distribution, which places the most prior probability on values that are 
relatively close to 0: 
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Note added by Paul: 
The truncated uniform prior is not a flat prior (although it is flat out to a point). The 
exponential prior is a better choice because it allows for all possible values of the 
parameter while still encouraging smaller values over really large values. 
________________________________________________________________________ 
 
How to go about calculating the posterior density: 
f(d, κ | n1, n2, n3) = height in “hill space”, where “hill space” is the 2-D space defined by 
the two axes representing d and κ where the “hill” (or posterior density surface) resides: 
 

∞0
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Where the likelihood =  f (n1, n2, n3  | d, κ), the prior = f (d, κ), and the denominator 
integrates over all possible values of d, κ. 
 
Note added by Paul: 
The symbol θ is used to indicate the set of all parameters (i.e. d and κ). You could just as 
easily express the posterior density in terms of two integrals, one “summing” over all 
possible values of κ, and the other nested integral “summing” over all possible values of 
d given a particular value of κ: 
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This sort of thing gets very confusing with more complex models with perhaps dozens of 
parameters, so you often see all the parameters subsumed under one umbrella symbol 
such as θ. 
________________________________________________________________________ 
 
f (d, κ) is shown as a joint prior density because d and κ are not independent… remember 
that in the K 80 model d=(κ+2) βt therefore  f (d, κ) = f (κ) f (d| κ). 
Thus, we are assuming an exponential prior for κ, and assuming an independent 
exponential prior for d|κ.  
 
Note added by Paul: 
In hindsight, I should have parameterized this model differently to avoid the compication 
described above. It is somewhat strange and overly compicated to assume an exponential 
prior for d | κ rather than just d alone. Next time, I will parameterize the model instead in 
terms of β and κ. The parameter β is independent of κ, so  f (β| κ) = f (β) and thus the 
bivariate joint prior can be decomposed into two independent  univariate priors, which is 
eminently more sensible! 
 

( ) ( ) ( ) ( ) ( )βκκβκκβ fffff == |,  
________________________________________________________________________ 
 
The posterior equals a numerator comprising the likelihood (three terms) and the prior 
(two terms), divided by the marginal likelihood (C): 
 
[Pr trs]n1 [Pr trv]n2 [Pr no change]n3 (µe-µd)( λe-λκ) 
      C 
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where the first term (raised to the power n1) is the probability of a transition (e.g., A G), 
the second term (raised to n2) represents the probability of a transversion (e.g. A T), the 
third term (raised to n3) is the probability of no change, the fourth term ( )de µµ −  is the 
exponential prior density for d|κ, and the fifth term ( )κλ de−  is the exponential prior 
density for κ.  
 
With increasing κ, f (κ) gets smaller. If κ=0, f(κ) is at λ, which is as high as it can go.  
 

 
 
 
Larger and larger values of κ make the prior density smaller, and one can always find a 
value of κ so large that the prior for κ will override anything the data has to say. 
Increased values of κ thus cause posterior distribution to slope down. 
 
Similar things can be said about d, except that the parameter of this distribution is µ 
instead of λ. 
 
If you don’t want to use default priors (e.g., from MrBayes), you can try different explicit 
priors, then make an argument for which prior is better. 

 
You can use a truncated uniform prior for kappa (κ) where the truncation point is 
arbitrary. Truncating can make the analysis act strangely. It is better to let all possible 
values of κ be possible. 
 
When eyeballing the “hill” in 3-D space, we find κ values between 1 and 4.5 account for 
most of the posterior probability mass. We are more certain about d than κ because the 
density as viewed from the d axis is relatively less spread out than the posterior density as 
viewed from the κ axis.  

κ
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As a general rule, increasing the complexity of models (i.e. adding more independent 
parameters) increases the uncertainty of any parameter because the posterior density is 
allowed to spread out into more dimensions. 
 
Now we’ll look at Paul Lewis’ Bayesian Distribution Excel worksheet model: 
 
In the figure below we have set the prior for d|κ (branch lengths) to an exponential (0.1) 
distribution. That is, we have set µ=0.1 
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Now if we set the prior for d to, e.g. µ=100 (from the original prior set using µ=0.1), we 
will not see much difference in the outcome: 
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Even in this example of a strong prior (µ=100) for branch lengths d|κ doesn’t affect the 
shape of the “hill” (or “cone”) as much because the data strongly affect the results (the 
data contains a lot of information about d).  
 
On the other hand, changing the mean of the κ prior results in a shift in posterior 
probability mass, indicating that a “strong”prior for κ will have more influence on the 
outcome. Here is the result of changing the κ prior from 1 to .01 (see original 3-D graph 
above): 
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The figures directly above show κ with an exponential(1) prior (i.e. λ=1) on the left, and 
exponential(100) prior (i.e. λ=100) on the right. 
 
Take home message: We should consider playing with priors to see how they influence 
the posterior density. 
 
Note from Paul: 
In practice, experimenting with priors can take a lot of time, so most people (including 
yours truly) do not do as much of it as we should. Just because most people ignore priors, 
however, does not mean that determining the sensitivity of the analysis to priors is 
unimportant! 
 
Note: an example of selecting a realistic prior: we could obtain data and estimate branch 
lengths on a group closely related to the group in question (e.g. the sister group). We 
could then use the mean of these branch lengths to set the prior on the group of interest. 
Empirical bayesian analyses involve setting priors based on maximum likelihood 
estimates using the exact same data used to compute the posterior. In such cases, the 
priors are generally centered over the maximum likelihood estimates, but are made quite 
vague so that there is not much of a dependency on the data. 
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Markov Chain Monte Carlo (MCMC) methods for approximating posterior 
distribution 
 
For many models, the posterior distribution is not easily calculated exactly; the constant 
term we looked at earlier is way too complicated, therefore we have to pay a price: 
approximations. Using simulations, we can approximate the posterior distribution to an 
abitrary precision at the cost of increased run time. 
 
Metropolis algorithm – first described in 1953 
Hastings modification – proposed in 1970 
Gelfand and Smith – 1990 paper started the current craze in using simulation algorithms 
to approximate posterior distributions in Bayesian analyses 
 
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and  

E.Teller. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 
21:1087-1092. 

 
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains  

and their applications. Biometrika 57:97-109.  
 
Gelfand, A. E., and A. F. M. Smith. 1990. Sampling based approaches to  

calculating marginal densities. J. Am. Statist. Assoc. 85:398-409. 
 
 

Simulating a Markov Chain 
 
A Markov Chain is simply a sequence of possible states with certain characteristics, most 
notably possessing the Markov property. 
 
For example, imagine again our 3 hypotheses A, B, C from the start of this lecture. 
 
We want to be able to generate a sequence of those states such that we can approximate 
the stationary distribution of the states by simply counting how many times each state 
occurs in that sequence: 
 
Take sample 1: …B,A,A,A,C,A,A,A,A,A,…. 
(then thousand steps later) take sample 2…A, A, A, A, B, A, A, A, A…. 
 
We’re interested in probability distribution of these states: 
 
πA = .80 (80% of the time we see state A) 
πB = .15 
πC = .05 
 
πA represents the true posterior probablity of hypothesis A. 
 
Counting states from sample 1: 
8/10 bases are A = 80% 
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1/10 bases are B = 10% 
1/10 bases are C = 10% 
 
Counting states from sample 2: 
 
9/10 are A = 90% 
1/10 are B = 10% 
0/10 are C = 0% 
 
The above samples of the chain reveal similar approximations for the “real” distribution 
of A, B, C. By using this method we can at least get a good approximation for πA, πB, and 

πC. We do this to avoid having to calculate the constant (marginal likelihood) we 
discussed earlier. 
 
Stationarity – probabilities of different states (i.e. the probability distribution) not 
changing over time.  
 
Another property of Markov chains: statements about the probability of what is going to 
happen next are not influenced by the previous history of the chain 
 
Consider this Transition Matrix: 
 

 A B C 
A PAA PAB PAC 
B PBA PBB PBC 
C PCA PCA PCC 

 
The probability that the chain will be sitting on state B (at time t+1) given that it is sitting 
on state A at time t is PAB. If this is a Markov chain, then PAB should  not depend in any 
way on the state present at time t-1 or any time before t. This lack of “memory” is called 
the Markov property. 
 
The probability of ending up in state A after one time period (i.e. time t+1), regardless of 
which state the chain is sitting on at time t can be computed as follows: 
 
πA 

(t+1)
 =  πA 

(t) PAA + πB
(t)

 PBA + πC
(t) PCA 

 
If stationarity is assumed, then πA, πB and πC do not change over time so we can drop the 
references to time, such as (t) and (t+1): 
 
πA =  πA 

 PAA + πB PBA + πC PCA (eq. 1) 
 
The goal is to come up with values for Pij such that the above statement is true (as well as 
similar statements concerning πB and πC). 
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It turns out that if our chain is not only stationary but time reversible, then the above 
statement is automatically true. Assuming time reversibility means 
 
Pr(start at state i and end up at j) = Pr(start at state  j  and end up at i) 
 
Mathematically, the above can be expressed like this: 
 

jijiji PP ππ =  
 
Here’s why equation 1 above is guaranteed to be true if time reversibility applies: 
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How do we construct a P matrix that guarantees stationarity? If we can construct a P 
matrix that is time reversible, we get stationarity as a useful byproduct. Why do we want 
stationarity? We are interested in using the Markov chain to estimated the (posterior) 
probability of the different states. If our model is correctly formulated, there is just one 
true posterior probability associated with each state, and thus it would not be very helpful 
if our Markov chain did not converge to a single value for this probability. 
 
Note added by Paul: 
Next time we will show how a very simple definition of the transition matrix P leads to a 
stationary Markov chain, and how we can simulate such a chain to approximate the 
stationary distribution of the chain, which also happens to be our posterior distribution of 
interest. 
 


