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PhyloMath Lecture 9 – March 30th 2004 
C.A. Fyler 

 
 
Last time we established the likelihood for one site (k) in a four taxon tree (Fig. 1) by calculating 
the likelihood at every possible ancestral combination (16 in total). The overall likelihood for 
that site being: 
 
Lk = πG Σ i Σj PGi (d2) PiT (d1) Pij (d3) PjA (d4) PjA (d5) 
 
To calculate the likelihood of a tree incorporating multiple sites we would multiply the 
likelihoods of all sites L = L1 L2 ...Lκ...Ln , or take the Log likelihoods of all the sites and add 
them to avoid ridiculously small values that occur when small numbers are multiplied (lnL = 
lnL1 + lnL2 +...+lnLκ + lnLn). 
 

 
Figure 1 

  
 
In a more realistic example we would not be given the branch lengths and would estimate them 
as well. The estimation process is like having 6 knobs1 each allowing adjustment of a single 
parameter. There is a common meter measuring the overall likelihood, and the goal is to fiddle 
with all the knobs until you can push the meter no higher. After maximizing the likelihood of one 
parameter, the other parameters in your model will not generally be maximized anymore. So, 
you can imagine that finding the ML for your tree would take a lot of knob fiddling!   
 

Felsenstein’s Pruning Algorithm 
 
Felsenstein (1981) was the first one to apply the pruning algorithm to likelihood. Notice that with 
16 possible ancestral combinations we are calculating some of the same numbers over and over 
again (Paul’s handout of the 16 possible trees for all possible ancestral state combinations 
demonstrates this point).  We can economize on computation by using the computer’s memory to 
store the results of certain computations. This is a trade off since we are sacrificing the 
computer’s memory in exchange for speed. The method of pruning can be derived simply by 
moving summation signs to the inside of the equation. 
 

Recall: 
 
Lk = πG Σ i Σj PGi (d2) PiT (d1) Pij (d3) PjA (d4) PjA (d5) 
 

                                                 
1 6 knobs in this case because we decided on a K80 model.  5 branch lengths + κ. 
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      Moving the summation signs in gives us:   
 

Lκ = πG Σ i PGi (d2) PiT (d1)Σj Pij (d3) PjA (d4) PjA (d5) 
 
You may notice that the terms for the tips of the tree in this equation (G,T) (A,A) are in exact 
correspondence to the structure of the tree in Figure 2.  
 

 
Now we can calculate the conditional probabilities of the sub-trees: 
 
To get ourselves aquatinted:  LG

(5) = PGA(d4) PGA(d5) 
LT

(5) = PTA(d4) PTA(d5) 
LT

(6) = PTT(d1) Σj PTj(d3)Lj
(5) 

 
Therefore, the general formula for node 5 is: Lj

(5) = PjA(d4) PjA(d5)  
And, the general formula for node 6 is: Li

(6) = PiT(d1) Σj Pij(d3)Lj
(5) 

 
The key to the pruning algorithm is that once the general formulas are computed, they need not 
be continually recomputed. Conditional Likelihood Arrays2 save time but can stack up memory.  
For example, 500 patterns + 200 taxa will take up as much as 3MB to just store temporary results 
compared to the 100 kb that it will take to store the actual data.  30x more memory to store 
intermediate formulas!  
 
From the above example, the overall Likelihood of our site will be: Lk = πG Σi PGi(d2)Li

(6) 

 

We can substitute the general formulas for nodes 5 and 6 into the overall likelihood equation to 
confirm that it is the same as our original equation for the likelihood of a site.   

 
First substitute in Li

(6) = PiT(d1) Σj Pij(d3)Lj
(5) 

 

 

                                                 
2 Called conditional because it is conditional on a node having a particular state. 
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Then substitute in Lj
(5) = PjA(d4) PjA(d5):   

 
( )[ ]  ! with!started eequation w same  theis  this)()()()()( 54312 ⇐= ∑∑ dPdPdPdPdPL jAjAj ijiTi iGGk π

 
 
 

CALCULATING LIKELIHOOD WITH RATE HETEROGENEITY 
 
To incorporate rate heterogeneity first specify the shape parameter (α) of the gamma distribution 
and then determine the mean rate of DNA evolution for subsets of the distribution. Using more 
divisions (and therefore more rates) will allow for more of your data to be explained properly but 
there is a trade off between the number of rates and computation time. In this case we divided the 
gamma distribution into four equal areas.  

 

 
  
 
As with ancestral states, we do not know which of the four representative rates applies to this 
site, so the likelihood for site k is a sum over all the rates.  

 
Note added by Paul: 
Each of the four terms above (e.g. Pr(Dk and r1 | θ)) involves a sum over the 16 possible ancestral 
state combinations (or at least involves the equivalent of such a sum; the actual work done is less 
because of the use of the pruning algorithm). 
 
Remember that we divided up the gamma distribution evenly, so 

 
To compute )|Pr( θkD , we need to know the transition probabilities. Here are the transition 
probabilties for the JC69 model: 

Pr(r1) = Pr(r2) = Pr(r3) = Pr(r4) = 1/4 (or 1/the number of categories)
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In order to compute ),|Pr( 1 θrDk , we need only substitute transition probabilities that are 
conditional on r1: 
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The same substitution is then done for the other relative rates. 
 
Invariant sites (pinvar)  It is often realistic to assume that there is some proportion of the sites 
that are invariant (have zero rate of change). The invariant sites model rate is either 0 or r, 
therefore:   
 

 
The quantity )0ratePr( =  is just the parameter pinvar, whereas )ratePr( r=  is 1 – pinvar. The 
transition probabilities become very simple when the rate is assumed to be 0. For the JC69 model 
 

⎪⎩

⎪
⎨
⎧

≠=−

==+
=

−

−

jie

jie
tP

t

t

ij
  0

  1
)0(

)0(4
4
1

4
1

)0(4
4
3

4
1

α

α

α  

 
The relative rate r can be determined from knowledge of pinvar and from the fact that relative 
rates are normalized so that their expected value is 1: 
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Thus, the JC69 transition probabilities for the case in which the rate = r would be: 
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MOLECULAR CLOCK ASSUMPTIONS 

 
A molecular clock assumes that on average the rate of molecular evolution is invariable 
throughout long periods of evolutionary time across multiple lineages.  Enforcing a molecular 
clock allows you to assume that the α part of the equation is the same for each branch length. 
 

),Pr()Pr(),0Pr()0Pr()(D ,1 θθθ κκκ rrateDrraterateDraterP ==+===
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For example, with out a molecular clock using a JC Model: 
 

 
If d1 > d2, then we don’t know if it is due to a difference in t or a difference in α.  If a molecular 
clock is enforced then the rates are the same for every part of the tree so: 
 

 
 
 

 
Figure 3 

 
The rooted tree in figure 3 assumes a molecular clock.  In the rooted tree all the tips are 
equidistant from the root and the number of substitutions are the same for equivalent amounts of 
time regardless of the lineage.  The rooted MC tree has four branch lengths instead of 7 and we 
can calculate the likelihood using t1-t4 instead of the internal branches. 
 
ROOTED TREE  UNROOTED TREE 
MC Assumptions NO MC Assumptions 
No. nodes = 2n-1 (9 in this case) No. nodes = 2n-2 (8 in this case) 
No. interior nodes = n-1 No. interior nodes = n-2 
No. branch lengths (= no. interior nodes) = n-1 
(4 in this case) 

No. branch lengths = 2n-3 (7 in this case) 

 
Do the data make the molecular clock assumption implausible? 
Lo = likelihood under the assumption of a molecular clock (the constrained, simpler hypothesis is 
always the null hypothesis). 
L1 = likelihood under the alternate “no clock” hypothesis (unconstrained hypothesis). 
 
If the Likelihood ratio is about 1 then both models (with and without the MC) are explaining the 
data equally well.  If L1 / Lo   >> 1 then you do not believe the null hypothesis as much.  

d1 = 3αt1

d2 = 3αt2

d1 = 3α1t1

d2 = 3α2t2
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L1 will always be greater or equal to Lo (because we could always constrain the extra parameters 
of the no clock model to match any particular configuration in the constrained model) but we 
want to find out if the no clock model is a significantly better explanation of our data given the 
difference in parameterization. To do this, perform a Likelihood ratio test.   
 
Likelihood ratio test (LRT) = 2(lnL1 – lnLo)     
 
Since the distribution of LRT is nearly identical to a χ2 distribution, we  can use the chi-square 
distribution with the degrees of freedom equal to the difference in the number of parameters 
between the two models.  The number of substitution model parameters (e.g. κ,α) are the same 
between the two models, so the only difference is in the number of branch length parameters: 
 
d.f. = (no. branch lengths in unconstrained model) – (no. branch lengths in clock model) 
      =(2n-3) – (n-1) 
      = (2n-n) –3 +1 
      = n-2 
 

BAYESIAN ANALYSES 
 
Given a hypothesis θ (such as a possible tree) and some data D, the probability of the hypothesis 
given the data (the posterior probability of hypothesis θ) is: 
 

 
The joint prob. in the numerator can be written as a conditional probability: 

 
The Pr(θ) is called the prior probability of hypothesis θ, and Pr(D| θ) is the likelihood of 
hypothesis θ (note: do not say “likelihood of the data”, because the data are constant; likelihoods 
are functions of hypotheses). Substituting back into the first equation: 

  
The equation above that relates the posterior probability to the product of the prior probability 
and likelihood is known as Bayes’ Theorem, or Bayes’ Rule. The denominator is a constant (it 
depends only on the data, which is itself constant for any given analysis). It is sometimes referred 
to as the marginal probability of the data, where marginal refers to the fact that it is the total 
probability considering all possible values of θ: 
 

  
The quantity on the left is the posterior probabliity of θ. The sum of the posterior probabilities of 
all possible hypotheses θ must be 1: 

)Pr()Pr()Pr( θθθ DD Σ=

Pr(θ D) =
Pr(θ & D)

Pr(D)

Pr(θ & D) = Pr(θ )Pr(Dθ)

Pr(θ D) =
Pr(θ)Pr(Dθ )

Pr(D)
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It is more common to use Bayes’ Rule in the context of continuous hypotheses. For example, you 
can think of every possible value of the transition/transversion rate ratio k (from 0 to infinity) as 
a separate hypothesis, in which case there are an infinite number of hypotheses to consider. In 
this case, probabilities become probability densities and sums become integrals, but Bayes’ Rule 
works exactly the same way: 
 

)(
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SUMMARY- 
 

)|()()|( θθθ DffDf ∝  
 
WHERE 

 

data in the containedn informatio  thecontains ,likelihood )(
dataour  oft independen know  topresume  what wedensity,prior  )(

 thisfrom inferencesour  of all make  wedensity,y probabilitposterior  )(

=

=

=

θ
θ
θ

Df
f

Df
 

 
If we have a “strong” prior then the data will have less influence on the posterior. Strong priors 
are said to be informative. If the prior is “weak”, then the data will have more influence on the 
posterior. Weak priors are said to be uninformative or flat, if they specify the same prior 
probability density for every value, or vague if they give preference to some values over others, 
but not by much. 
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The following chart shows three exponential priors. One is described as a strong prior. Note how 
little density is given to values above 2 in this prior compared to values less than, say, ½. Now 
look at the prior describe as weak and compare the density for 2 vs. the density at ½. This prior 
puts almost as much weight on 2 as it does on ½. 
 

 

Exponential Distribution for Prior
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