
PhyloMath Lecture 8 
by Dan Vanderpool 22 March, 2004  
 
Topics of Discussion 
- Transition:Transversion rate ratio (Kappa) vs. 

Transition:Transversion ratio (T-ratio) 
- Calculating the expected number of substitutions using 

matrix algebra 
- Why the General Time Reversible model can only have 5 

relative rates 
- Likelihood of a 5 taxon tree (next class will perform 

this calculation but take account of rate heterogeneity 
among sites) 

 
 
The transition:transversion rate ratio vs. the T-ratio. 
 
It is often observed in real datasets that transitions (Ti) 
occur at a rate different from (and often faster than) 
transversions (Tv), resulting in a Ti/Tv bias.  There are 
multiple ways for nucleotide substitution models to account 
for this bias.  
 
Some nucleotide substitution models account for Ti/Tv bias 
by calculating the Ti:Tv rate ratio.  This ratio is defined 
as the rate at which transitions are occurring divided by 
the rate at which transversions are occurring.  This ratio 
is often expressed as the Greek letter κ (kappa) as it is 
implemented in the K80 (K2P, Kimura Two 
Parameter)1nucleotide substitution model. 
 
The Q-matrix for the K80 model looks like this 
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Observe that the instantaneous rate at which all 
tranversions are occurring is equal to β. 
 
 Tv rate = β 
 

                                                 
1 Maxi has referenced the publications in which these models were first described in the 
notes for lecture 7. 



The instantaneous rate at which all transitions are 
occurring is β, modified by some number κ 
 
 Ti rate = κβ 
 
To determine rate ratio we divide Ti rate by Ts rate  and 
the β terms cancel 
 
Ti rate
Ts rate

=
κβ
β

=  κ
               leaving κ 

This is one way to account for the transition/transversion 
bias observed in a data set.  
 
The T-ratio is defined as the probability of any transition 
occurring in a single instant of time, dt (an interval 
during which only 0 or 1 substitutions can occur) divided by 
the probability of any transversion occurring in a single 
instant of time dt. 
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Where the 1/4 term above results from the assumption of 
equal base frequencies in the K80 model. 
 
What this demonstrates is that the quantity known as the 
transition:transversion ratio (tratio in PAUP*) is only 1/2 
the value of the kappa parameter defined as part of the K80 
model.  So even though the “transition:transversion ratio”  
and the “ transition:transversion rate ratio ” sound like 
the same quantity, they measure different aspects of 
transition/transversion bias and can have quite different 
numerical values.   
 
By looking at the rate matrix for the HKY85 model we see 
that κ must be set equal to 1 (one) in order for the model 
to be equivalent to the F81 model (in which rate of 
substitution is determined entirely by the nucleotide 
composition).   



 
HKY85 rate matrix: 
 

Q=

-β(π Y +κβπ G) π Cβ π Gκβ π Tβ
π Aβ -β(π R +κβπ T ) π Gβ π Tκβ
π Aκβ π Cβ -β(π Y +κβπ A) π Tβ
π Aβ π Cκβ π Gβ -β(π R +κβπ C )
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(From the HKY85 rate matrix observe that if κ=1, (1)β= β 
meaning rates are equal) 
 
For the F84 model to be equal to the F81 model, the kappa 
term used in the rate matrix must equal 0 (zero). 
 
F84 rate matrix: 
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 Refer to the F84 rate matrix and notice that, for example,  

when κ=0 in the GA →  transition, βπβ
ππ

π
βπ G

GA

G
G (0) =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+  so 

this transition occurs at the same rate as the transversion 
GC → . As this is true for the other three kinds of 

transitions, there is no transition bias when 0=κ . 
 
PAUP* will not let you specify κ, only the T-ratio. This is 
because the exact meaning of κ varies with different 
underlying base frequencies under different models. For 
example, the ratio of the rate of transitions to the rate of 
transversions for the HKY85 model differs depending on which 
transitions and transversions you compare. The ratio of the 

GA →  transition to the GC →  transversion is equal to κ 
under HKY85, but the ratio of the GA →  transition to the 

CA →  transversion is κπ
π

C

G . The T-ratio can be compared 

because its meaning is the same regardless of base 
frequencies. 
 



Calculating the expected number of substitutions using 
matrix algebra 
 
To calculate the probability of a site changing in a given 
instant of time (dt) we have to take into account the 
starting state of the site and determine the transition 
probability of that state in a given instant of time 
 
For example the probability of A→G substitution in an 
instant of time dt= 
 
Pr(start with A) Pr(end with a G|dt) = π A( ) π Gκβdt( ) 
 
The time dt, is an infinitesimal amount of time during which 
only zero or one substitutions can occur. In this case, the 
expected number of substitutions equals the probability of a 
substitution. To obtain the expected number of substitutions 
over some arbitrarily large amount of time (t), we have to 
integrate the expected number of substitutions over dt from 
zero to t.  
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So the probability of an A→G substitution occurring from 
time zero to t under model would be 
 
= tκβππ GA  
 
This represents only one of probabilities in the Q-matrix. 
So in order to get the expected number of substitutions for 
the whole matrix we can use matrix algebra to multiply 
matrices together simplify the process. Recall the HKY85 Q-
matrix from before 
 

Q=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

)(-
)(-

)(-
)(-

CRGCA

TAYCA

TGTRA

TGCGY

κππββπκβπβπ
βπκππββπκβπ

κβπβπκππββπ
βπκβπβπκππβ

 



 
 
We can multiply the rate matrix Q by a time t to yield the 
following matrix: 
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Remember to get the expected number of substitutions we have 
to multiply by the probability of the starting base (base 
freq).  To do this for each term we can multiply the Π 
matrix by the Qt matrix to get: 
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The rules for multiplying matrices demonstrated were 
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We can now take the negative of the trace (add the diagonal 
terms and multiply by -1) of this matrix to solve for the 
total expected number of substitutions d 
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We can check this by seeing if the expected number of 
substitutions for the HKY85 are equivalent to that for the 
JC model if we plug in 1/4 base frequencies and equal rates. 
 
For the JC model d=3αt, so when we set κ=1 and πbase=1/4 
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You can perform the algebra to see if this works for the K2P 
model as well.   
 
Using matrix algegra allows more flexibility in the models 
that can be used. It is possible to do the matrix 
multiplication numerically, and so the transition 
probabilities needed for likelihood calculations can be 
obtained even for models in which it is impossible to find 
algebraic formulas for the transition probabilities. 
 
Why the GTR model only has 5 relative rates 
 
Recall the GTR matrix allows different rates of change for 
each nucleotide pair. 
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If base frequencies were equal, the expected number of 
substitutions for the matrix would be 
 

d =
1
8

βt a + b + c + d + e + f[ ] 
 
in the above equation, if we allow all of the relative rates 
(a, b, c, d, e, and f) to vary, then there are many possible 
combinations that will give the same value for d. For 
example, halving the value of β and doubling the value of 
each of the 6 relative rates would produce the same value 
for d as the above formula because the 2 can be factored out 
and cancels with the 2 in the denominator: 
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If one of the seven rate parameters {β, a, b, c, d, e, f} is 
constrained to equal 1, however, then d is uniquely defined 
by the parameters in the model. For example, setting f = 1 
gives 
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Here, we have again halved b and doubled all the relative 
rate parameters, but now the 2 cannot be factored out of the 
sum on the right side and thus halving β and doubling the 
relative rates changes the value of d, as it should. 
 
Calculating the likelihood of a 4 taxon tree 
  
There is a worksheet associated with this.   
  
We calculated the likelihood for one site, k, on a 4 taxon 
tree, producing a “site likelihood ” Lk. Remember, to get 
the overall likelihood we would have to multiply this by the 
the site likelihoods for all other sites in the data matrix 
 
L=L1 L2 L3 L4 L5 L6 L7 ……… Lk 

 
To calculate the site likelihood assume branch lengths in 
the below figure equal the expected number of substitutions. 
Since the models are time reversible, it does not matter 
what point in the tree we consider the “ root ”. 
 
T      A 
 
    d1=0.15    d4=0.05 
 
 
    d

3
=0.05 

 
      d5=0.05 
  d2=0.10    
          A 
 G 
 
If we arbitrarily choose to start at G we calculate the site 
likelihood for this combination of internal node states  
 
Lk=Pr(G)Pr(G → A | d2 )Pr(A → T | d1)Pr(A → A | d3 )Pr(A → A | d4 )Pr(A → A | d5 ) 
 
Where Pr(G) is the probability of starting with base G and 
Pr(G → A | d2 )is the probability of changing from a G to an A 
along branch d2 etc. 
 
Using the K2P substitution model this becomes 
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The first term above is the probability of a transition,  
the second is the probability of a transversion, and the 
last three terms represent the probability of no change.  
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The below table summarizes the transition probabilities for 
the set of branch lengths on the example tree under the K2P 
model. We can calculate the quantity 4βt used in the 
transition formulas above given the branch length d because 
d = (κ+2)βt for the K80 model. For these calculations, we 
assumed k = 6, thus 4βt = 4d /(6+2) = d/2.  
 
 d 4βt Pr(no 

change) 
Pr(Ti) Pr(Ts) 

d3, d4, 
d5 

0.05 0.025 0.951937 0.035718 0.00617252

d2 0.1 0.05 0.9075 0.068079 0.0121926 
d1 0.15 0.075 0.866499 09 0.018064 
 
Plugging the values from the table above into the equation 
below: 
 
Lk=Pr(G)Pr(G → A | d2 )Pr(A → T | d1)Pr(A → A | d3 )Pr(A → A | d4 )Pr(A → A | d5 ) 
 
 
we get  
 

Lk=
1
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (0.068079)(0.0180641)(0.951937)3 = .00026521  

 
This is the likelihood for one site with one combination of 
ancestral states and one particular combination of branch 
lengths and κ. In order to get the total likelihood, we have 



to calculate this value for all possible combinations of 
ancestral states. For a 4 taxon tree this means we must 
calculate it for all 16 possible combinations of ancestral 
states and then add these together. 
 
We did this in class for the above example, Paul provided 
the table below for the notes 
 
kappa = 6 
 
          d3,d4,d5        d2         d1 
            0.05         0.10       0.15 
-------------------------------------------- 
Pr(same)   0.951936914 0.907535867 0.866499054 
Pr(trs)  0.035718042 0.068078846 0.097372689 
Pr(trv)  0.006172522 0.012192644 0.018064128 
-------------------------------------------- 



Anc.                Pct. 
State   likelihood  of sum 
-------------------------- 
AA   0.000265212  63.2%   
AC   7.23031E-11   0.0%   
AG   1.40098E-08   0.0%   
AT   7.23031E-11   0.0%   
CA   1.66018E-06   0.4%   
CC   1.07649E-08   0.0%   
CG   2.33729E-09   0.0%   
CT   4.03913E-10   0.0%   
GA   0.000132655  31.6%   
GC   9.63848E-10   0.0%   
GG   4.97742E-06   1.2%   
GT   9.63848E-10   0.0%   
TA   1.47736E-05   3.5%   
TC   3.59434E-09   0.0%   
TG   2.07991E-08   0.0%   
TT   9.57943E-08   0.0% 
        0.000419429   100% = total site likelihood 
 
Note added by Paul: 
 
The NEXUS file used to calculate these likelihoods in PAUP* 
is also below. This NEXUS file contains 4 blocks: a PAUP 
block, a CHARACTERS block, a TREES block, and another PAUP 
block.  
 
The first PAUP block sets the criterion to maximum 
likelihood (crit=like) and tells PAUP* to store any branch 
lengths it finds (storebrlens). The second line sets up 
PAUP* to use the K80 model: nst=2 means we want to use a 
model with two substitution classes (transitions and 
ransversions), tratio=3.0 sets  =6 (because tratio= /2 for 
this model), basefreq=equal means all relative base 
frequencies are to be ¼, and variant=hky is necessary to 
distinguish this model (which is identical to the hky model 
with equal frequencies) from the F84 model with equal 
frequencies (if you wanted F84, you would specify 
variant=f84). Note: the main reason for having two PAUP 
blocks is to get storebrlens specified before PAUP* reads in 
the TREES block. The other stuff could be moved to the 
second PAUP block. 
 
The CHARACTERS block provides a small data matrix containing 
2 sites for 4 taxa. The CHARACTERS block like a DATA block, 
with which you are probably more familiar. 
 
The TREES block provides the tree description. Note that 
taxon5 is listed in the tree description, but there is no 
data for taxon5 in the data matrix. taxon5 is simply being 
used as a label for one of the interior nodes of the tree 



here. The utree designation tells paup that this is an 
unrooted tree (there is no meaningful root to this tree). 
 
The final PAUP block tells paup to compute the likelihood 
scores (lscores) for individual sites (sitelikes), using the 
branch lengths (userbrlens) that we provided (i.e. don't try 
to estimate branch lengths using maximum likelihood). 
  
#nexus 
 
begin paup; 
  set crit=like storebrlens; 
  lset nst=2 variant=hky tratio=3.0 basefreq=equal; 
end; 
 
begin characters; 
  dimensions newtaxa ntax=4 nchar=2; 
  format datatype=dna; 
  matrix 
    taxon1 TA 
    taxon2 GC 
    taxon3 AG 
    taxon4 AT   
  ; 
end; 
 
begin trees; 
  utree test = ((taxon1:0.15,taxon2:0.10)taxon5:0.05,taxon3:0.05,taxon4:0.05); 
end; 
 
begin paup; 
  lscores 1 / userbrlens sitelikes; 
end; 
 
 
 
 
 
 
 
 
 


