
3/2 PHYLOMATH LECTURE 6: Gamma Distributed Relative Rates 
 
by Roberta Engel, 12 Mar 2004 
 
Review 
We started class with a review of the proportion of invariant sites (pinvar) style of rate 
heterogeneity. Sites either evolve at relative rate r or do not evolve at all (relative rate 0). 
The overall rate at which the sequences evolve is µ. We want a separate measure of the 
overall or average rate (µ) because then we can compare pinvar across different data sets. 
 
 
site    1 2 3 4 5  … n 
relative rate   0µ 0µ rµ 0µ rµ  0µ 
 
Some sites are freer to change than others (e.g. the 3rd site in an amino acid codon). We 
can incorporate rate heterogeneity into analyses or simulations to make a model more 
realistic. 
 
We set E(r)  = 1  

= (0)(pinvar) + (r)(1-pinvar) 
 
If we solve for r we can separate the pattern from the average rate of change (µ) and see 
that r is inversely related to pinvar. 
 

r = 1/ (1-pinvar) 
 
When pinvar = 0 there is rate homogeneity. All the sites vary and they all evolve at the 
same relative rate (r = 1, rµ = µ for all sites).  
 
When pinvar > 0 there is rate heterogeneity. As pinvar increases, fewer sites vary but 
those that do vary do so at a higher rate (r > 1 for sites having non-zero rate, rµ > µ). 
  
Rate Heterogeneity as a Gamma Distribution 
If we now think of relative rates as being Gamma(α, β) distributed, we can accommodate 
a range of relative rates. Two examples follow: 
 
If α = 1, β= 1, the variance in relative rates equals 1.0 
site  1  2  3  4  5 ... 
rel rate  .569  .194  .294  6.03  1.17 ... 
 
Some rates of change are slow (e.g. 0.194, 20%) and others are fast (e.g. 6.03, 600%). A 
variance of 1 means there is high rate heterogeneity. (see Figure 1) 
 
If  α = 200, β= 1/200, the variance is 1/200 
site  1  2  3  4  5 ... 
rel rate  1.00  1.05  1.17  1.12  .86 .... 



  r1  r2  r3  r4  r5 
 
In this case the relative rates are more similar and the range of values is not wide. A 
variance of 1/200 means there is low rate heterogeneity (or relative rate homogeneity). 
(see Figure 2) 
 
In both examples, the mean of the relative rate values is 1 by design (again, the idea is to 
keep the average rate at which a gene is evolving separate from our measure of rate 
heterogeneity so that we can compare these measures across genes).  
 
Determining Expected Value of Gamma Distributed Random Variable 
 
In order to know how to set the shape (α) and scale (β) parameters of the Gamma 
distribution such that the mean is 1, we must first figure out the expected value of a 
Gamma(α, β) distribution. The probability density function (PDF) for the variable R is 
written as: 

f (r) =
rα−1e−r / β

βαΓ(α)
 

 
The density function integrates to 1.0 over 0 →∞: 
 

f (r)dr =1.0
0

∞

∫  

 
The numerator with the variable r is the real ‘meat’ of the density function. We may treat 
the denominator βαΓ(α) as a constant c since there is no r in the denominator: 
 

rα−1e−r / β

c
dr

0

∞

∫ =1.0 

 
Note that the constant is simply the scaling factor needed to make the density function 
integrate to 1.0. Thus, the following is true: 

 

 ∫
∞

−− =
0

/1 cdrer r βα  

             
This constant in the denominator consists of the product of αβ  and the “gamma 
function” (not to be confused with the Gamma density function, of which it is a 
component!). The gamma function is symbolized )(αΓ and is described further below. 
 
To say that the random variable R is Gamma distributed with shape parameter α and 
scale parameter β, write: 
 



R ~ Gamma (α, β) 
 
α and β are parameters. α determines the shape of the density and β scales values up or 
down.  
We can obtain the probability density of a particular value r of the random variable R by 
plugging-in values for α and β in the formula for f(r). A particular r will be more or less 
probable depending on the values plugged-in. (This is like when we plug-in values for µ 
to get sojourn times.) 
 
The gamma distribution has two basic shapes, an L-shaped curve (Figure 1) and a spike 
centered around a relative rate of 1 (Figure 2).  When α ≤ 1, most of the relative rates are 
< 1 and only a few are >1. When α > 1, there is not a broad range of rates rather the 
relative rates are close to 1. (Relative rate homogeneity is approached as α nears ∞.) 
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Figure 1 Basic Shape of Gamma Distribution when α = 1. At r=0, the density is 1. When 
α < 1, density becomes strongly L-shaped and the density is infinite at r=0. 
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Figure 2 Basic Shape of Gamma Distribution when α > 1 (α = 140 in this case) 
 
 
Recall last time with pinvar, we set:  
 

E(r) = 1 
 
Now, we will find E(r) when r is gamma distributed, then set this quantity equal to 1 in 
order to determine which combinations of α and β are suitable for modeling relative 
rates: 
 
It is helpful to remember the equation: 
 

f (r)dr =1.0
0

∞

∫  

The value of r can fall anywhere between 0 - ∞. It follows that: 
 

E(r)  = rf (r)dr
0

∞

∫  

 

= r rα−1e−r / β

βαΓ α( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dr

0

∞

∫  
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−

Γ
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0

/1 βα
α αβ

 

 
We factor the constant (βαΓ(α)) outside the integral and try to make the integrand look 
like a gamma distribution. (Factoring out the constant from the integral is like factoring 
out a constant from a sum.) 
 

Now we use Trick #1: let α = a –1  (or  a = α + 1) and multiply by 1 or 
β aΓ a( )
β aΓ a( )

 

  

( )

( )

( )
( )
( ) ( )

( )
( ) ( ) dr

a
era

drer
a
a

drer

drerRE

a

raa

ra
a

a

ra

r

∫

∫

∫

∫

∞ −−

−−
∞

∞
−−

∞
−

ΓΓ
Γ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
Γ

Γ
=

Γ
=

Γ
=

0

/1

/1

0

0

/1

0

/

1

1

1)(

βαβ
β

β
β

αβ

αβ

αβ

β

α

β
α

β
α

βα
α

 

 
None of these manipulations actually changes anything ( 1−ar  equals αr , and multiplying 
by 1 is always acceptable), but these operations set things up so that we can rid ourselves 
of that ugly integral: 
 

Noting that ( ) 0.1
0

/1

=
Γ∫

∞ −−

dr
a

er
a

ra

β

β

, we have, simply, 
)(
)(}{

αβ
β

α Γ
Γ

=
aRE

a

 

 
Next we will use Trick#2: Γ(x) = (x-1) Γ(x-1) and thus Γ(x +1) = xΓ(x) 
to simplify: 
 

= 
β aΓ a( )
βαΓ α( )

 

 

= 
βα +1Γ α +1( )

βαΓ α( )
 

 

= 
βα +1αΓ α( )

βαΓ α( )
 

 



= βα +1α
βα   

 
= αβ 

 
So, setting the expected value (i.e. αβ) to 1, we can express β in terms of α: 
 

If αβ = 1, then β = 1
α

 

  
We never hear about the scale parameter of the Gamma distribution in phylogenetic 
analyses because the scale parameter needs to be 1/α in order for the mean to be 1. Thus, 
the shape parameter is everything. 
 
The variance of the gamma density function is 

Var(R) = α β2 = α
α 2  = 1

α
 

We did not work this out in class, but the same techniques are used to figure this out. As 
α increases (e.g. 200), the variance is small (e.g. 1/200) and, conversely, as  
α decreases (e.g. 1/100), variance (i.e. rate heterogeneity) is large (100). 
 
 
A Brief Aside to Make Connection between Gamma Distribution and Sojourn Time 
Distribution 
 
A natural use of gamma distribution equations is to describe waiting times. They are 
similar concepts and share the same thought processes. In fact, the exponential 
distribution is a special case (when α = 1) in the gamma distribution family. The sojourn 
time is defined to be the waiting time to the first “event” (call it w1). The “event” we have 
been tracking have been either “disruptions” (which occur at rate µ) or substitutions 
(which occur at rate α, but note that this α has nothing to do with the gamma shape 
parameter! The same symbols are unfortunately used all over the place). The waiting time 
to the second disruption (w2 ) has a Gamma distribution with shape parameter equal to 2). 
The third waiting time (w3) is gamma distributed with shape parameter equal to 3. In 
general, Gamma (α, β) = distribution of αth waiting time when mean sojourn time = β. 
Exponential distribution = Gamma(1,β) = distribution of 1st waiting time when mean 
sojourn time = β. 
 
Here we recall that sojourn time (t) is distributed as the exponential distribution with 
parameter µ: 
 

f(t) = µe-µt 

  

This is the gamma distribution in disguise. 



= tα−1e−t / β

βαΓ α( )
  α = 1, β = 1

µ
 

 
Because Γ(1) = 1 then 

 

= t 0e−tµ

1
µ

Γ 1( )
 

 
= µe-tµ 

 

E(t) = α β = 1
µ

 

 
Thus, the expected sojourn time is 1/µ when disruptions occur at rate µ. This makes 
sense: if disruptions rarely occur, sojourn times are long. If disruptions are occurring at a 
high rate, sojourn times will be shorter. 
 
Discrete Gamma Distribution 
We do not use the full gamma distribution to get continuous relative rates in phylogenetic 
analyses because the computation time is too intensive. Instead, we use a practical model, 
known as discrete gamma distribution (Yang 1994). 
 
The gamma distribution changes as we vary relative rate heterogeneity. Note the 
distributions on the three graphs below: 
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Figure 3 Gamma Distribution α = 0.5     
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Figure 4 Gamma Distribution α = 1    
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Figure 5 Gamma Distribution α = 100 



We divided the distribution into a number of categories (ncat). Each chunk has the same 
area (1/ ncat). Note the lines are not evenly spaced on x-axis. The mean of the relative 
rate for each category i is the representative relative rate, ri. 
  
 
site   1 2 3 4 5  n 
rel rates  r1 r1 r3 r4 r2  r1 

 
The result is not a very fine-grained model of rate heterogeneity because we use a 
representative relative rate from each rate class (i.e. we are reducing our choices for 
relative rates from infinity down to just ncat). If we use more categories, it leads to 
smaller chunks, and the relative rates are closer to the values they would be if we used a 
continuous gamma distribution. As we increase the number of categories, we increase the 
amount of time needed to evaluate likelihoods of trees. The default value tends to be 4, 
and up to 8 categories works well for data sets, but beyond this the results do not usually 
pay off due to the time cost. 
 
Typically, if we decide to employ discrete gamma rate heterogeneity, we rely on a 
program such as PAUP* to estimate the shape parameter for us from our data. Given a 
particular value for the shape parameter, you can type “gammaplot shape = (value for α)” 
into PAUP* to generate a crude plot of the distribution. The default in PAUP* is α =0.5. 
PAUP* also provides the cutoff points for each rate category, as well as the 
representative (mean) rate for each category. It is important for us to know how PAUP* 
calculates the values, and while calculating the values completely by hand is out of the 
question, Excel combined with some knowledge of Gamma distributions can be used to 
see where these numbers come from. 
 
We use the CDF (cumulative density function, F(r)) to calculate the integral of the 
density function up to a specified point. 
 

F(a) = f (r)dr
0

a

∫  

F(a) = 1/4 
F(b) = 1/2 
F(c) = 3/4 

 
Let’s assume the shape parameter is 0.5 and the scale parameter is 2.0 for the following 
examples. We can plug-in a relative rate value (e.g. r=1.12, and the Excel function 
GAMMADIST(1.12, 0.5, 2.0, true) can be used to evaluate the integral represented by 
F(r) (which is the area under the density curve from 0 up to 1.12). The last argument 
“true” tells Excel that we want the CDF rather than the PDF of the Gamma distribution. 
Note that the shape parameter is the second argument, and the scale parameter is the third 
argument to this function.  
 
Conversely, we can plug F(r) area values (e.g. F(r) = 0.25) in, and the Excel 
GAMMAINV function will calculate the proper value of r such that the area under the 



curve from 0 up to r equals 0.25. For example, GAMMAINV(0.25, 0.5, 2.0) returns the 
value of the first cutoff point (a), GAMMAINV(0.5, 0.5, 2.0) returns the second cutoff 
point (b), and GAMMAINV(0.75, 0.5, 2.0) returns the third cutoff point (c). The fourth 
cutoff point is of course infinity. 
 
 
How to get the Mean for one rate category 
 
Let’s use the discrete distribution in Figure 6 to illustrate what we are trying to do. The 
vertical axis gives the frequency of the numbers on the horizontal axis. The total number 
of observations is 24. 
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Figure 6 Discrete Distribution 
 
The overall mean may be calculated as follows: 
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or we can write this as just 
 

= 
0( ) 1( )+ 1( ) 1( )+ 2( ) 4( )+ ...+ 9( ) 1( )

24
  

 



(The observed probability of each value is frequency/24, and the mean is the expected 
value computed with these observed probabilities) 
 
We can also calculate the mean of the chunks, considering one chunk at a time. 
So the mean of chunk 1 is: 

= 0( )1
6

+ 1( )1
6

+ 2( )4
6

 

 

= 1
6

+
8
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 = 9
6

 = 3
2

 

 
or: 

0( ) 1( )+ 1( ) 1( )+ 2( ) 4( )
6

 = 1+ 8
6

= 9
6

=
3
2

 

 
Note that the numerator is the sum of values times frequencies, and the denominator is 
the sum of only the frequencies. Reverting back to the problem at hand, where sums 
become integrals and probabilities become f(r) dr, the mean of the 1st chunk may be 
written in terms of the PDF as: 
 

 =
rf (r)dr

0

a

∫

f (r)dr
0

a

∫
 

 

= 
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0

a

∫
1
4

  (because F(a) = 1/4) 

 

= r
0

a

∫ rα−1e−r / β

βαΓ(α)
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⎢ 
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⎦ 
⎥ dr  

 
We can get parts of this equation to look like a gamma distribution by using our previous 
bag of tricks: 

 

=
0

a

∫ rαe−r / β

βαΓ(α)
dr  

 

=
β xΓ(x)
β xΓ(x) 0

a

∫ rx−1e−r / β

β xΓ(x)
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⎣ 
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⎥ dr 

 
 



Note that we cannot simply forget about that integral this time because the upper limit is 
a (not infinity) so it doesn’t equal 1. We can use Excel to compute this integral, however. 
This integral is the CDF of a Gamma distribution in which the shape parameter is x rather 
than α, where x = α + 1. 
 
Use Excel gammadist (a, α + 1, β, true) to evaluate this integral, where a = boundary; α + 
1 = shape; β = scale; true means CDF) 

 

Noting that αβ
αβ

β
α =

Γ
Γ

)(
)(xx

 as before, we get the mean of the first category in Excel by: 

 
4αβ gammadist (a, α + 1, β, true) 
 

The mean values for category 1 are comparable: 
PAUP* = 0.03338775 
Excel = 0.03338767 
 

 
To find the mean for the 2nd category, we want the integral to go from a (first cutoff 
point) to b (second cutoff point): 
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In Excel, find the integral from 0 to b then subtract the integral from 0 to a: 
 
r2 = 4αβ [gammadist (b, α + 1, β, true) - gammadist (a, α + 1, β, true)] 
 
For the 3rd category: 
 
r3 = 4αβ [gammadist (c, α + 1, β, true) - gammadist (b, α + 1, β, true)] 
 
And for the final (4th) category: 
 
r3 = 4αβ [1 - gammadist (c, α + 1, β, true)] 

 
  

Gamma Function is a Generalized Factorial 
 
Gamma function is a generalized factorial so: 

 
          Γ(n + 1) = n! 
 



To see why this is true, apply the definition of the gamma function repeatedly, plugging 
in Γ(1) = 1 at the end: 
 

Γ(n+1) = nΓ(n) 
  = n(n-1)Γ(n-1) 
  = n(n-1)(n-2)Γ(n-2) 
 
  = n(n-1)(n-2)…(2)(1)Γ(1) 
  = n(n-1)(n-2)...(2)(1)(1) 
  = n! 
 

It is a generalized factorial because you can plug fractional numbers into the gamma 
function, whereas factorials only are defined for integer values. 
 
The number n! is too large for most computers to handle when n is very large (try 600! on 
your calculator for example), so to get around this you can calculate lnΓ(n + 1), which 
equals ln(n!). For most situations, knowing the natural log of the factorial is all that is 
necessary.  
 
Note added by Paul (this example was not given in lecture, but seems appropriate here): 

For example, consider computing the binomial coefficient ⎟⎟
⎠

⎞
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 where n=600 and y=100. 

Trying to do this directly 
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is not possible (100! is already 157103.9 × , and 600! is just too big a number for Excel to 

handle). Computing the natural log of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
n

is fairly easy using the GAMMALN function 

in Excel: 
 

2055014.267)501(ln)101(ln)601(ln
)501()101(

)601(ln =Γ−Γ−Γ=⎟⎟
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Γ  

The desired binomial coefficient can now be calculatedas 1162055014.267 1011.1 ×=e . 
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