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1 ts:tr rate ratio vs. ts:tr ratio

The transition:transversion (ts:tr) rate ratio (called kappa in PAUP) is different
from the ts:tr ratio (called tratio in PAUP). Let’s recall the K80 model (also
called K2P model) and look what these two ratios look like:

Q =




−β(κ + 2) β κβ β
β −β(κ + 2) β κβ
κβ β −β(κ + 2) β
β κβ β −β(κ + 2)




The ts:tr rate ratio (kappa)is the ratio of the transition rate and the transver-
sion rate. In the K80 model the transition rate is κβ and the transversion rate
is β. Thus, the ts:tr rate ratio of the K80 model is κ:

transition rate
transversion rate

=
κβ

β
= κ

The ts:tr ratio (tratio) is the ratio of two probabilities: the probability of
any transition over a time dt and the probability of any transversion over the
same time dt. Both probabilities are the sum of the probabilities of individual
transitions or transversions, respectively. For example, the probability of the
transition A → G is the probability of having an A, times the probability of an
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A changing to a G over time dt. The ts:tr ratio for the K80 model is calculated
like this:1

tratio =
Prob{any transition over time dt}

Prob{any transversion over time dt}

=
1
4 PAG(dt) + 1

4 PCT (dt) + 1
4 PGA(dt) + 1

4 PTC(dt)
1
4 PAC(dt) + 1

4 PCA(dt) + · · ·+ 1
4 PGT (dt) + 1

4 PTG(dt)

=
4(1

4κβdt)
8(1

4βdt)

=
κ

2

In a model that incorporates base frequencies the ratios are calculated in the
same way, but yield more complicated results. Let’s take the HKY85 model as
an example (diagonal elements omitted):

Q =




− πCβ πGκβ πT β
πAβ − πGβ πT κβ
πAκβ πCβ − πT β
πAβ πCκβ πGβ −




The tr:ts rate ratio (called kappa in PAUP) may now also depend on the
base frequencies, if the transition and the transversion are picked from different
columns. Thus, there is no single tr:ts rate ratio for this model. However, there
is a single tr:ts ratio (called tratio in PAUP), which is a function of the base
frequencies, πi, κ and β. This is the reason why PAUP concentrates on tratio:
this quantity has a single meaning regardless of nucleotide composition and it
is therefore comparable among different models.

A side note on maximum parsimony: maximum parsimony does not use any
models presented here, but does allow for weighting transitions and transver-
sions differently.

Note added by Paul: In parsimony the weights have no particular meaning.
You can give transversions a weight 5 times that of transitions, but this value
(5) does not correspond to a ts: tr ratio of 5, or a ts:tr rate ratio of 5. Unlike
maximum likelihood, maximum parsimony provides no means for determining
what weights are appropriate.

2 Expected number of substitutions using ma-

trix algebra

In this section we review how to calculate the expected number of substitutions
and see how we can use matrix algebra for this purpose. Using matrix algebra

1The denominator contains all 8 transversions: AC, CA, AT, TA, CG, GC, GT, and TG
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has the advantage that we can easily use mathematical programs to do the
calculations for us.

First, let’s see how we can get the expected number of substitutions for a
small period of time, dt, based on the HKY85 model. As a shorthand, let’s let
πY be the relative frequency of pyrimidines and πR be the relative frequency of
purines:

πY = πC + πT

πR = πA + πG

With that, the Q matrix of the HKY85 model looks like this:

Q =




−β(πY + κπG) πCβ πGκβ πT β
πAβ −β(πR + κπT ) πGβ πT κβ
πAκβ πCβ −β(πY + κπA) πT β
πAβ πCκβ πGβ −β(πR + κπC)




We know from previous lectures that the expected value of some (discrete)
distribution Y is the sum of the each possible value for Y times the probability
of this value:

E(Y ) =
∑

i

yi P(yi)

In our small amount of time dt, there can be only 0 or 1 substitutions. Thus,
the expected value for our distribution breaks down to:

E(Y ) = (0) P(0) + (1) P(1)
= P(1)

This means, if we want to know the expected number of substitutions over
time dt for, e.g. A → G substitutions, we only have to calculate the probability
for this event:

Exp. # of A → G subst. in dt = P(A) · P(A → G|dt)
= πA · πGκβ dt (1)

If we want to know the expected number of substitutions over an arbitrary
time interval t, we have to take the continuous sum, i.e. the integral over this
time interval:

Exp. # of A → G subst. in t =
∫ t

0

πAπGκβ dt

= πAπGκβ

∫ t

0

1 dt

= πAπGκβt (2)
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We see, that we just have substituted dt by t from formula (1) to formula
(2). This is valid here (as we have shown by calculation), but might not be valid
in other cases.

If we want to get the overall number of expected substitutions (not only the
number for A → G), we have to sum up the number of expected substitutions
for all 12 possibilities. We do this by either performing the calculations shown
above 12 times, or by using matrix algebra and doing it for all 12 possibilities at
once. For this, we need to transform each entry in the Q matrix of the HKY85
model into the form we have derived above. Thus, we need to perform the
following steps:

• Multiply the Q matrix by t, getting Qt:

Qt =




−β(πY + κπG)t πCβt πGκβt πTβt
πAβt −β(πR + κπT )t πGβt πT κβt
πAκβt πCβt −β(πY + κπA)t πTβt
πAβt πCκβt πGβt −β(πR + κπC)t




• Multiply each row of Qt by the appropriate base frequency. We can do this
by performing a left side matrix multiplication of Qt with Π, the matrix
that has the base frequency in its diagonal and zero anywhere else:

ΠQt =




πA 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT







−β(πY + κπG)t πCβt πGκβt πT βt
πAβt −β(πR + κπT )t πGβt πT κβt
πAκβt πCβt −β(πY + κπA)t πT βt
πAβt πCκβt πGβt −β(πR + κπC)t




=




−βπA(πY + κπG)t πAπCβt πAπGκβt πAπT βt
πCπAβt −βπC(πR + κπT )t πCπGβt πCπT κβt
πGπAκβt πGπCβt −βπG(πY + κπA)t πGπT βt
πTπAβt πT πCκβt πT πGβt −βπT (πR + κπC)t




• Sum all 12 off-diagonal elements. This can be tedious in a program for
matrix calculation as we have to write down a sum of 12 elements. For
amino acid matrices this is even more tedious, as the sum consists of 380
elements.

We can use a shorthand for that, as every diagonal element is the negative
sum of the off-diagonal elements of its row. Thus, if we add all diagonal
elements and negate the result, we get the same as if we had summed all
off-diagonal elements. Adding all diagonal elements is done by the matrix
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function trace:

d = Exp. overall # of substitutions over time t

= − trace(ΠQt)
= βt[πAπY + πAπGκ + πCπR + πCπT κ + πGπY + πGπAκ + πT πR + πT πCκ]
= βt[2πRπY + 2πAπGκ + 2πCπT κ]
= 2βt[πRπY + κ(πAπG + πCπT )] (3)

Let’s compare the result of (3) with what we know about the expected
number of substitutions in the JC model and the K80 model:

dJC = 3αt

dK80 = (κ + 2)βt

In the JC model, κ = 1 and the base frequencies πi = 1/4. Using formula
(3), we get:

dJC = 2βt[
1
2

1
2

+ 1 · (1
4

1
4

+
1
4

1
4
)]

= 2βt
3
8

=
3
4
βt

= 3αt as α =
1
4
β

which is what we expected.
In the K80 model, the base frequencies are 1/4 as in the JC model. The β

of the K80 model, however, is 1
4β in the HKY85 model. In the following, I say

βK80 for the β of the K80 model. Plugging in the values in formula (3) results
in:

dK80 = 2βt[
1
2

1
2

+ κ · (1
4

1
4

+
1
4

1
4
)]

=
1
2
β + βt

1
4
κ

=
1
4
βt(2 + κ)

= βK80t(2 + κ)

which is again what we expected.
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3 Why the GTR model can only have 5 relative
rates

Recall the GTR model of last class (diagonal elements omitted):

Q =




− πCaβ πGbβ πT cβ
πAaβ − πGdβ πT eβ
πAbβ πCdβ − πT fβ
πAcβ πCeβ πGfβ −




In the last class we stated that this model has the following parameters:
The three base frequencies πA, πC , πG (the fourth frequency is given by the
fact that the four frequencies sum up to 1), β and five relative rates a, b, c, d,
e. The question was, why only five of the six relative rates can be considered as
parameters. There was no easy reasoning for this as for the base frequencies.

Let’s see what happens if all six relative rates a, . . . , f were parameters of
the GTR model. When we look at the expected number of substitutions d, and
assume for simplicity that the base frequencies are all 1

4 , we get:

d =
1
8
βt(a + b + c + d + e + f)

which is the same as

=
1
8

β

2
t(2a + 2b + 2c + 2d + 2e + 2f)

Thus, two different set of parameters gave the same d: β, a, b, c, d, e, f
as well as β

2 , 2a, 2b, 2c, 2d, 2e, 2f . Actually there were an infinite number of
parameter sets that gave the same value for d, as we can divide or multiply by
any other number than 2. This is unfortunate, as this reduces the usability of
our model: if you were to compare the results for two datasets by comparing
the values for βt, you couldn’t do it without looking at the other six parameters
a, . . . , f , as the value for βt depends on these parameters. However, if there
are only five relative rate parameters, you cannot do the above manipulation
anymore, as you can’t freely chose one of the relative rates. Thus, there is only
one possible value for βt and you are able to compare the results.

Note, that there is no real reason why β is a parameter, but f is not. You
could choose f to be a parameter, but β not to be. It has only historic /
traditional reasons why β is considered a parameter.

4 Likelihood of a 4 taxa tree

In this section we want to calculate the likelihood of a 4 taxa tree. If n is the
length of the taxa sequences, then the likelihood L of the tree is:

L = L1L2 · · ·Lk · · ·Ln
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As the calculations for the whole sequence are elaborate, we only calculate
the likelihood for one site of the sequence, Lk. In the class we got a worksheet
that depicted a 4 taxa tree. The tree showed only the sites at position k of the
taxa sequences, for which we are going to calculate the likelihood: ((T, G), (A,
A)), with the root arbitrarily chosen to be at G. We don’t know the states at
the inner nodes, but we do know the distances: d1 = 0.15 is the distance from T
to the first inner node, d2 = 0.10 is the distance from G to the first inner node,
and d3 = d4 = d5 = 0.05 are the remaining distances.

As we don’t know the inner node states, Lk is the sum of the probabilities
for all 16 possibilities at the inner nodes:

Lk = LAA
k + · · ·+ LAT

k + LCA
k + · · ·+ LCT

k + · · ·+ LTT
k

We assume a K80 model with parameter κ = 6. In the K80 model, the
substitution probabilities are as follows:

P(no change) =
1
4

+
1
4
e−4βt +

1
2
e−4βt(κ+1

2 )

P(transition) =
1
4

+
1
4
e−4βt − 1

2
e−4βt(κ+1

2 )

P(transversion) =
1
4
− 1

4
e−4βt

Given κ and a distance d = dK80, we can calculate the probabilities for no
change, a transition, and a transversion under the K80 model. For this, we have
to calculate 4βt which we can derive from a given distance:

d = (κ + 2)βt

⇔ βt =
d

κ + 2

⇔ 4βt =
4d

κ + 2
κ=6=

d

2
Thus, the three possible probabilities for each of the distances are:

d3,d4,d5 d2 d1
0.05 0.10 0.15

P(same) 0.951936914 0.907535867 0.866499054
P(trs) 0.035718042 0.068078846 0.097372689
P(trv) 0.006172522 0.012192644 0.018064128

With these values we can calculate the likelihoods for each of the 16 possi-
bilities for the inner nodes. E.g. if the inner nodes were both A, the likelihood
is:

LAA
k = P(G) PGA(d2) PAT (d1) PAA(d3) PAA(d4) PAA(d5)

=
1
4
· 0.068078846 · 0.018064128 · (0.951936914)3

= 0.000265212
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nodes ij Lij
k percent of Lk

AA 0.000265212 63.2%
AC 7.23031E-11 0.0%
AG 1.40098E-08 0.0%
AT 7.23031E-11 0.0%
CA 1.66018E-06 0.4%
CC 1.07649E-08 0.0%
CG 2.33729E-09 0.0%
CT 4.03913E-10 0.0%
GA 0.000132655 31.6%
GC 9.63848E-10 0.0%
GG 4.97742E-06 1.2%
GT 9.63848E-10 0.0%
TA 1.47736E-05 3.5%
TC 3.59434E-09 0.0%
TG 2.07991E-08 0.0%
TT 9.57943E-08 0.0%

Lk = 0.000419429 100.0%

Table 1: Likelihoods Lij
k for each possibility of inner nodes for the tree described

in the text and an assumed K80 model with κ = 6. The total site likelihood
Lk is also shown, as well the fraction of each of the 16 component terms in the
total likelihood.

We multiply by P(G) as this is the root. With the same approach we get the
values for all 16 possible inner node combinations. Table 1 shows the values.

When we run the following PAUP program shown in figure 1, we get the
same results.

4.1 Note added by Paul:

The NEXUS file used to calculate these likelihoods in PAUP* is also below.
This NEXUS file contains 4 blocks: a PAUP block, a CHARACTERS block, a
TREES block, and another PAUP block.

The first PAUP block sets the criterion to maximum likelihood (crit=like)
and tells PAUP* to store any branch lengths it finds (storebrlens). The second
line sets up PAUP* to use the K80 model: nst=2 means we want to use a model
with two substitution classes (transitions and ransversions), tratio=3.0 sets =6
(because tratio= /2 for this model), basefreq=equal means all relative base
frequencies are to be , and variant=hky is necessary to distinguish this model
(which is identical to the hky model with equal frequencies) from the F84 model
with equal frequencies (if you wanted F84, you would specify variant=f84).
Note: the main reason for having two PAUP blocks is to get storebrlens specified
before PAUP* reads in the TREES block. The other stuff could be moved to
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#nexus

begin paup;

set crit=like storebrlens;

lset nst=2 variant=hky tratio=3.0 basefreq=equal;

end;

begin characters;

dimensions newtaxa ntax=4 nchar=2;

format datatype=dna;

matrix

taxon1 TA

taxon2 GC

taxon3 AG

taxon4 AT

;

end;

begin trees;

utree test = ((taxon1:0.15,taxon2:0.10)taxon5:0.05,taxon3:0.05,taxon4:0.05);

end;

begin paup;

lscores 1 / userbrlens sitelikes;

end;

Figure 1: PAUP program that does the same likelihood calculation as shown in
the text.

the second PAUP block.
The CHARACTERS block provides a small data matrix containing 2 sites

for 4 taxa. The CHARACTERS block like a DATA block, with which you are
probably more familiar.

The TREES block provides the tree description. Note that taxon5 is listed
in the tree description, but there is no data for taxon5 in the data matrix.
taxon5 is simply being used as a label for one of the interior nodes of the tree
here. The utree designation tells paup that this is an unrooted tree (there is no
meaningful root to this tree).

The final PAUP block tells paup to compute the likelihood scores (lscores)
for individual sites (sitelikes), using the branch lengths (userbrlens) that we
provided (i.e. don’t try to estimate branch lengths using maximum likelihood).
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