
 1

PhyloMath  
by Hilary McManus 
4/13/04 
 
Topics covered 
     -MCMC (Metropolis algorithm) 
     -Codon Models 
     -Robinson et al. (2003) Codon Model 
 

Metropolis Algorithm 
 
Revisiting last week’s lecture, we went over simulating a Markov chain and seeing if we could 
approximate the given posterior probabilities (values in bottom row) of 3 hypotheses (or possible 
states), A, B and C. 

 
A B C

.80 .15 .05  
 
Simulated chain:       …AAABAAAACA… 
 
While this example is trivial, we usually have many more hypotheses than 3 to consider, and thus 
we generally cannot do an exhaustive search and calculate the posterior probabilities for all of 
them. Also, we often can relatively easily compute the numerator but not the denominator of the 
posterior probability. In such cases, MCMC simulation can yield an approximation to these 
probabilities rapidly. 
 
The following can be estimated based on the small sample (chain) above: 
 

A :  8
10   ˆ π A = 0.8

B :  1
10   ˆ π B = 0.1

C :  1
10   ˆ π C = 0.1 

 
Even with this small sample of 10, the estimates (0.8, 0.1, 0.1) are quite close to the true 
distribution (0.8, 0.15, 0.05).  
 
To determine what step the chain takes next, A, B, or C, we can set up a transition probability 
matrix with probability values of moving to a particular state from the current state.  (ex. PAB 
specifies the probability of being in state B after the next step given that you are in state A 
currently) 
 
Single step transition probability matrix (matrix of all possible values): 
{Pi,j} =  

 A B C 
A PAA PAB PAC 
B PBA PBB PBC 
C PCA PCB PCC 
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The sum of each row = 1.0 
 
We want to design a chain that is stationary (probability of any given state does not change over 
time) so that we can more accurately estimate the posterior probabilities of different states.  If we 
designed a chain that was not stationary, the probabilities that we seek to estimate would be 
moving targets! 
 
Note added by Paul: 
The point I made about time-reversibility and stationarity is not valid. While it is true that the 
Metropolis algorithm creates Markov chains that are both time-reversible and stationary, it is 
possible to find examples of Markov chains that are time-reversible but not stationary. For 
example, consider the simple two-state Markov chain with this transition matrix: 
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When currently at state A, this chain must (with probability 1) go next to state B. When currently 
at B, the chain must go to state A. It thus alternates between the two states with perfect regularity: 
 
ABABABABABABABABABABABABABA... 
 
We can easily show that this chain is time-reversible. Suppose we start (at time 1) in state A and 
assume time t is an odd numbered time (t+1 is thus even). 
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The above shows that starting in state A at time t and ending up at state B at time t +1 has the 
same probability (i.e. 1) of starting at state B at time t +1 and ending up at state A at time t. The 
same is true if t is an even numbered time, or if we start at B instead of A, etc. 
 
This chain is thus time-reversible but it is not stationary. At odd-numbered times the distribution 
of states is guaranteed to be (1,0) and at even numbered times it is guaranteed to be (0,1) (vice 
versa if it is started in state B at time 1). Thus, the probability of being in state A (or state B) 
alternates between 0 and 1 each step – this is not stationarity! 
 
It turns out that to have a limiting distribution, the transition matrix must have the following two 
features: 
1) it must make possible some path between any state and any other state 
2) the diagonal elements (i.e. PAA, PBB, etc.) cannot all be zero 
 
The transition probability matrix for the Markov chain above that has alternating states passes 
requirement (1) but fails requirement (2). 
_____________________________________________________________________________ 
 

 
The transition probability matrix used in the Metropolis algorithm is shown below: 



 3

  

Pij =

Qij (1)    if  π j > π i

Qij

π j

π i

   if  π j ≤ π i

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 
 

What is Qij?   Qij is an arbitrary transition probability matrix with few restrictions, namely the first 
condition of stationarity listed above for transition matrices. The second condition (diagonal 
elements all non-zero) is never a problem because the diagonal elements are always set by 
subtraction to make the row sums all 1. 
 
Example of a bad Qij proposal probability matrix:  
 

A B C
A 1.0 0 0
B 1

3
1
3

1
3

C 0 0 1  
 
This is a bad matrix because A and C are absorbing states.  Since PAA=PCC=1, once they are ‘hit’, 
the chain will never leave.  Paul made the analogy that absorbing states are like being bankrupt 
when gambling. The matrix is not required to be symmetric, but one is technically using the 
Metropolis-Hastings algorithm (rather than the Metropolis algorithm) if it is asymmetric. 
 
Here is an acceptable Qij proposal probability matrix: 
 

A B C
A 0 1

2
1
2

B 1
2 0 1

2

C 1
2

1
2 0  

 
The probability values of 0 encourage the chain to mix well because a different state will always 
be proposed. 
 
Using the definition of Pij above, it turns out that our Markov chain is time-reversible. This is 
because we can show that the following equation holds: 
 

 π iPij = π jPji 
 
To show that the above equation holds in general, we must show that it holds in two specific 
situations. Case 1 is when the stationary probability of the ending state j is greater than or equal to 
the probability of the starting state i. Case 2 is the opposite: the probability of the starting state i is 
larger than the probability of the ending state j. 
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Case 2 :   π j ≤ π i

        π iPij = π iQij min 1, π j

π i{ }= π iQij

π j

π i

= π jQij

       π jPji = π jQji min 1, π i
π j{ }= π jQ ji(1)

                  π jQij = π jQ ji  
 
Note added by Paul: 
With our simple example, there are only three states and it is easy to just calculate the entire 
transition probability matrix for our Markov chain. Using the Qij matrix defined above (wherein 
every off-diagonal cell has the value 1/2) and the known probabilities of the three states (0.8 for 
A, 0.15 for B, and 0.05 for C), the Pij matrix becomes: 
 

{ }
02

1
2
1

6
1

3
1

2
1

32
1

32
3

8
7

C
B
A

CBA

Pij =  

 
You should check to make sure you can get these same values.  
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Simulating a Markov chain using the Metropolis algorithm 
 
The goal is to simulate a Markov chain using the Metropolis algorithm. Choose state C 
(arbitrarily) as the starting state and assume the following proposal matrix: 
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B
A

CBA

Qij =  

 
 

First step 
 
Because we are starting in state C, we use only the third row of Qij. This third row defines the 
proposal distribution conditional on the current state. Set up a table to decide which of the two 
possible hypotheses (A or B) will be proposed as the next state given a uniform random number: 
 

If uniform falls in this interval... choose this state... 

0.0 to 0.5 A 

0.5 to 1.0 B 
 
The random uniform value 0.122 was chosen in class, leading to the choice of A as the proposed 
state. We must now check to make sure A is accepted before we declare that it is indeed the next 
state.  
 

{ } { } { } 116,1min,1min,1min=A) (acceptingPr 05.
8. ===

C

A
π
π  

 
The probability of accepting A is 1.0, so A becomes the next state. The Markov chain now looks 
like this: 
 

AC →  
 

Second step 
Now what will be the next proposed step, and will this proposed step be accepted? From 
A, the proposal distribution dictates the following rule for deciding the state to be 
proposed next: 
 

If uniform falls in this interval... choose this state... 

0.0 to 0.5 B 

0.5 to 1.0 C 
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The random number drawn in class was 0.512, so C is the next state proposed. 
 

{ } { } { } 0625.00625.0,1min,1min,1min=C) (acceptingPr 8.
05. ===

A

C
π
π  

 
Because this time there is some uncertainty about whether to accept the proposed state, we must 
draw another uniform random number and use the following table to decide the outcome: 
 

If uniform falls in this interval... do this... 

0.0 to 0.0625 accept proposed state 

0. 0625 to 1.0 reject proposed state 
 
The random value chosen was 0.862, so the proposed state C is rejected. This means that the 
Markov chain must stay in its current state A one time step. The Markov chain thus looks like 
this after the second step: 
 

AAC →→  
 

Real example 
 
To visualize how these calculations work given a problem with two parameters and many more 
possible states, Paul showed us a simulation of the MCMC chain moving through posterior 
distribution space of two parameters, κ and β.  The chain began in the corner where the posterior 
probability is close to 0. 
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The MCMC chain moved fairly rapidly through the ‘flat-land’ space, calculating the posterior 
probability πi for the current spot, proposing the next step and calculating the posterior probability 
of that step (πj), then computing the ratio πj/πi (and, when the ratio < 1, also drawing a uniform 
random number) to decide whether to move on or stay in the same spot. 
 
Note: The ‘flat-lands’ are not completely flat; if the landscape was completely flat, the chain 
would wander aimlessly.   
 
The steps that are proposed fall within a ‘sliding window’, which surrounds the current value of 
the parameter where the chain is sitting.   
 
For example, suppose κ = 1.156 (κ is allowed to range from 0 to ∞ ) 
 
    0    I            ∞ 
     

κ=1.156 (current value of κ where chain is sitting) 
  
How do we propose another value? 

• choose window size (usually a preset value in program, and stays the same throughout 
the run; do not want a window that is too large or the chain gets stuck because most 
proposed steps would be rejected, and a window too small would result in a chain that 
moves very slowly) 

• pick uniform random number between 0 and 1 (for example, 0.3) 
• taking this arbitrary number as a proportion, move across this proportion of the window 

starting from the left end, and the value at that point will be the proposed step. 
 

 
    0       X I           ∞  
    
          κ*=0.895 
 

• after a step is proposed, the probability of the proposed step is calculated, and a decision 
is made about accepting or rejecting it (as demonstrated above).   

 
Note from Paul: 
An exercise1 to test your understanding: the window used above starts at what value? ends at 
what value? is how wide? 
 
If the window overlaps 0, and if the proposed value is less than 0, just negate the value to produce 
a positive (valid) proposed value. Although this rule seems like it would make the proposal 
probability distribution asymmetrical, it doesn’t: the probability of proposing κ* given that you 
are currently at κ is exactly the same as proposing κ given that you are currently at κ*. 

Codon Models 
  

                                                 
1 Answers: the window starts at 0.5035, ends at 1.8085 and thus its width is 1.305. 
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Classical models (ex. K80 model) consider nucleotide sites independent and calculate the 
likelihood for one site without reference to other sites, and calculate the overall likelihood by 
taking the product of all site likelihoods (L=L1L2L3…..Ln) 
 
Though classical models can account for differences in transition rates versus transversion rates 
(ts vs. tv), they are not able to account for non-independence between sites, and therefore cannot 
account for the genetic code (i.e. the non-independent evolution of individual nucleotides within a 
codon). 
 
Therefore, a codon models were invented to recognize codons as the independent states rather 
than nucleotide sites. To do this, 61x61 codon rate matrices are used, representing all possible 
codons (actually 64x64 matrix, less the 3 stop codons).  An example of such a rate matrix can be 
downloaded from the PhyloMath web site, and corresponds to a simplified version of the matrix 
presented by:  

 
Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide 
substitution for protein-coding DNA sequences. Molecular Biology and 
Evolution 11:725-736. 
 
(Also see: Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing 
synonymous and nonsynonymous substitution rates, with application to the chloroplast 
genome. Molecular Biology and Evolution 11:715-724.) 

 
In this rate matrix, the rate formulas are similar to those found in the HKY-model rate matrix, 
however ω’s are incorporated to account for synonymous vs. non-synonymous changes in 
addition to transitions and transversions.  0’s in the rate matrix result from the stipulation that 
changes in more than one nucleotide are not allowed in 1 unit of time. 
 
Synonymous vs. Non-synonymous transitions and transversions: 
 
Synonymous transition  (nucleotide transition results in no change in amino acid) 
GGG    GGA (Gly       Gly) 
 
Synonymous transversion (nucleotide transversion results in no change in amino acid) 
GGG    GGC (Gly       Gly) 
 
Non-synonymous transition  (nucleotide transition results in change in amino acid) 
GGG    GAG (Gly       Glu) 
 
Non-synonymous transversion  (nucleotide transversion results in change in amino acid) 
GGG    GCG (Gly       Ala) 
 
The following assume that the transition or transversion results in a codon differing from the 
starting codon by having an A (adenine). Otherwise, πC, πG, or πT would appear in place of the 
πA. 
 
Synonymous rates: ts. = πAκβ 
          tv. = πAβ 
 
Non-synonymous rates :   ts. = πAκβω 
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                    tv. = πAβω 
 
If ω=1.0, synonymous transitions are occurring at the same rate as non-synonymous transitions 
(and the same goes for transversions). This would indicate there is no selection on that particular 
gene and therefore there is no penalty for changing the protein (ex. pseudogenes) 
 
If ω<1, synonymous changes are occurring at a higher rate than corresponding non-synonymous 
changes, and this indicates that some or all of the protein is evolutionarily conserved (under 
stabilizing selection).   
 
If ω>1, non-synonymous changes are occurring at an increased rate compared to the 
corresponding synonymous changes, and thus the amino acid sequence is changing a lot (at least 
in some part of the protein). High ω values correspond to positive selection. 
 
In this general codon model, it is assumed that codons are evolving independently, however 
we know this is not the case.  Proteins have a conserved tertiary (3º) structure, therefore every 
codon has some effect on the evolution of other codons.    
 
Robinson et al. (2003) constructed a model to account for the 3º structure (non-independence of 
codons).  The rate matrix is “All Possible Sequences” by “All Possible Sequences” and contains a 
lot of 0’s (more than one nucleotide substitution not possible in 1 unit of time).  It is similar to the 
general codon matrix illustrated above, but calculates rates accounting for 3º structure, solvent 
accessibility, etc.  The model distinguishes among kinds of non-synonymous changes and 
penalizes those changes that would result in structural changes.  
 
Jeff Thorne’s seminar will go into more detail regarding this codon model, and we will continue 
discussing it next week. 
 
Robinson DM, Jones DT, Kishino H, Goldman N, Thorne JL (2003) Protein evolution  

with dependence among codons due to tertiary structure.  Molecular Biology and  
Evolution 20(10): 1692-1704. 

 


