Nervous Systems Handout

3 October, 2006

Introduction:

- * insects have well-developed senses relative to many other invertebrates
- * share our same *five senses*
- their vision is thought to be rather modest; nowhere as good as a human's
- other insect senses may be more acute than those of humans, e.g., smell, taste, hearing, touch
- bonus senses:
- * nerves organized into ganglia
- * polarization and depolarization, works like ours, that is...action potentials generated in dendrite (input side of a neuron), depolarization travels along the length of the nerve, and output sent from axon
- * depolarization causes neurotransmitters to be released into synapse
- * common insect neurotransmitters include:
 - acetylcholine
 - glutamic acid (primarily in muscles)
 - GABA (inhibits further depolarization)
 - some pesticides act by inhibiting functioning of the nervous system, esp. neurotransmitters
 - organophosphates (malathion, and others) disrupt activity of acetylcholinesterase
- * a fundamental difference between invertebrate and vertebrate nervous systems is the number of cells:
 - mollusks: few thousand neurons
 - insects: 500,000 neurons
 - vertebrate: 10 billion neurons
- * insects provide remarkable examples of parsimony in nerve cell number: escape response of roaches may be generated by as few as three nerves.
 - sensory nerve attaches to cercus
 - interneuron, "giant axon," runs from circus to thorax
 - *motor nerve* runs from thorax to leg
 - 44 millisecs from detection to initiation of evasive response!

Four Types of Insect Neurons

- 1) Sensory nerves: pick up stimulus and generate an action potential
- 2) Motor nerves: effect a response, e.g., gland releases or muscle movement
- 3) Interneurons: nerve to nerve communication
 - * comprise the body of the central nervous system
 - * responsible for setting up endogenous rhythms (of activity, hormone release, etc.)
- 4) Neuroendocrine cells: secrete hormones

Nervous System Organization

* insects have so many nerve centers

1) central nervous system

- * one of four nerve systems, e.g., also the peripheral, visceral, and stomatogastric
- * *brain* (tripartate): first three body segments
- ingestion, vision, olfaction, regulation of molting, most learning and integration of complex behaviors
- * *subesophageal ganglion*: innervates mouthparts (fusion of ganglia from segments 4-6 from the embryo, i.e., the mandible, maxilla, and labium)
- * ventral nerve cord, including

- *thoracic ganglia*: locomotion
- abdominal ganglia: genitalia, heart, excretion, etc.
- primitively there were are pair of ganglia for each segment
- * these other nerve systems are capable of some regulatory control and some coordinated movement and even learning!!!
 - electroshock leg of headless cockroach and assoc. ganglion; roach will learn to keep leg raised
- * headless insects can carry out many tasks and live for days

Insect Brain

Three parts

- 1) Protocerebrum:
 - * innervates eyes, optic lobes, labrum, and median ocellus
 - * coordination of complex behaviors and most learning
 - * neuroendrocrine control of molting (PTTH secreted from protocerebrum)
 - * *mushroom bodies* located dorsomedially between optic lobes
 - important in smell and may be involved in learning
- 2) Deuterocerebrum
 - * innervates antenna, olfactory lobes, and lateral ocelli
- 3) Tritocerebrum
 - * innervates control to ventral nerve cord
 - embryonically part of ventral nerve cord then fuse to lower part of brain

Sense Organs

Mechanoreception

Four major types of mechanoreceptors:

- 1. trichoid sensilla seta like
 - * a hair that provides sensory input based on its position
 - e.g., hairs (setae) on neck (neck plate) tell the insect the position of its head
- 2. *campaniform sensilla* "bulge plates" that measure distortion * common on wings, halteres, and joints
- 3. stretch receptors
 - * many-branched dendrites that attach at several spots on integument - these may trigger molts
- 4. chordotonal organs internal organs that detect vibrations and/or sound
 - * like a submersed trichoid sensilla with multiple neurons
 - * three important chordotonal organs
 - a. subgenual organ
 - * found in all legs of many insects [(but not beetles and flies)]
 - * proximal part of tibia
 - * extremely sensitive to substrate borne vibration
 - * subgenual organ is involved in orthopteroids
 - b. Johnston's organ
 - * in antennal base (pedicel) of all insects
 - * detects movement of flagellum (very important in orientation during flight)
 - * most famous example is in antenna of mosquito (Culicidae)
 - males only respond to female's wing beat frequency (100 800 Hz)
 - c. chordotonal organs associated with tympanic membranes (hearing structures)
 - * metasternum of mantids
 - * below HW base in noctuid moths

- * protibia of many orthopterans
- * abdomen of many Homoptera, Orthoptera, Lepidoptera, etc.
- * prosternum of some flies, etc.

Roles of tympanal membranes

- * involved in either mating and courtship (including male-male interactions related to reproduction such as territoriality)
- * also detection of predators and especially bats, e.g., in moths:
 - detect bats at distances of 30-40 m response,
 - orient away from source by balancing signal to both ears
 - at 3 m go into erratic dive or drop out of air
 - ear evolved *independently* in three largest clades of Lepidoptera:
 - Noctuidae (thoracic ear)
 - Pyralidae (abdominal ear)
 - Geometridae (abdominal ear)
 - as well as several other moth taxa (all independently)
 - Mantidae:
 - other (nocturnally active) insects with bat detecting membranes: nocturnal flies, lacewings, some beetles (e.g., scarabs), locusts, katydids, & crickets
- * detection of prey
 - e.g., tympanum on prosternum of (Ormia) tachinid flies...cricket parasitoids

Photoreception: detection of light

Four photosensitive detection systems in insects

- 1. Photosensitive cells in body wall (dermal detection)
- 2. Ocelli
- 3. Stemmata
- 4. Compound eyes
- 1. Photosensitive cells in body wall = *dermal detection*

Insect Eyes: lens and photosensitive pigment

- * resolving power is thought to be great
- * clarity/acuity is believed to be modest
- * sensitivity (to light intensity) is high

- hawkmoths can "see" color in extremely low light intensities (lowest in animal kingdom)

- 2. Ocelli: dorsal, simple eyes; either 1, 2 or 3;
 - * single lens
 - * light sensitive, but no image is formed (focal point of lens falls behind "retina")
 - * important in entraining daily rhythms; orientation during flight
 - * typically present in adults, and some nymphs, but never larvae of Holometabola
- 3. *Stemmata* or lateral eyes
 - * present on side of head in Holometabola (larvae)
 - * single lens, a crude image is formed
- 4. Compound Eyes
 - * each eye is made up of one to several thousands of *ommatidia* or facets
 - * each ommatidium has its own lens, "retina," etc.
 - * each plugged into optic lobe (of protocerebrum), thus each facet is thought to produce a distinct image

Night vision in insect is pretty interesting subject: apposition versus superposition eyes? (read in text). Good midterm question...

Color Vision in Insects:

- * not all insects see colors
- * among those that do see color, vision is often trichromatic (but a few lineages see more)
- * some that are trichromatic have three types of color sensitive cells (cones)
 - green-yellow-orange receptors
 - blue-green receptors
 - UV receptors
- * insects probably don't see across entire color spectrum like vertebrates
- e.g., bees only can be trained to discriminate between about four colors
- * many diurnal insects (e.g., bees) see ultraviolet wavelengths
- * bees (and other insects) are often insensitive to reds, ca. 700 nm
- * many insects don't see yellows well (this why bug lights work)
- * one group of insects see reds quite well: the butterflies
- butterflies may have broadest color sensitivity of any animal, i.e., 300 to 700 nm

Detection of polarized light

- * sunlight get increasing polarized at greater angles from the sun, i.e., the more the light vibrates in some planes relative to others
- * light most polarized at 90 degree angle to sun
- * insects can detect polarized (UV) light
- * a single patch of sky is enough for some insect to calculate the sun's position at any time of day
- * polarized light very important in insect navigation, e.g., ants and social insects

Image Formation

- * insects are very sensitive to movement but not still objects
- with regard to movement; bugs can distinguish single degree of arc
- * insects (e.g., bees) learn shapes and colors

Chemoreception: includes both smell and taste

- * sensilla with pores that pick up certain molecules
- * taste is usually aqueous reception (roughly equal to contact reception)
- * smell is usually gaseous detection (roughly equal to remote detection)
- * specialist (single molecules) or generalist nerves (classes of molecules) in receptor nerve in receiving setae/structure

Two common types of chemoreceptors

- a. single pore at tip (commonly taste)
 - * taste same kinds of things we do: water, salt, bitter, sour, and sweet
 - flies taste sugar solutions 1/250 as sweet as what we can detect
 - or according to Dethier
 - * Location of taste receptors: tips of palpi, tarsi, antennae, and ovipositor
- b. multiple pores (smell)
 - * especially antennae
 - * fewer on mouthparts and ovipositor
 - * some very sensitive systems, e.g., male antennae in species that communicate with pheromones