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A return to sojourn times 
We began by returning to the idea of sojourn times, or the time period until the next 
disruption event occurs for a given site in a nucleotide sequence. We’re interested in 
understanding sojourn times in order to ultimately calculate the number of disruptions (or 
substitutions) that occur over a single branch in a phylogeny. For a binomial distribution, 
the expected number of substitutions (signified by λ) on that branch equals the product of 
the 1) probability of a substitution in the interval, p, and 2) the number of intervals the 
branch is divided into, n: 
 
   λ = pn 
 
For a Poisson distribution, the expected number of substitutions (signified by λ) for a 
specified branch equals the product of 1) the instantaneous rate of disruption, denoted µ, 
and 2) time, t: 
   λ = µt 
 
But how are these two λ values related to each other? Or, how do we compare these two 
values to each other when it seems they are using terms that are not directly comparable? 
We can do this by first letting the number of intervals (n) in the binomial distribution 
approach infinity over a very small time period (we’ll call this “dt”) such that now our t 
value can be seen to equal 
 
   t = (dt)(n)  
 
Substituting this new definition of t into the Poisson version of λ leads to the logical 
conclusion that: 
   µt = µ(dt)(n) 
 
The product of the first two terms, µ and dt, is proportional to p. This term equals the 
instantaneous probability of a disruption, or the expected number of disruptions in 
amount of time equal to dt (an incredibly small amount of time). The product of dt and n 
is proportional to time, t. We now can see how the two distributions are related.  
 
Expected number of disruptions over a time period dt 
If we want to figure out the expected number of disruptions occurring over a small 
portion of that branch, called dt, we would see that this expected number actually equals 
the probability of a disruption occurring in the first place. We’ll show how this is true 
below. 
 



Letting y equal the number of disruptions, and E(y) equal the expected number of 
disruptions, we can prove that the expected value is equal to the probability of a 
disruption. First, we stipulate that there cannot be greater than 1 disruption in the tiny 
interval of time, dt, so our possibilities are 0 disruptions and 1 disruption occurring in that 
tiny time period dt. Thus, in order to calculate the expected number of disruptions that 
occur, we calculate the product of the value and the probability of that value, for each 
possibility, and then sum up these values: 
 
   E(y) = (0)pr(0) + (1)pr(1) 
 
   E(y) = 0 + pr(1) 
 
   E(y) = pr(1) 
 
Therefore, the expected number of disruptions equals the probability of a disruption 
occurring. We can predict what the expected number of disruptions is from information 
about the rate of a disruption occurring and the amount of time that transpires (i.e. λ = 
µt). This is analogous to the idea that in traveling someplace, we can predict the distance 
we will travel if we have information on the speed at which we are traveling and the time 
we will be in transit.  
 
Note added by Paul: The expected number of disruptions over the tiniest of time intervals 
dt is µdt (rate multiplied by time). This section was about showing that this expected 
number of disruption equals the probability of a disruption when you are envisioning a 
time period so small that only 0 or 1 substitutions are possible. Hence, p = µdt (where p 
harks back to the binomial model, where we let p be the probability of a disruption in one 
of the n arbitrary time intervals). The first two sections in these lecture notes are simply 
showing that you can arrive at the conclusion that µ dt is the instantaneous probability of 
a disruption in more than one ways. I am spending some time on this subject because it is 
important to remember that it is µ dt that is the instantaneous probability of a disruption, 
not just µ by itself, which is the instantaneous rate at which disruptions occur. 
 
Probability density functions & Cumulative distribution functions 
Paul next introduced the concepts of the probability density function and cumulative 
distribution function. The exponential probability density function (PDF) is proportional 
to the probability that a disruption occurred exactly at time t, (T = t), and can be shown 
as: 

   f(t) = µ e-µt 

 

The exponential cumulative distribution function (CDF) is proportional to the probability 
of at least one disruption occurring from time 0 to time t, (T ≤ t) and can be shown as: 
 



   F(t) = 1- e-µt 

 
NOTE: T (in capital letters) here refers to a random variable (e.g. leaf length), and t 
(small letters) refers to a particular instance/value of that variable (e.g. 2.34cm).

  

Also, the conventional use of small f and big F is important as this distinguishes a 
probability density function from a cumulative distribution function. 
 
Note added by Paul: The CDF and PDF concepts are not restricted to disruptions or even 
biology. They are central concepts in statistics as a whole, whether Bayesian or 
frequentist. I was using sojourn times as examples of random variables, and sojourn times 
are exponentially distributed (as we discovered when we worked out the form of the CDF 
and PDF). 
 
Let’s visualize these functions graphically (note: µ = 0.8 for these examples): 
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The y-axes for each of these functions are different; for the probability density function 
the value on the y-axis is the probability density, but for the cumulative distribution 
function the y-axis value represents a probability. Probability densities can be larger than 
1 (although this is not true in this example), whereas probabilities must be between 0 and 
1. 
 
The cumulative distribution F(t) can be approximated as the sum of the areas of all the 
small rectangles fitting under this curve between 0 and t,  
 
   F(t) = Σi f(ti) ∆t,   
where ∆t is the width of each rectangle and f(ti) is the height of rectangle i. 
 
If ∆t is allowed to approach zero, summing up all of the tiny rectangles from time 0 to 
time t becomes equivalent to taking the integral under that portion of the curve: 
 

F(t) = 1 - e-µt 

f(t) = µ e-µt

 

 



   F(t) = ∫0t f(t)dt 
 
Now that tiniest of time intervals, the differential dt, takes the place of ∆t and f(t) is the 
height of the rectangle of width dt positioned exactly at time t. Let’s look at this 
graphically. If we were interested in determining the probability of a disruption occurring 
at any time between time 0 and time 1 (where 1 is simply an arbitrary time chosen for 
illustration) we could first calculate the sum of the areas of all of the small rectangles 
contained under the probability density function curve over that time period. 
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This value is equal to the value of the cumulative distribution function evaluated at time 
1. This value is equal to the height of the CDF at time t=1, or F(1): 

cumulative distribution function (cdf)
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Relating the CDF and PDF 
To get the cumulative distribution function F(t) when the probability density function is 
known, we need to simply integrate the probability density function from 0 to t, and 

F(1)=1 – exp{-(0.8)(1)}  
      = 0.55



similarly, to get the probability density function f(t), we need to differentiate the 
cumulative distribution function at the point t: 
    
   F(t) = ∫0t f(t)dt  and, 
 

f(t) = F’(t)  
 
Since we have already know the equations for these functions (above), we can prove that 
this relationship holds by taking the derivative of the cumulative distribution function to 
arrive at the probability density function, as follows: 
 
   F(t) = 1-e-µt 

 

   f(t) = F’(t) = µe-µt 
 
Eight useful rules for calculating derivatives  
Note the convention that f ’(x) means “the derivative of f(x)” 
 
1. f(x) = a (where a is a constant)  2.  f(x) = xb 

 

 f’(x) = 0      f’(x) = bxb-1   
     
 
3.  f(x) = a g(x)     4. f(x) = ln (x) 
 
 f’(x) = a g’(x)      f’(x) = 1/x 
 
 
5. f(x) = ln g(x)     6. f(x) = ex 
 
 f(‘x) = g’(x) / g(x)     f’(x) = ex 
 

7. f(x) = eg(x)     8.  f(x) = g(x) + h(x) 
 

f’(x) = eg(x)g’(x)     f’(x) = g’(x) + h’(x) 
 
---------------------------------------------------------------------------------------------------- 
We can generate uniform random variables using the “RAN#” function on our calculator, 
and then use the cumulative distribution function to transform them to their 
corresponding sojourn times (t values). We will see that the t values we generate in this 
way will be exponentially distributed, which means that a (standardized) histogram of 
them will approximate the exponential probability density function. 
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As you can see from the above schematic, around 90% of the t values generated will 
occur from 0 to a little less than 3 (2.878 to be more precise); and the remaining portion 
of t’s will be greater than this value. If we were to plot out these values, the histogram 
produced would approximate the probability density function in its shape, with most 
values small (i.e. less than 3) and few values (only about 10%) larger than 3. 
 
If you are unsure of this, simply generate values for u using your calculator, calculate the 
corresponding t values, then create a histogram of those time values to prove to yourself 
that this indeed is the case (see below for the equation for determing t using the 
cumulative distribution function) 
. 
Simulating evolution of a nucleotide sequence using the cumulative 
distribution function 
Next, we simulated the evolution of one nucleotide site over a period of time by first 
drawing random values for u (which range from 0 to 1), then deducing sojourn times (t) 
according to the cumulative distribution function. 
 
First, we need to figure out how to obtain a sojourn time, t, given a uniform random 
number u. The first step is to equate u with F(t), which is the graphical equivalent of 
drawing a horizontal line from u on the y-axis to the right until it hits the F(t) curve. 
 
  u = 1 – e-µt 
 
Next, substract u from both sides to rearrange the equation and begin to isolate the t term 
 
  u-u = 1 - e-µt-u  
 
  0 = 1 - e-µt – u 

u 

time 



 
Adding e-µt to both sides yields: 
 
  e-µt = 1- u 
 
Taking the natural log of both sides of the equation gets rid of the e:  
 
  ln e-µt = ln (1-u) 
  
  -µt = ln (1-u) 
 
Dividing through by -µ completes the isolation of t: 
 
  t = -ln (1-u)/µ 
 
This formula represents the algebraic equivalent of transforming the value of u to the 
corresponding value of t as described by the CDF. So, once we have values of u we can 
calculate the corresponding values of t, given their relationship via the cumulative 
distribution function. We also need to specify a specific value for µ in order to actually 
generate any sojourn times, so let’s just pick µ = 0.1 arbitrarily for the purposes of this 
example. 
    
Values for u  sojourn time t 
0.269   3.13 
0.131   1.40   
0.449   5.96 
0.711   12.41 
0.781 15.19 
 
We can use these values to simulate evolution of a single site in a nucleotide sequence. A 
sojourn time represents the time until the next disruption event. Thus after each sojourn 
time, we chose a base at random (each base has probability 0.25) to replace the current 
base.   
 
Our final sequence looked like this, with a total of two disruption events from time 0 to 
time 5. 
 
 
 
 
Note added by Paul: the amount of time represented by the branch (i.e. 5) was pulled out 
of the air just like the value of µ.  

t = 5 t = 0 
T A 

A C 



The portion of this branch from time 0 to the change marked by a “T” is the first sojourn 
time (3.13 time units). The second sojourn time (from T to A) has a total length of 1.4, 
but the total “waiting time” from the beginning of the branch until this second disruption 
(whereupon an A replaced the existing base T) is equal to 3.13 + 1.40, or 4.53.  
 
Note by Paul: The final sojourn was 5.96 time units in length, and carried us beyond the 
end of the branch, which is why  the base present at the end of the branch is an A. 
 
We then used the remaining two sojourn times to simulate evolution at the second and 
third sites in our imaginary nucleotide sequence 
 
Note by Paul: only one sojourn time was needed for each of next two sites because both 
are longer than 5. This means that no disruptions occurred along the branch, and hence 
the base at the end of the branch must have been equal to the base at the start. 
 


