
Phylomath Lecture 5 – February 24, 2004 
Jessica Budke 
 
Program used during last week’s lab – Sojourn time simulator 
 
This is a PHP program associated with the Phylomath course website.  There are no direct links 
to this program. To find the program, type in <sojsim.html> after the address for the course 
website.   
(Try not to run to big a simulation or share with the world.  Running from the EEB web server.) 
 
When we looked at this sojourn time simulator last week we noted that it calculated the expected 
values for several statistics.  Two of these values were the expected proportion of similarities 
and expected proportion of differences. 
 
How are these two values calculated? 
 
Before we determined how to calculate these values we reexamined the function of the Sojourn 
time simulator (STS).  First the STS starts with a nucleotide sequence, and then a second 
sequence is simulated.  A set length of time over which the sequence is allowed to evolve is 
determined.  Sojourn times are calculated and at the end of each sojourn a disruption occurs.  
Based on the disruptions that have occurred, sequence 2 is determined. By comparing sequence 
one to two we can observe if there is a similarity between the starting and ending bases or if 
there is a difference between the two of them. 
 
Example of products from the Sojourn time simulator 
Sites Seq 1 Timelines with sojourn times Seq 2  

1 A  A Similarity  
2 C  C Similarity 
3 G  T Difference 

 
Using results such as these the expected proportion of similarities and expected proportion of 
differences were calculated. 
 
We started with the longer way to calculate the expected proportion of differences. 
 

Pr(difference) =   ∑∑ ≠ijj
Pr(starting base) Pr (ending base | starting base, t, µ) 

 
  = 12 ( ¼ ) ( ¼ - ¼ e-µt)  

  
    = 12/4 ( ¼ ) (1-e-µt)    
 
  =  ¾ (1-e-µt) 
 
 
 
 

∑ j = the sum of the number of all 

  possible starting bases = 4 

∑ ≠ij = the sum of the number of all  

  possible ending bases = 3 



We then calculated the same expected proportion of differences by a shorter method. 
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 = [ 1- Pr( no sojourn time < t)] (¾) 
 
 = (1-e-µt) (¾)           [Reminder: e-µt = the probability of zero disruptions before time(t)] 
 
Using either the shorter method or the longer method resulted in the same final equation.  The 
expected proportion of similarities can be calculated by subtracting the expected proportion 
of differences from one. 
 
It was mentioned that regardless of how many disruptions occur over time t, it is only the last 
one that matters. 
 
 
Recap of how to derive e-µt 

 There is a more detailed explanation and set of formulas to derive e-µt in the notes from 
February 10th (second page). 
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Simulation:  the parameters µ, t are known values and they are used to simulate data 
Estimation Method: the data is known and used to estimate the parameters µ, t 
 



Estimation Methods 
1. Method of Moments 
2. Least Squares 
3. Maximum Likelihood 
4. Minimax Method (methods based on minimizing costs) 
5. Bayesian Posterior Summaries 

 
1. Method of Moments 
 For this type of estimation method the goal is to estimate the following: 
 
    d  =  3/4 µt  =  3αt  = expected number of substitutions per site 
           across a branch of length t and rate µ 
 
The value of d is used because there may be multiple rates that could be used in place of µ. For 
example, a model allowing transition- and transversion-type substitutions to occur at different 
rates. Using the expected number of substitutions per site (d) is an effective standard way to 
specify a branch length that has the same meaning across many different models.  
 
 E(x) = 1st moment = mean = expected value 
 
 E(x2) = 2nd moment 
 
In order to determine the expected number of substitutions across a branch of length t, we again 
start with two sequences (either simulated or real life data) and determine the actual proportion 
of similarities and differences between the sequences (call this statistic p).  
 
   p = pr(diff)   [Observed proportion of differences] 
 
  E(p) = ¾ (1-e-µt)   [the 1st moment → Expected proportion of differences] 
   
Once again everything in this class leads to algebra. 
 
 p = ¾ (1-e-µt)    [We substitute the observed proportion of differences for the expected  
    proportion of differences and then solve for the unknown value µt] 
 (4/3)p = 1-e-µt 
 
 ln[1- (4/3)p] = ln(e-µt) 
 
 ln [1- (4/3)p] = -µt    
 
 -ln [1- (4/3)p] =  µt   [Multiply both sides of the equation by ¾ ] 
 
  -(¾) ln [1-(4/3)p] =  (¾)µt  = d [ Then the right side of the equation is equal  to d] 
 



This equation allows us to determine the expected number of substitutions across a branch of 
length t and rate µ when we know the observed proportion of differences (p) between our 
sequences. 
 
Here is an example that we performed later in the class for calculating the expected number of 
substitutions per site. (This may be located in a different place in your own notes.) 
 
This example is based on a handout (see next page) that Paul gave us during class, regarding 30 
nucleotides of the ψη-globin gene of gorilla and orangutan. From these sequences we can 
determine the number of differences and similarities between the two. 
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d  =  -3/4 ln [1 – (4/3) (2/30)]   =  -3/4 ln (0.91111)  =  0.069817 
 
d  = 3αt  =  3(0.02327) =  0.06981   [αt =0.02327; from the handout]   
 
 
 
2. Method of Maximum Likelihood 
 - makes use of all the data 
 
L = Pr( data | µ, t)    [We are determining the probability of the data given µ and t.   
     Remember that µ and t cannot be estimated separately.   
       They must be estimated as a product] 
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   [The first ¼ inside the brackets is the probability of the given starting base] 
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ndiff =number of sites that are 
different from seq 1 to seq 2 
nsim =number of sites that are 
similar from seq 1 to seq 2



An example

( )( ) ( )( )28 24 431 1 1 1 1
4 4 4 4 4 4

t tL e eα α− −⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

gorilla   GAAGTCCTTGAGAAATAAACTGCACACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

First 30 nucleotides of the ψη-globin gene of gorilla and orangutan:

Plot of log-likelihood as a function
of the rate-time parameter αt

Maximum likelihood estimate
(or MLE) of αt
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We didn’t finish working through the rest of this equation during class.  The end result should be 
the same equation that we resulted in using the Method of Moments.  If you would like to 
complete the equation yourself, take the derivative of lnL with respect to µt and set it to 0, then 
solve for µt.  (Paul decided to spare us the rest of the math.)  If you would like to be walked 
through the equation see Paul.  Otherwise you can just take it at face value that the equation 
results in: 
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Note added by Paul: I hate for you guys to take anything at face value, so let’s start next Tuesday 
by filling in this gap! 
 
Refer again to the handout with the sequences from the gorilla and orangutan. 
 
We discussed why the graph of the log likelihood curve has the shape that it does.  
 
The maximum likelihood is where the slope of the curve is 0 
 
If αt goes to 0 then the rate of subst = 0 or time = 0 
 Thus the probability of seeing the 2 differences that we did observe is zero; the ∞= -  nLl  
 
 If αt goes to ∞  then the probability of  observing  only 2 differences is  
 difficult to explain. 
 
Rate Heterogeneity 
 Some parts of most genes are under strong stabilizing selection while other parts are 
under relaxed selection. This causes different rates of change for different sections of a sequence. 
 

Simulation Phase 
 
pinv or   pinvar (in PAUP) = Proportion of invariable (invariant) sites 
 



Let pinvar = 0.5 for purposes of this simulation 
u ~ uniform (0,1); if u is less than 0.5, site will be invariable; if u is any other value, site is 
variable (which means it can vary, but is not obligated to vary) 

* not the random numbers generated in class.  
 
 
                  For Site #6      
Starting Base: To choose the starting base 
(using site 6 as an example), we referred 
back to our choice tables, where each base 
has a ¼ chance of being the starting base. 
 
 
 
Ending Base: If the site is invariable then the 
ending base is automatically the same as the 
starting base. If the site is variable then the 
probability of the ending base depends on 
the starting base and µt. 
 

  

  
µt = 0.1 (chosen arbitrarily) 
 
Pr (same) = ¼ + ¾ e-µt  = 0.9286 Pr (particular difference) = ¼  – ¼ e-µt = 0.0238 
 
 

Site Used to  
determine → 

Invariable? Used to  
determine → 

Start End Used to  
← determine 

1 0.172* Yes 0.285 C C --- 
2 0.935* No 0.964 T T 0.831* 
3 0.060 Yes 0.576 G G --- 
4 0.441 Yes 0.758 T T --- 
5 0.491 Yes 0.502 G G --- 
6 0.753 No 0.051 A A 0.734* 

A

G C

T

Pr (A) 

Pr (A I A, µt) 

G T

A

C



 
 
One problem is that the proportion of differences can be obtained by subtraction given the 
proportion of similarities (and vice versa). Thus we only have one degree of freedom. 
 
p = probability of a difference    
1- p = probability of a similarity 
 
We can thus estimate only one parameter in the model when only two sequences are analyzed.  
Using more sequences in the analysis gives us more than two data patterns, which makes it 
possible to estimate more parameters in our model. Thus this inability to estimate both d and 
pinvar only applies to analyses of 2 sequences. 
 
We then discussed the relationship between pinvar and µt. For two sequence analyses, these two 
values are highly correlated, to such an extent that one cannot be found without the other. 
 
pinvar is directly related to µt 
 when pinvar is high, µt also high 
 when pinvar is low, µt also low 
 
Note added by Paul: Why is this? When pinvar is high, it accounts for many of the constant sites 
(sites showing a similarity between the two sequences), leaving mt to explain the remaining sites, 
most of which show a difference. Thus, µt would need to be high to account for the fact that the 
sites that are variable nearly all show a difference between the two sequences. Now consider the 
case when pinvar is low, say 0.0. If pinvar is zero, then all the sites are at least potentially able to 
vary, and µt will be lower because it needs to explain the fact that many of these potentially 
variable sites did not in fact show a difference across the branch. 
 
We ended the class with a bit about relative rates.  However this topic will be covered in greater 
detail in upcoming lectures so this information will not be included here. 
 
 
 
 
 
 


