
PhyloMath Lecture 1

by Paul O. Lewis, 22 January 2004

Simulation of a single sequence under the JC model

We drew 10 uniform random numbers to simulate a nucleotide sequence 10 sites long. The JC model specifies
that each base has a relative frequency of 0.25, so the following table was used to decide which base to insert
for each random number drawn:

Base Range
A 0.00 to 0.25
C 0.25 to 0.50
G 0.50 to 0.75
T 0.75 to 1.00

Below is a table showing the random numbers drawn and the data generated (not the exact values presented
in class, I made up new numbers):

Random number Base chosen
0.644 G
0.783 T
0.752 T
0.717 G
0.757 T
0.307 C
0.079 A
0.471 C
0.093 A
0.998 T

Likelihood under the JC model using the “JC” sequence

The likelihood for the sequence simulated in the previous section (GTTGTCACAT) under the JC model is just
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10 = 9.536743164× 10−7

The likelihood is the same numerical value for every possible sequence under the JC model. The question
was raised: “Why wouldn’t the JC model specify a smaller likelihood for the sequence GGGGGGGGGG
than for the one we simulated; it seems much less probable to have 10 Gs in a row than to have a sequence
with at least one representative of each of the four bases.” The answer is that it really is just as probable to
see GGGGGGGGGG as any other particular sequence, including GTTGTCACAT. The reason this is not intuitive is
that in our minds we (mistakenly) think of sequences as falling into two groups: “monomorphic” sequences
like GGGGGGGGGG and “polymorphic” sequences like GTTGTCACAT. Our minds correctly figure out that the
probability of simulating one of the four monomorphic sequences is small compared to the probability of
simulating one of the polymorphic sequences (of which there are 410 − 4!). The chance of simulating the
particular sequence GTTGTCACAT is, however, identical to the chance of simulating the particular sequence
GGGGGGGGGG.

Simulation of a single sequence under the F81 model

We next drew 10 uniform random numbers to simulate a second nucleotide sequence 10 sites long, this time
using the F81 model, which allows the relative nucleotide frequencies to be unequal. We decided (arbitrarily)
to let πA = 0.1, πC = 0.2, πG = 0.3, and πT = 0.4. The following table was used to decide which base to
insert for each random number drawn:



Base Range
A 0.0 to 0.1
C 0.1 to 0.3
G 0.3 to 0.6
T 0.6 to 1.0

Below is a table showing the random numbers drawn and the data generated (again, these are not the exact
values presented in class):

Random number Base chosen
0.511 G
0.632 T
0.601 T
0.739 T
0.627 T
0.766 T
0.125 C
0.480 G
0.599 G
0.978 T

Likelihood under the F81 model using the “F81” sequence

The empirical base frequencies for a sequence are computed as simple proportions, using the number
of each base observed in the sequence, divided by the total number of sites. The empirical frequency is 0.0
for base A (no As were observed), 0.1 for base C (1 C was observed out of 10 sites), 0.3 for G, and 0.6 for
T. Below, the likelihood under the F81 model is computed for this sequence using the empirical nucleotide
composition:

LF81 = (0.3)(0.6)(0.6)(0.6)(0.6)(0.6)(0.1)(0.3)(0.3)(0.6) = 1.259712× 10−4

This can be written as a general formula as follows:

LF81 = πnA

A πnC

C πnG

G πnT

T

Here, πi is the relative frequency of base i, and ni is the number of times base i was seen in the sequence.
Plugging in the empirical values 0.0, 0.1, 0.3, and 0.6 for πA, πC , πG, and πT , respectively, we get the same
answer as before (1.259712× 10−4). Plugging in the true frequencies, we get

LF81 = πnA

A πnC

C πnGA
G πnT

T = (0.1)0(0.2)1(0.3)3(0.4)6 = 2.21184× 10−5

Thus, the probability of the sequence GTTTTTCGGT under the F81 model is higher using the empirical
frequencies than it is using the true frequencies. This will always be the case, because if the data consist of just
one sequence, the empirical base frequencies are the maximum likelihood estimates of the relative nucleotide
frequencies. This means that one cannot make the likelihood any higher using any other combination of
relative frequencies, including the true combination.

Likelihood under both models using the “JC” sequence

The difference between the JC model and the F81 model lies in the fact that the F81 model allows any
combination of base frequencies, whereas the JC model forces all the base frequencies to be equal: i.e.
πA = πC = πG = πT = 0.25. The likelihood computed under a certain model tells us how well the model fits
the data. We might reasonably expect the JC model to fit the “JC” sequence better than the F81 model,
and vice versa, but there is so little data in this case (10 sites) that this result is certainly not guaranteed.
Also, note that it is impossible for the JC model to beat the F81 model in this game, because the F81 model



can be made to equal the JC model by stipulating that the base frequencies are all equal. So the only way
for JC to win is to prevent F81 from setting its base frequency parameters to anything it chooses.

We have already computed the likelihood for the “JC” sequence (GTTGTCACAT) under the JC model: 9.536743164×
10−7. The likelihood under the F81 model for the same sequence (using the empirical frequencies) is:

LF81 = πnA

A πnC

C πnGA
G πnT

T = (0.2)2(0.2)2(0.2)2(0.4)4 = 1.6384× 10−6

The probability of the data (i.e. the likelihood) is higher under the F81 model, even though the data were
generated using the JC model.

Exercise 1: compute the likelihood for the “JC” sequence under the F81 model using the true
frequencies (that is, 0.25 for all four bases)

The F81 likelihood should be identical to the JC likelihood in this case, namely 9.536743164× 10−7.

Exercise 2: compute the likelihood for the “JC” sequence under the F81 model assuming
πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1?

These frequencies are pretty far from the true ones, so we might expect the F81 likelihood to be less (i.e.
worse) than the JC likelihood in this case. The answer I got for this was 5.76× 10−8, which is indeed quite
a bit worse than the JC likelihood.

Likelihood under both models using the “F81” sequence

Doing the same exercise for the “F81” sequence (GTTTTTCGGT), we again get 9.536743164× 10−7 for the JC
model (all sequences of length 10 have the same likelihood under the JC model) and 2.21184× 10−5 for the
F81 model (using the true frequencies). So this time, the model actually used to simulate the sequence is
indeed the best-fitting model. The fit of the F81 model is even better if the empirical frequencies are used:
1.259712× 10−4. Using the empirical frequencies “tunes” the F81 model to fit the data as well as possible.
In this case, the sequence GTTTTTCGGT is 132 times more probable under the F81 model than it is under the
JC model (0.0001259712 is 132 times larger than 0.0000009536743164).

Logarithms

Logarithms are useful for representing likelihoods especially for large amounts of data. The probability that
an A will be seen at the first position of a sequence and a T will be seen at the second position is the
probability of a coincidence. The more players (i.e. sites) involved in the coincidence, the smaller will be the
probability of that coincidence. There is nothing unusual about this: just think of the probability of seeing
three of your friends while sitting at the stoplight at Four Corners. All of your friends (and you) probably
have perfectly good reasons for being at Four Corners at some time during the day, but the coincidence is
always going to be much less probable than any individual component. With sequences, the probabilities of
coincidences involving thousands of sites are very tiny numbers indeed. It doesn’t mean these numbers are
not useful, but they can become so small that computers cannot distinguish them from zero. Logarithms
allow such tiny numbers to be manipulated accurately.

Common logarithms are defined to be the power of 10 that is needed to represent some number. For example,
the common logarithm of the value x (written log(x)) is the value y such that 10y = x. This means that the
following is a true statement:

x = 10log(x)

This is a very useful tautology. Natural logarithms are much more common in the sciences, and behave just
like common logarithms but use the base e instead of the base 10. Thus

x = eln(x)

The value e is a constant approximately equal to 2.718281828. You can use your calculator to get the value
of e by entering the number 1 and pressing the ex key.



Logs of products

The (natural) log of a product is the sum of the logs of the individual terms in the product. Thus, logs turn
products into sums. For example, for any two real numbers a and b,

ln(ab) = ln(a) + ln(b)

For example,

ln((2.2)(4.4)) = ln(9.68) = 2.270061901
ln(2.2) = 0.78845736
ln(4.4) = 1.481604541

ln(2.2) + ln(4.4) = 2.270061901

Why is this true? Starting with ab, replace a and b with their equivalents using the “tautology” and simplify
the resulting expression using the rules of exponents:

ab =
(
eln(a)

)(
eln(b)

)

= eln(a)+ln(b)

The last step just involves invoking the tautology once more, realizing that the power to which e on the right
side is raised (i.e. the quantity ln(a) + ln(b)) must be (by definition) the natural logarithm of ab. In other
words, if

ab = eln(ab)

then ln(ab) must be equal to ln(a) + ln(b) (because they both equal ab).

Logs of quotients

The same process can be used to derive a rule for quotients. Starting with the quotient a/b,

a

b
=

eln(a)

eln(b)
= eln(a)−ln(b)

Thus, ln(a/b) must equal ln(a) − ln(b).

Log-likelihoods

The log-likelihood (commonly abbreviated lnL) is the natural logarithm of the likelihood. For the JC
likelihood of one sequence 10 sites in length,

lnL = ln
(
(0.25)10

)
= ln
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eln(0.25)
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]

= ln
(
e10 ln(0.25)

)
= 10 ln(0.25) = −13.86294361

Note that you can recover the now-familiar LJC = 9.536743164 × 10−7 by entering ln L = −13.86294361
into your calculator and pressing the ex button. The exponential function is the inverse of the natural log
function, and the two cancel each other out, leaving just the likelihood L: eln L = L.
A general formula for the log-likelihood of a sequence under the F81 model would be:

ln L = nA ln(πA) + nC ln(πC) + nG ln(πG) + nT ln(πT ) =
∑

i∈{A,C,G,T}

ni ln(πi)



Simulation of two sequences separated by time t and evolving at rate α

We finished by beginning a discussion on evolving one sequence from another sequence. Two more quantities
must be introduced before the simulation can be done. Assume the time t is 10 and the substitution rate α
is 0.01. The product αt is thus 0.1. This product represents the expected number of substitutions. Thus,
for αt = 0.1, we expect one substitution to occur for every 10 sites. For the JC model, the expected number
of substitutions is actually 3αt, but not for the reason I proposed in class. The real reason is because there
are three stochastic substitution processes going on simultaneously (the base in the ancestral sequence can
change to any one of the three other bases), and the expected number of substitutions is the same for all
three (i.e. αt). Adding the expected number of substitutions from all three processes together gives you the
3αt.

Starting with the “JC” sequence created at the beginning of this lecture (GTTGTCACAT), simulating the
evolution of a second sequence involves transition equations, which for the JC model are:

Pii(t) = 1
4 + 3

4e
−4αt

Pij(t) = 1
4 − 1

4e
−4αt

These equations tell us that the probability of a site ending up with a different base than it started with
over a time t = 10 when it is evolving at a substitution rate α = 0.01 is 0.25 − 0.25e−0.4 = 0.25 −
(0.25)(0.670320046) = 0.08242. The probability of ending up in the same base as it started with is just
1 − (3)(0.08242) = 0.75274. Calculating it the hard way, you get the same answer: 0.25 + 0.75e−0.4 =
0.25 + (0.75)(0.670320046) = 0.75274.

For the first site, the starting base is G, and to simulate the evolution of this site, we would set up a table
for deciding how to process the uniform random numbers as follows:

Base Range
A 0.0 to 0.08242
C 0.08242 to 0.16484
G 0.16484 to 0.91758
T 0.91758 to 1.0

Note that this table is designed specifically for a starting base of G (the probability of ending with a G is
the largest slice of the pie in this case, a little over 75%). If we were simulating the second site, which starts
with a T, the table would look like this instead (with the largest slice of the pie going to T as the base at
the far end of the branch):

Base Range
A 0.0 to 0.08242
C 0.08242 to 0.16484
G 0.16484 to 0.24726
T 0.24726 to 1.0

It is of course important to establish these rules before you begin drawing random numbers! Otherwise, you
might be sorely tempted to cheat and start inserting your favorite base too many times. This process is
exactly how programs such as SeqGen simulate sequence data. Programs like SeqGen allow one to use a
variety of models, of course, but this just involves using different transition probability equations, which
differ among models. Simulating data on a tree involves simply repeating this process for each branch in the
tree, each time starting with the sequence you were left with in the last step.

Here is a second sequence I simulated starting with an ancestral sequence consisting of 10 Gs. The simplicity
of the ancestral sequence meant that I could use the first table above for all 10 sites.



Random number Base chosen
0.670 G
0.333 G
0.173 G
0.733 G
0.524 G
0.890 G
0.400 G
0.156 C
0.591 G
0.708 G

Only one site (8) ended up with a different base (C); all the other sites did not change over the branch.
The expected number of substitutions was 3αt = 0.3. The transition equations take account of hidden
substitutions, so the fact that we only detected one substitution when three substitutions were expected out
of 10 sites should not worry us. If one of the other sites had experienced a substitution from G to say A
and back again, the ending base would still be G and we would not be able to detect these additional two
substitutions. I will show you another method of simulating data next time that allows us to see these hidden
substitutions. This alternative method forms the basis of the “character mapping” approach advocated by
Rasmus Nielsen in several recent papers (Huelsenbeck et al., 2003; Nielsen, 2002).
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